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A B S T R AC T

This thesis considers the Vehicle Routing Problem with Time Windows, which
consist of determining a set of feasible vehicle routes to deliver goods to a set
of customers, at a minimum cost.
The solution method is an Adaptive Large Neighbourhood Search algorithm
in which many matheuristic procedures are tested. The ones that give the
best results are a set partitioning method and an exact Branch Cut & Price
method on a reduced graph.
The final algorithm shows very good results, and solves the 100 customer
Solomon instances with an average best gap of 0.01% using 110 seconds on av-
erage. The algorithm are also tested on the 200, 400 and 600 customer Gehring
and Homberger instances, and shows promising results for the 200 customer
instances, but the matheuristic approaches fails to find improvements within
the timelimit for most of the 400 and 600 customer instances.

Keywords: Vehicle Routing Problem, Large Neighbourhood Search, Matheuris-
tic, Set Partitioning Problem, Operations Research
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1 I N T R O D U C T I O N

Transportation of goods is an important part of today’s society. Large amount of money are
being spend on transporting goods, and decreasing the cost a few percentage can lead to big
savings in absolute terms. It is therefore obvious to cut the costs associated with transportation.
Several approaches can be taken to cut costs. One could either improve the infrastructure or

change the equipment. Both of these approaches require huge investments and could take years
before they become profitable. Instead one could look at Operations Research techniques, and
try to optimise the transportation with respect to the resources available.
This thesis considers a so-called vehicle routing problem and tries to find a near optimal

transportation plan for inland transportation of goods, where the total number of kilometres
driven is minimised. A good transportation plan both decreases the cost, as well as being more
economical friendly as transportation is responsible for a great part of the total CO2 pollution.

The class of Vehicle Routing Problems (VRP) are well-known and complex combinatorial prob-
lems, which has received considerable attention the last 50 years. This is both due to the
importance of the problems in the field of distribution and logistics, as well as them being hard,
both in theory and in practice.
A standard VRP can be stated as follows. Given a set of n customers and a fleet of k identical

vehicles belonging to a given depot. The problem is to design k minimum cost routes, such that
each customer is served exactly once and the truck capacities are not exceeded. Furthermore
each truck must start and end its route at the assigned depot. Figure 1 is an illustration of the
optimal solution to a VRP with time windows. The black square is the depot, and the rest of
the nodes are customers. Each unique color define a truck’s route. The solution looks messy,
but this is due to the time windows, that might not make it attainable that two customers next
to each other are visited by the same truck. Some of the routes crosses over itself, which cannot
happen in an optimal solution for a standard VRP, if the triangle inequality is satisfied.

Figure 1.: The optimal solution to a VRP with time window

Many extensions of this standard problem exists, for example; Periodic VRP, Split Delivery
VRP, Rich VRP, VRP with Time windows, VRP with Pickup and Delivery, VRP with Back-
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introduction

haul, Multi-depot VRP, for a full overview of these as well as several other VRP variants see
[15, 34].

This thesis considers the Vehicle Routing Problem with Time Windows (VRPTW), where each
customer must be serviced within a given time-period. This problem has been addressed using
many different techniques both including (meta)heuristics and exact methods. Solomon [31]
proposed, in 1987, 56 instances with 100 customers that since then have been used to bench-
mark new algorithms. Up until recently, there were still some unsolved instance, but Ropke [28]
solved the last one of them. However, even after 25 years of research the exact methods are still
intractable in practice, as the computation time is too long for the methods to be used in real
world applications.

Many heuristics have been proposed for the VRPTW. As discussed in the recent VRPTW survey
by Desaulniers et al. [9] many new heuristics are Evolutionary Algorithms, but the Adaptive
Large Neighbourhood Search algorithm presented by Pisinger and Ropke in [23] still remains
competitive.
This thesis describes and uses an Adaptive Large Neighbourhood search algorithm to solve

the VRPTW. The algorithms uses 5 different destroy methods, 2 insertion methods, a Simulated
Annealing acceptance criteria and a resetting mechanism. Furthermore a local search method
is embedded into the ALNS framework to further improve promising solutions.

The standard ALNS algorithm is extended by implementing and testing different exact sub-
methods within the ALNS framework. The resulting algorithm is thus a matheuristic.
Matheuristics (or model based metaheuritics) is a relative new buzzword in the field of Oper-

ations Research (OR), however the ideas have existed for a long time. In OR there basically
exists two streams of research, exact methods and heuristic methods. Exact methods guarantee,
in theory, to find the optimal solution, however the run time often increases dramatically with
the instance size. Heuristic algorithms most often do not provide any guarantee on the solution
quality, but usually finds good solutions in limited time. By combining the strengths of these
two approaches allows one to overcome the difficulties that occur when the individual concepts
are applied solely.
The literature on matheuristics for the Vehicle Routing Problems in general is still quite small

and primarily revolves around the same main idea. This thesis describes and tests several new
matheuristics approaches that can be used together with a highly advanced Adaptive Large
Neighbourhood Search metaheuristic.

Many heuristics approaches for the VRPTW tries to minimise the number of vehicles used,
and then searches for the minimum cost distribution plan using this number of vehicles. The
approach described here only focuses on minimising the total travel distance, thus making it
hard to do a fair comparison with most state-of-the-art metaheuristics, but making it easier to
compare the quality of the solutions with optimal solutions.
The final algorithm shows very promising results for the Solomon test instances, solving all the

instances with an average gap of 0.11%, using on average 110 seconds. Out of the 56 instances
the presented algorithm finds an optimal solution for 49 (equivalent to 88%) of these instances.

The remainder of this thesis is organised as follows. Chapter 2 gives a formal mathematical
description of the VRPTW problem. Chapter 3 describes the recent advances in matheuristics,
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introduction

mainly for the Vehicle Routing Problems. Chapter 4 gives a thorough description of the stan-
dard ALNS algorithm. Chapter 5 describes the different matheuristic approaches developed.
Chapter 6 tests different aspects of the algorithm and Chapter 7 show the final results. Lastly
chapter 8 contains the final conclusion.

The basis for the work presented in chapter 4 were created in a former project at DTU in
collaboration with K. Arentoft with Stefan Røpke as supervisor. However, several new aspects
have been studied and tested, but the main algorithm more or less remains the same.

3



2 M AT H E M AT I C A L M O D E L

Throughout this thesis the Vehicle Routing Problem with Time Windows (VRPTW) is consid-
ered. In the problem you consider a depot, and a set of customers with a demand. The objective
is to serve these demands at a minimum cost, to further complicate the problem each customer
only accepts deliveries within a certain time interval.
In order to model the problem, define the following sets

• V = {0, 1, ...,n,n+ 1}
The set of nodes, where node 0 and n+ 1 are the depot and 1, ...,n are the customers.

• A = {(i, j)|i, j ∈ V }
The set of arcs

• K = {1, ..., k}
The set of available vehicles.

Furthermore, define the following parameters

• cij : Cost of using arc (i, j)

• tij : Time for travelling along arc (i, j), includes service time of node i.

• ai: The time from when node i accepts deliveries.

• bi: The time when node i no longer accepts deliveries.

• Q: The capacity of the trucks.

• di: The demand for node i.

Lastly, define two sets of variables

xkij =

1 If arc (i, j) is traversed by vehicle k
0 Otherwise.

and a time variable, wki . If node i is visited by vehicle k then wki indicates when service starts
at node i, otherwise wki is undefined.

With this the problem can be modelled as seen in model (1).

Min Z =
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (1a)

Subject to:
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mathematical model

∑
k∈K

∑
j ∈V

xkij = 1 ∀i ∈ V \ {0,n+ 1} (1b)

∑
j ∈V

xk0,j = 1 ∀k ∈ K (1c)

∑
i∈V

xki,n+1 = 1 ∀k ∈ K (1d)
∑
j ∈V

xkji =
∑
j ∈V

xkij ∀k ∈ K, i ∈ V \ {0,n+ 1} (1e)

wki + tij ≤ wkj + (1− xkij) ·M ∀k ∈ K, (i, j) ∈ A (1f)
ai ≤ wki ≤ bi ∀k ∈ K, i ∈ V (1g)∑

i∈V
di

∑
j ∈V

xkij ≤ Q ∀k ∈ K (1h)

xkij ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (1i)
wki ≥ 0 ∀k ∈ K, i ∈ V (1j)

The objective function, (1a) minimises the cost of travelling. The first constraint, (1b), ensures
that each customer is served exactly once. Constraint (1c) and (1d) makes sure that the trucks
leaves and returns to the depot. (1e) makes sure that if a truck visits a customer, then it also
leaves this customer. Constraint (1f) updates the wki variable, and (1g) makes sure that the
service takes place while the customer accepts deliveries, lastly (1h) makes sure that each truck
only serves customers where the total demand do not exceed the truck capacity. (1i) and (1j)
defines the variables and sets the proper bounds.

The classic Capacitated Vehicle Routing Problem (CVRP) is provably NP-hard. The CVRP is
a relaxation of VRPTW, thus VRPTW is NP-hard. That and combined with the intractability
of the exact methods justifies the need for a heuristic method.
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3 L I T E R AT U R E R E V I E W

This literature review mainly focuses on matheuristic, primarily with focus on Vehicle Routing
Problems and VRPTW especially. For a recent survey of state-of-the-art heuristic and exact
solution methods for VRPTW see [9], or [15, 34] for an overview of several other VRP variants.
The articles considered in this review were selected by starting from a selected few articles. Then
I looked at some of the relevant articles they referenced, and some articles that had cited one
of these articles. This process continued until I had a good overview of the method applied and
new articles did not contribute with anything new that had not already been covered by one of
the articles I had already read.
The following section, 3.1, reviews some of the surveys within the field, and classifies the different
approaches. Section 3.2 reviews the most common approach for VRP matheuristics, namely set
partitioning approaches. Section 3.3 describes some other approaches, and lastly section 3.4
provides an overview of the described algorithms.

3.1 surveys and classification

This section review three surveys. The first one is a general one for combinatorial optimisation
problems, whereas the two last ones are specific for Vehicle Routing Problems.

Puchinger and Raidl surveys in [25] state-of-the-art approaches of combining exact algorithms
and metaheuristics to solve combinatorial optimisation problems. Some of these hybrids aim
at providing exact solutions in shorter time, whereas others focus on getting better heuristic
solutions. They categorise these combinations according to the following two main categories:

• Collaborative
Collaborative combinations are algorithms with methods that exchange information. How-
ever each method are not part of the other, and they can thus be executed individually.

• Integrative
Puchinger and Raidl defines integrative combinations as algorithms where one technique
is embedded into another technique, and thus there is a distinguished master algorithm.

Doerner and Schmid surveys in [10] recent matheuristics trends for the Rich Vehicle Routing
Problems. They outline three main directions of hybridisation between exact algorithms and
metaheuristics; set partitioning approaches, local branching and decomposition.
In the set partitioning (SP) approaches, a metaheuristic is used as a generator of routes. And

a SP problem is solved in order to consider many good routes at the same time. This makes
it possible to consider many local optimal solutions at the same time and combine them in an
optimal manner.
The local branching approach is a general-purpose MIP heuristic in which cuts of the following

type are used in the beginning,

∆(x, x̄) ≤ k
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3.2 set partitioning based

where x̄ is the incumbent, x a proposed solution, ∆(•, •) the ’distance’ between the two so-
lutions (Hamming distance for binary variables), and k is a positive integer. Local branching
favours early updating of the incumbent solution, thus producing high-quality solutions in the
beginning of the computation. This general idea was first proposed by Fischetti and Lodi in
[12].
Decomposition approaches splits the full problem into smaller sub problems that easily can

be solved to optimality, or atleast near-optimality, with the hope that the solutions to the sub
problems can be combined to a full feasible solution.

Archetti and Speranza [2] focuses on decomposition approaches, Improvement heuristics and
column generation based approaches in their survey on matheuristics for routing problems, thus
excluding local branching schemes in their survey. The reason being that only few algorithms for
routing problems fall into this class. The column generation based and decomposition approaches
coincides with the two other classes considered by Doerner and Schmid. Archetti and Speranza
also considers a class of matheuristic they describe as improvement heuristics, these heuristics
uses mathematical programming models to improve a solution found by another heuristic.

3.2 set partitioning based

The most used matheuristic approach used in Vehicle Routing Problems are set partitioning
(SP) approaches. This section review some of the articles using this method, and tries to outline
some of the differences between the different methods.

Rochat and Taillard [27] proposed in 1995 a general VRP heuristic that follows the SP ap-
proach and uses a tabu search algorithm as generator. The heuristic only applies the SP model
as a postoptimisation step, the main focus is thus on the tabu search algorithm. The algorithm
is tested on Capacitated Vehicle Routing Problems (CVRP) and VRPTW instances, and for
the VRPTW it succeeds in finding 27 new best solutions for the 56 Solomon instances. However
these solutions have since been improved.
Kelly and Xu [17] implements a simpler two-phase tabu search algorithm, where the first phase

generates a set of routes. In the first phase they allow for infeasible full solution, as long as
the routes themselves are feasible, that is they allow solutions where a customer is over-covered
or not covered at all. In the second phase they set up a set partitioning problem that consid-
ers all of the generated routes. This SP model is solved by means of a tabu search algorithm
with a simple swap neighbourhood. During the second phase they also allow infeasibilities, but
ensure a feasible solutions by utilising two greedy patching procedures, and through this gener-
ates new routes. Therefore the final solution could be better than the one achieved by using a
general-purpose MIP-solver, but on the other hand, it could also be worse as the tabu search do
not ensure optimality of the SP problem. They consider the CVRP and distance constrained
CVRP problem, and test the algorithm on the 14 instances by Christofides, Mingozzi and Toth
presented in [20]. Out of these 14 instances they find the best known solution in 10 cases, and
solves the rest with an average gap of 1.76%, compared to the then best known solutions.
Alvarenga et al. [1] tackles the VRPTW by means of a two-phase genetic algorithm. In the

first phase many independent populations are made, where there are no influence or genetic
material interchanged between each population. The routes from the best individual from each
population is added to a set R. Before phase II a SP model is solved to optimum by considering

7



3.2 set partitioning based

the set of routes in R. In the second phase several new reduced partial solutions, based on the
solution to the SP model is generated. For these reduced problems the genetic algorithm is
executed once and the routes from the best individual in each population are added to the set R.
Thus the full problem is decomposed with the hope of finding a better solution to the reduced
problems that improves the overall solution. In the end of phase II the full set of routes, R, is
added to the global RGlobal and all elements from R are deleted, such that R is empty. If the
time limit is not reached this cycle starts over again. When the time limit is exceeded the routes
in the set RGlobal is used to solve a SP model. The algorithm is tested on the 56 Solomon test
set, and a time limit of 60 min was used. Comparing with the 33 instances where the optimal
solutions were known at the time, they find the optimal solution in 24 cases, and solves the
33 instances with an average gap of 0.29%. In the end they compare the performance of the
described approached with and without using the SP model over the set R (between phase I and
II), and concludes that using the SP model over the set R improves the solution by as much as
5%.
Pirkwieser and Raidl [22] describes two matheuristic for the periodic VRPTW. The first one,

called VNS-ILP, is a Variable Neighbourhood Search algorithm that acts as the sole provider
of columns for a set covering problem. The set covering model is called several times during
the execution of VNS-ILP and feeds the variable neighbourhood search algorithm with a new
best solution to continue from. The second algorithm, called CG-EA, is a hybrid between a
Column Generation algorithm and an Evolutionary Algorithm. The pricing problem is an ele-
mentary shortest path problem with resource constraints (ESPPRC) which is solved heuristically
by means of a tabu search algorithm and a greedy label correcting dynamic programming al-
gorithm. The solution to the restricted master problem (RMP) is feeded to the Evolutionary
algorithm (EA), such that the initial population in the EA are the columns where the corre-
sponding variable in the RMP is non-zero. The selection criteria in the EA is then based on
the corresponding LP-values, such that routes with a higher LP-value have a higher chance of
being selected. This procedure initialises half of the initial population, and a variant of the VNS
algorithm provides the last part of the full population. VNS-ILP is compared with a pure VNS
algorithm, and CG-EA is compared with a column generation algorithm with the two heuris-
tic approaches to the pricing problem as described above, and a pure Evolutionary Algorithm.
Both matheuritistic yields significantly better results than their pure metaheuristic counterpart.
However the VNS-ILP is significantly better than CG-EA, and even VNS outperforms CG-EA.
The algorithms are tested on newly derived instances, and thus cannot be compared with any
other heuristics than the ones presented in the paper.
Subramanian et al. proposes in [33] an algorithm for a class of Vehicle Routing Problems.

Their algorithms do however not consider time windows. The algorithm uses the Iterated Local
Search algorithm abbreviated ILS-RVND as described in [21, 32]. Furthermore a SP model is
used to optimise over the set of generated routes. However, to reduce the set of considered routes
in the SP model, they define a criteria determining when a route should be added to the pool of
routes used in the SP model. When the SP model finds an incumbent solution better than the
current best, then the ILS-RVND algorithm is called. If the ILS-RVND heuristic succeeds in
finding a better solution the cutoff -value is updated for the SP-model. The algorithm is tested
on the A, B, E, M, P series of tests set for the CVRP and CMT sets from [20]. For the A, B, E,
M and P series all known optimal solutions were obtained, and for the three open M-problems
the algorithm improved the best known for two out of 3 problems, and obtained the best known
for the last problem. For the CMT-sets the average gap between the average solutions and the
best known solutions were 0.08%, the same as the the algorithm by Rochat and Taillard from
[27].
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3.3 decomposition and column generation based

Yildirim and Çatay [36] implements a parallel ant colony optimisation algorithm where the
solution to a SP model formulation is used to update the pheromones. In the ACO phase the
Time-based Ant System (TbAS) as presented in [35] is used. The algorithm is tested on the
R and RC instances of the Solomon instances. Comparing with the best known solution they
report they improve 3 out of 39 best known solutions, and the average gap is 0.22%1.

3.3 decomposition and column generation based

This section considers some of the decomposition and column generation based approaches found
in the literature.
Archetti et al. [3] describes an optimisation-based heuristic for the Split Delivery Vehicle

Routing Problem (SDVRP). A tabu search heuristic is used to identify parts of the solution
space with high quality solutions. This neighbourhood is then explored by means of a suitable
integer programming model. The model handles the demand and capacity constraints of the
problem, and uses routes found by the tabu search as the decision variables. Moreover they use
information from the tabu search algorithm to generate the set C ′, which is the set of customers
that are very unlikely to be served more than once in an optimal solution. This is used in
the model to reduce the complexity and thus ensuring a faster execution time. In the end this
matheuristic is compared with a pure tabu search heuristic, where both heuristics are given
the same time limit. The results show that out of 42 instances the matheuristic gives the best
results for 33 of them. They conclude "Optimization techniques in conjunction with heuristic
search can indeed lead to better solutions than focusing entirely on heuristic search".

Franceschi et al. considers in [13] the Distance-Constrained CVRP. They described the so-
called Selection, Extraction, Recombination, and Reallocation (SERR) method. In the Selection
phase nodes are selected, which are deleted from the solution in the Extraction step. The
Recombination part applies heuristic procedures to generate a set of new possible routes, and in
the Reallocation step the best of these routes are selected by means of a set partitioning model
with side constraints. The Recombination step is a two-phase method, where the first phase
generates simple routes. The second phases is a pricing loop that uses the dual information
that is available after having solved the LP relaxation of the SP model. The dual information
is used to calculate the reduced cost of a route, which is used to determine whether or not the
route should be added to the SP model. This limits the number of routes in the SP model,
which makes it faster to solve. This method shares great similarities with the delete and reinsert
idea that is known from Large Neighbourhood Search (LNS) algorithms. The 39 instances from
the A, B, E an P datasets are considered for the CVRP. These 39 instances are solved with an
average gap on 0.36%2.
Prescott-Gagnon et al. [24] uses a two phase algorithm for the VRPTW, with a slightly

changed objective function. First of all they try to minimise the number of vehicles used, in
the second phase they then search for the minimum cost distribution plan using the minimum
number of trucks. The second phase is a Large Neighbourhood Search algorithm where the
neighbourhood is explored using a branch-and-price heuristic. The proposed column generation
heuristic is an adaptation of the exact method used by Desaulniers et al. [8], where only the

1 Even though it is not explicitly stated I believe they use full precision, and thus cannot compare with the known
optimal solutions as they are computed using truncated precision.

2 Two similar algorithms are presented, where the only difference is the initial solution (FJ and SWEEP), the gap
is calculated on the basis of the best solution achieved by these two algorithms.
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3.4 overview

tabu search method is used to provide columns to the master problem. In order to ensure
the integrality constrains a heuristic branching method is used, where decision are imposed
on the route variables from the master problem. If a fractional solution is found after the
linear relaxation is solved, the variable with the largest fractional value is simply fixed to 1.
Furthermore, no backtracking is allowed in the branch-and-bound tree, and thus branching
decisions cannot be undone to go up in the search tree. Doing so, the solution might be worse
than the current solution, and even no feasible solution might exist. If the solution is worse than
the current, the deteriorated solution is accepted to contribute to the diversification of the search.
If no feasible solution is found the previous solution remains the current solution. The algorithm
is tested on the Solomon instances and Gehring and Homberger’s instances with 200, 400, 600,
800 and 1000 customers [14]. For the Solomon instances they compare their algorithm with the
ALNS algorithm by Pisinger and Ropke presented in [23]. Considering all the 56 instances both
algorithms uses the same number of vehicles, but the algorithm by Prescott-Gagnon et al. finds
a distribution plan that is 0.16% better on average, however the ALNS algorithm is 12 times
faster3. For Gehring and Homberger’s (GH) instances with 200, 400, 600, 800 and 1000 customer
they compare with the leading heuristics and are generally better than these. Furthermore the
branch-and-price algorithm manage to find 106 new best solutions for the 300 GH instances.

3.4 overview
Table 1 summarises the different presented matheuristics. The column ’Meta’ describes which
general metaheuristic framework is used, the column ’Method’ describes which matheuristic
ideas the algorithm is based on. SP means (generalised) set partitioning/set cover models, D is
for decomposition and CG column generation. The next two columns contains information on
which problem the algorithm focus on and which datasets it is tested on. The three last columns
shortly summarises the performance of the algorithms. The column ’New best’ describes how
many new best solutions were found, comparing with the best known solution available the
time the article was published. ’Avg. Gap%’ is the average gap compared to the best known
solutions reported in the paper. ’Current Gap %’ is only applicable for the algorithms tested
on the Solomon VRPTW instances, and is the average gap when comparing with the optimal
solutions.
Table 1 cannot be used to compare the algorithms with each other, as they consider different

datasets. Additionally the best known solutions are not necessarily the same, which makes the
column ’Avg. Gap%’ useless for comparison. It can however be used to give an overview of the
different techniques applied and the individual performance of the algorithms.

Author Year Meta Method Problem Instances New Best Avg. Gap% Current Gap%

Rochat & Taillard 1995 TS SP VRPTW Solomon 27/56 -1.19 5.63
Kelly & Xu 1999 TS SP (D)CVRP CMT 0/14 0.51 -
Alvarenga et al. 2007 GA SP/D VRPTW Solomon 0/56 - 1.57
Pirkwieser & Raidl (VNS-ILP) 2010 VNS SP PVRPTW - - - -
Pirkwieser & Raidl (CG-EA) 2010 EA CG PVRPTW - - - -
Subramanian et al. 2012 ILS SP (D)CVRP CMT/M 0/14 / 2/5 0.08 / - - / -
Yildirim & Çatay 2014 ACO SP VRPTW R(C) Solomon 3/39 0.22 -
Archetti et al. 2008 TS D SDVRP - - - -
Franceschi et al. 2006 LNS D/SP (D)CVRP A, B, E, P 5/39 0.36 -
Prescott-Gagnon et al. 2009 LNS D/CG VRPTW4 GH 106/300 - -

Table 1.: Comparison of the different matheuristics.

3 Prescott-Gagnon et al. uses an OPT 2.3 GHz CPU whereas Pisinger and Ropke uses a P4 3 GHz CPU.
4 First of all minimising number of vehicles, and then the distance.
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4 A DA P T I V E L A R G E N E I G H B O U R H O O D S E A R C H

Adaptive Large Neighbourhood Search (ALNS) belongs to the class of heuristics known as Very
Large Scale Neighbourhood search (VLSN) algorithms. These algorithms are based on the fact
that searching a large neighbourhood increases the number of high quality solutions in the
neighbourhood, and therefore VLSN algorithms may return better solutions. Searching a large
neighbourhood exhaustively is time consuming, and therefore various techniques are used in
order to limit the search.

Ropke and Pisinger [29] first proposed ALNS and it improved the best known solution for over
50% of the 350 benchmark instances for the Pickup and Delivery Problem with Time Windows.
This algorithm was modified to be used for the VRPTW and Pisinger and Ropke describes in
[23] an ALNS algorithms that solves all the 56 Solomon instances with an average gap of only
0.36%1, with 47s as the average time spent. Furthermore, for 27 out of the 56 instances the
algorithm found an optimal solution.

ALNS is an extension of Large Neighbourhood Search (LNS). In LNS you start with a feasible
solution and part of this solution is destroyed in each iteration, the solution is then repaired
by some repair heuristic, hence we are only sampling the neighbourhood and thus limiting
the search. LNS algorithms often only uses one destroy and repair method. ALNS allows for
multiple destroy and repair methods and adaptively changes the probability of choosing one of
these methods such that the one that performs best is more likely to be chosen.
This adaptive layer is handled by assigning weights to the different heuristics and use a roulette
wheel selection principle. Consider k heuristics, and let wi, i ∈ {1, 2, . . . , k} denote the weight
of heuristic i. Then heuristic i is selected with probability,

Pi =
wi
k∑
j=1

wj

The basic idea is to adjust these weights accordingly to the performance of the heuristic. The
search is divided into a number of segments, and the weights are adjusted in the beginning of
each segment. A segment is defined as a certain number of iterations, η.
Define πi as the score of heuristic i in the previous segment, and θi as the number of times
heuristic i have been used in the previous segment. The score of a heuristic, πi, is updated
according to the scores, σ, described in table 2.
σ1 makes sure a heuristic providing a new global best solution is rewarded, such that the proba-
bility is increased in the next segment. Similar a heuristics score is increased by σ2 if a solution
is accepted by a specific acceptance criteria as it has improved the current solution and thus
moved to a new part of the solution space. The parameter σ3 awards heuristics that can diversify
the search. Determining whether it was the destroy or the repair heuristic that provided the
improvement is hard, therefore both heuristics’ scores are updated.

1 When comparing with the then best known solutions. Comparing with the optimal solutions the average gap is
0.44%
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4.1 construction heuristic

Parameter Description

σ1
The remove-insert operation resulted in a new global
best solution.

σ2

The remove-insert operation resulted in a solution
better than the current solution, and it has not
been accepted before.

σ3

The remove-insert operation resulted in a solution
worse than the cost of the current solution, and
it has not been accepted before.

Table 2.: The adaptivity parameters of ALNS.

After each segment j, the weights to be used in the next segment are calculated as

wi,j+1 = wij(1− r) + r
πi
θi

Where πi and θi are as previously described, and r is the reaction factor which controls how
quickly the weights adjusts to the changes in the effectiveness.

The acceptance criteria can either be a simple ’Only accept improving solutions’ or a simulated
annealing acceptance criteria and the stop criteria could be based on the number of iterations
or time.
Section 4.1 describes the construction heuristic, and 4.2 proposes two local search neighbour-
hoods. Section 4.3 describes the acceptance criteria used. Section 4.4 and 4.5 describes the
destroy and repair methods. Section 4.6 describes the resetting mechanism, and lastly section
4.7 is a description of the overall algorithm.

4.1 construction heuristic

M. Solomon describes in [31] three sequential insertion heuristics, I1, I2 and I3. Out of these I1
is the most successful, and therefore this is used as the construction heuristic.
In Solomons I1 sequential insertion heuristics a route is first initialised with one customer,

hereafter customers are inserted into this route as long as there are more that can be inserted.
When there are no more customers to be inserted a new route is added and the process restarts.
This continue as long as there are unrouted customers.

The customer to select in the beginning can either be the one geographically farthest from
the depot, or the one with the lowest allowed service time.

The heuristic uses two different criteria, c1(i,u, j) and c2(i,u, j), in order to determine which
customer to insert after initialising a route. These criteria are defined as

c1 (i,u, j) = α1 (ciu + cuj − µcij) + α2 (bju − bj)
α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0, µ ≥ 0

c2 (i,u, j) = λc0u − c1(i,u, j), λ ≥ 0

Here cij denotes the distance between node i and j, and 0 is the depot. bju denotes the new
time for service to begin at customer j, given u is inserted on the route, and bj is the beginning

12



4.2 local search

of service prior to the insertion.
The parameters α1 and α2 are weights for a distance and a time term, respectively. µ controls
the importance of savings in distance, whereas λ is used to define how much the best insertion
place for a customer depends on its distance to the depot.
Let (i0, i1, i2, . . . , im−1, im) be the current route, where i0 and im are the depot. After seeding
the first customer the best feasible insertion cost is computed for all unrouted customers, u.

c1 (i(u),u, j(u)) = min
ρ=1,...,m

c1 (iρ−1,u, iρ)

hereafter the best customer, u∗ to be inserted in the route is the one for which,

c2 (i(u
∗),u∗, j(u∗)) = max

u
{c2 (i(u),u, j(u)) |u is unrouted and the route is feasible}

Customer u∗ is then inserted into the route between i(u∗) and j(u∗). The overall algorithm can
be seen in algorithm 1.

Algorithm 1 Construction Heuristic(α1,α2,µ,λ)
1: D ← All Customers
2: i = 0
3: while |D| > 0 do
4: ri ← argmaxi∈D (c0i)
5: while There exists at least 1 customer with a feasible insertion place in the route ri do
6: Find u∗, i(u∗) and j(u∗)
7: ri ← ri ∪ u∗ inserted between i(u∗) and j(u∗)
8: D ← D \ {u∗}
9: end while

10: x← x∪ ri

11: i← i+ 1
12: end while
13: return x

4.2 local search

In order to improve the solutions found by the repair methods, two local search neighbourhoods
have been implemented. These neighbourhoods can be combined in different ways, which result
in 6 different local search methods. Section 4.2.1 describes a simple neighbourhood based on
relocating a single customer to another part of the solution, section 4.2.2 described a more
complex neighbourhood that best can be described as a inter route 3Opt neighbourhood, lastly
section 4.2.3 describes the different ways these two neighbourhoods can be combined.

4.2.1 Relocate Neighbourhood

The relocate neighbourhood is a simple neighbourhood that tries to move customers from the
current position to a more affordable place in the solution.

For every customer it is examined if it is possible to move the customer to a cheaper place
in the solution, and then moves the one that improves the current solution the most. Only
moves that are better than the current best move are being fully explored (with respect to
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4.2 local search

feasibility), as this speed up the runtime. The size of the neighbourhood is O(n2), as for every
customer it is investigated if it can be moved to a position just before any other customer.
Instead of picking the overall best moves, all possible improving moves can be enumerated. Then
using a roulette wheel selection principle to select the customer to be inserted. This stochastic
method would help diversify the search, and might provide better results than the deterministic
method, just picking the best move. Both methods have been implemented and section 6.1.2
test whether or not is a good idea to use this stochastic method instead of the deterministic one.

4.2.2 3Opt* Neighbourhood

The 3Opt* neighbourhood selects three arcs, from three different routes, in the current solution,
and swap these arcs to examine if one of the swaps can improve the solution. This is similar to
the 2Opt* neighbourhood that is commonly used for the VRPTW in the literature. The 3Opt*
neighbourhood also considers these 2Opt* neighbourhood moves, and the 2Opt* is thus a part of
the 3Opt* neighbourhood. The standard 3Opt neighbourhood only considers arcs from a single
route, and have shown good results as an improvement heuristic for the Travelling Salesman
Problem (TSP).

Consider three customers i, j and k, from three different routes, and let the arcs leaving these
customers be (i, i+), (j, j+), (k, k+). The 3Opt* neighbourhood examines all unique combina-
tions of three customers and for every combination makes 5 different swaps of the three arcs,
where no arcs are reversed. These 5 swaps are shown in figure 2, where the one in the upper left
corner is the original solution.

i i+

j j+

k k+

i i+

j j+

k k+

i i+

j j+

k k+

i i+

j j+

k k+

i i+

j j+

k k+

i i+

j j+

k k+

Figure 2.: 3Opt* neighbourhood for three customers, i, j and k. The solution in the upper left corner is
the original solution.

Even though the three considered customers must be from three different routes, the size of the
neighbourhood is still in the order of O(n3). This means that this neighbourhood takes longer
to explore than the Relocate neighbourhood, however it is also a larger neighbourhood, which
means it could contain better solutions.
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4.3 acceptance criteria

4.2.3 Local search methods

The local search method will be applied after the repair heuristic have been completed, if a cer-
tain criteria (to be explained in section 4.7) is satisfied. Combining the two previously described
neighbourhoods can result in different local search methods.

The following 6 local search methods have been tested, and compared.

1. Only Relocate (Reloc)
This method only uses the Relocate neighbourhood, and continues until the solution is
local optimal with respect to the Relocate neighbourhood.

2. Only 3Opt* (3Opt*)
This method only uses the 3Opt* neighbourhood, and continues until the solution is local
optimal with respect to the 3Opt* neighbourhood.

3. Adaptively choose between Relocate and 3Opt* (Adapt)
As with the destroy and insertion methods, this method assigns a probability to each of
the two neighbourhood. The neighbourhood that is selected continues to improve the
solution until the solution is local optimal with respect to the chosen neighbourhood. The
weights are adaptively changed throughout the algorithm, similar to what has earlier been
described.

4. Relocate and 3Opt* (Re&3O)
This method searches both the Relocate an 3Opt* neighbourhood, and performs the move
that is the overall best. This continues until the solution is local optimal with respect to
both neighbourhoods.

5. Random move, single optimal (Ra-1o)
This method considers both the Relocate and the 3Opt* neighbourhood. In each iteration
of the local search method one of the neighbourhoods are selected, with equal probability,
and the best move from the selected neighbourhood is performed. This continues until the
solution is local optimal with respect to the chosen neighbourhood.

6. Random move, twice optimal (Ra-2o)
Just like the Ra-1o method, but when the solution is local optimal for the selected neigh-
bourhood, the other neighbourhood is selected. This continues until the solution is local
optimal with respect to both neighbourhoods.

All of these local search method will be tested in section 6.1.2, to see which of them provide the
best results.

4.3 acceptance criteria

The presented algorithm uses a simulated annealing acceptance criteria.
Simulated annealing is based on the observation, that accepting a worse solution can help di-
versify the search. However, it is discouraged to accept solutions that are a lot worse than the
current, and thus a probability of accepting an inferior solution is based on the fitness of the
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4.4 destroy methods

solution compared to the current solution. The probability of accepting a worse solution, x, is
given by

e

f(xc)− f(x)
T

Here xc is the current solution and x is the proposed solution. T is the temperature parameter,
T > 0. The temperature is decreased in each iteration by a cooling factor ζ in order to make it
less likely to choose an inferior solution in the end of the algorithm, 0 < ζ < 1. If the attempted
solution is better than the current the attempted solution is accepted with probability 1. The
simulated annealing acceptance criteria is shown in algorithm 2, where xb denotes the best
solution

Algorithm 2 Simulated Annealing(x,xc,xb,T , ζ)
1: if f(x) < f (xc) then
2: xc ← x

3: if f(x) < f (xb) then
4: xb ← x

5: end if
6: else
7: Sample a random number 0 ≤ y < 1
8: if y ≤ e

f (xc)−f (x)
T then

9: xc ← x

10: end if
11: end if
12: T ← T · ζ
13: return (xc,xb,T )

The starting temperature Tstart is chosen based on the solution before entering the main loop
in the ALNS algorithm, as proposed by [29]. It is calculated such that a solution w times worse
than the starting solution is accepted with a probability of 50%, in the first iteration.

Tstart = −
w · f(x)
ln(0.5)

The parameter w needs to be tuned as well as the cooling factor ζ.

4.4 destroy methods

Five different destroy methods have been implemented. For 4 of the methods ε percentage of
the solution is destroyed, where ε is a random number between

ε ∈ {0.05,π}

Here π is a parameter that describes how big a part of the solution is allowed to be destroyed.
For the fifth method, at least ε percentage of the solution is destroyed.

4.4.1 Random Removal

The most simple destroy methods is just to remove a number of random customers.
The algorithm is as shown in algorithm 3 where ε is the percentage of a solution to be destroyed.
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4.4 destroy methods

Along with providing surprisingly good results it also helps to diversify the search, such that
the solution space can be searched more extensively.

Algorithm 3 Random Removal(x, ε)
1: D ← ∅
2: while |D| < ε · |N | do
3: i← A random customer i ∈ x
4: x← x \ {i}
5: D ← D ∪ {i}
6: end while
7: return (x,D)

4.4.2 Worst Removal

The potential for improving the solution is greater if you remove an ’expensive’ part of the
solution. This can be achieved by removing the customers that adds the most to the current
solution.
For every customer it is calculated how much the solution will decrease if the customer is
removed from the solution. Instead of just removing the worst customer, a randomness factor
is introduced such that the algorithm is not entirely deterministic. This is done by sorting
the customers after decreasing removal price, sampling a random number, y, and removing the
element byp · |L|c where |L| is number of rows in the list. p is a parameter determining how likely
an element is to be chosen. If p = 1 every element has equal probability of being chosen, the
higher p gets the less likely the bottom elements become and the more likely the top elements
become. The algorithm is shown in algorithm 4 where ε is how big a percentage of the solution
that should be destroyed. The RemovalCost in line 4 is how much the solution is improved by
removing customer c from the solution, x.

Algorithm 4 Worst Removal(x, ε, pworst)
1: x∗ ← x

2: D ← ∅
3: while |D| < ε · |N | do
4: Array L = All customers c ∈ x, sorted by decreasing RemovalCost(c,x)
5: Pick a random number 0 ≤ y < 1
6: Choose customer i = L bypworst · |L|c
7: x← x \ {i}
8: D ← D ∪ {i}
9: end while

10: return (x,D)

There is two ways to calculate the costs. All of the cost can be based on the solution before any
removal occurred, that is all of the cost can be based on x∗. Or it can be based on the changed
solution, x, such that the removal cost might change in each iteration. Milthers tests in [19]
both of these methods and concludes that the second one is by far the best. Therefore only the
second one has been implemted, as shown in algorithm 4. pworst is a parameter that needs to
be tuned.
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4.4 destroy methods

4.4.3 Shaw Removal

If the customers removed are not related to each other there might only exists a few feasible
insertions with the same number of routes. Hence you might end up with more routes that,
most commonly, results in a worse solution. P. Shaw proposed in [30] that related customers
are removed.
Consider two customers i and j, a common relatedness criteria used in VRPTW, is based on
the distance between i and j, the difference between the time i and j are visited in the current
solution, the difference in demand and whether or not they are on the same route. Formally the
relatedness R(i, j) is calculated as

R(i, j) = ϕcij + χ|ti − tj |+ ψ|di − dj |+ ωTij

Here ti is the time customer i is visited, and Tij is whether or not two customers i and j are on
the same route in the current solution. The first term is the distance between i and j weighted
by ϕ, the next term is the difference between arrival times, and the third term is the difference
between the demands. A low value of R(i, j) means a higher relatedness. ϕ, χ, ψ and ω are
parameter that needs to be tuned.
In the Shaw Removal algorithm a random customer is selected in the beginning and the relat-
edness to this customer is calculated for the rest of the customers. The customers are listed
according to increasing relatedness, R(i, j). Just as in the Worst Removal procedure a random-
ness factor is introduced. The overall algorithm is as shown in algorithm 5.

Algorithm 5 Shaw Removal(x, ε, pshaw)
1: c← Randomcustomer
2: D ← c

3: while |D| < ε · |N | do
4: Array L = All customers r ∈ x \D, sorted by increasing relatedness, R(r, c)
5: Pick a random number 0 ≤ y < 1
6: Choose customer i = L bypshaw · |L|c
7: D ← D ∪ {i}
8: end while
9: x← x \D

10: return (x,D)

Here ε is how big a percentage of the solution should be destroyed and pshaw is a parameter
describing how likely a given element is to be chosen, both similar to the parameters for Worst
Removal.
The random customer in Randomcustomer can be chosen in different ways, either it can be
completely random, or it can use the same idea used in Worst Removal - making the worse
customers more likely to be chosen. Both methods have been implemented, and the second one
will be denotes as ShawWorst Removal.

4.4.4 Random Route Removal

The cost of a solution is most commonly cheaper the fewer routes that can be used.
To try to decrease the number of routes in the current solution, a method that removes random
routes have been implemented. A pseudocode of the algorithm can be seen in algorithm 6. This
algorithm destroy routes until at least ε percentage have been removed. Hence this could, in
theory, destroy the full solution.
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4.5 repair methods

Algorithm 6 Random Route Removal(x, ε)
1: D ← ∅
2: while |D| < ε · |N | do
3: r ← A random route r ∈ x
4: for all Customers, c ∈ r do
5: D ← D ∪ {c}
6: end for
7: x← x \ {r}
8: end while
9: return (x,D)

4.5 repair methods

This section describes two repair methods, Greedy Insertion and the more advanced Regret
Insertion. Both of these are purely deterministic as none of them depends on a random
variable.

4.5.1 Greedy Insertion

Greedy insertion is a simple insertion heuristic, inserting the customer that adds the least to
the overall cost.
Given a partial solution x, and the customers to be inserted, D, the algorithm runs as shown in
algorithm 7, where fi(c) is the i’th best insertion place for customer c.

Algorithm 7 Greedy Insertion(x,D)

1: while D 6= ∅ do
2: for all i ∈ D do
3: r(i)← Best insertion route for customer i
4: p(i)← Best insertion place in route r(i) for customer i
5: f1(i)← Price of best insertion for customer i
6: end for
7: c← argmini∈D(f1(i))
8: x←Insert c in route r(c) at position p(c)
9: D ← D \ {c}

10: end while
11: return x

It is always feasible to add a customer to a new route, therefore f1(i) is, in the beginning of every
iteration, initialised to the cost of adding customer i into a new route. The feasibility of a in-
sert position is only checked if it improves the current best insert position for the given customer.

If a customer, c1, is inserted in a route, r1, in iteration i, and another customer, c2, can be
inserted cheapest into another route, r2, then there is no need to search through all of the
neighbourhood for customer c2 in iteration i+ 1. For every route r 6= r1, c2 can still be inserted
cheapest into the route r2. r1 is the only route changed therefore it is sufficient to search through
this route for a cheaper insertion place. On the other hand if a route, r is changed we will have to
go through the full neighbourhood for every customer that had this route, r, as the best insertion.
We also need to go through the whole neighbourhood in the first iteration. These considerations
are not explicitly shown in algorithm 7, but it speeds up the execution considerably.
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4.6 resetting mechanism

This is one of the most simple insertion heuristic, not taking anything else into consideration
than what seems to be best at the moment.

4.5.2 Regret Insertion

There might be a customer where the difference between the best insertion place and the second
best insertion place is high, hence if the customer is not inserted now it might be forced to be
inserted at the second best place. This idea is formalised in the regret heuristic outlined in
algorithm 8.

Algorithm 8 Regret Insertion(x,D)

1: while D 6= ∅ do
2: for all i ∈ D do
3: r(i)← Best insertion route for customer i
4: r2(i)← Second best insertion route for customer i
5: p(i)← Best insertion place in route r(i) for customer i
6: f1(i)← Price of best insertion for customer i
7: f2(i)← Price of second best insertion for customer i
8: end for
9: c← argmaxi∈D (f2(i)− f1(i))

10: x←Insert c in route r(c) at position p(c)
11: D ← D \ {c}
12: end while
13: return x

As it is always possible to add a new a route, f1(i) and f2(i) are both initialised to be the cost
of adding a new route, ci,0 + c0,i. Thus a new route is only added when there does not exist an
insertion place for any customer, c ∈ D, lower than the cost of adding a new route.
Similar to the greedy insertion procedure it is not necessary to search through the full neigh-
bourhood in every iteration, this can be done in the same way as for the greedy insertion. But
here you have to search the full neighbourhood if one of the two best routes are changed.
The algorithm shown in algorithm 8 is a so-called 2-Regret Insertion, where you compare
the best insertion place with the second best. More generally k-Regret Insertion compares
the best insertion cost with the k’th best insertions.

argmax
i∈D

 k∑
j=2

fj(i)

− f1(i)


Only the 2-Regret Insertion shown in algorithm 8 have been implemented.

4.6 resetting mechanism

In the beginning of the algorithm the temperature is high, and hence the probability of accepting
an inferior solution is high. Hence the algorithm might find a solution in the beginning, in a
neighbourhood with high quality solutions, and then slowly move away from this neighbourhood,
and not return. The resetting mechanism allows the algorithm to return to this high-quality
area.
If the solution have not improved in γ consecutive iterations the current solution is set to the
best solution (xc ← xb), such that the algorithm will continue from the high quality area. After
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4.7 the overall alns algorithm

resetting, at least γ iterations must performed before resetting again.
This resetting mechanism is embedded into the acceptance criteria.

4.7 the overall alns algorithm

In the main algorithm there are three more parameters, κ and η and ψ. κ determines when
to use Local Search(x) in the ALNS algorithm, and η is the segmentsize used in the ALNS
algorithm. If κ = 0.03 local search is performed on solutions that are at most 3% worse than
the best solution. ψ is a noise parameter used in the local search and insertion heuristics. When
ψ = 2% it means that every time the cost of an insertion is calculated it is multiplied with 1+ y

where y is a random number −0.02 ≤ y ≤ 0.02. This adds some stochasticity to the otherwise
deterministic methods, which can help to diversify the search, the parameter will be tested in
chapter 6 in order to see if it helps provide better results. A flowchart of the overall algorithm
can be seen in fig. 3. The stopping criteria of the algorithm is 25000 iterations.

Construction
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Search?

Local

Search

Simulated

Annealing
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Yes

No

No

Yes
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Figure 3.: Flow chart of the overall algorithm.
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5 E X AC T S U B M E T H O D S

In this chapter some exact submethods that can be used in the ALNS algorithm will be described.
These submethods are smaller sub problems that can be solved to optimality relatively fast and
might be able to improve the current best solution.

5.1 set partitioning problem

Throughout the ALNS algorithm many different routes are generated. All of these routes can be
collected and considered by solving a set partitioning problem. This way all the routes generated
throughout the algorithm can be considered, and combined in an optimal way. Though only a
subset of all the routes are generated, this solution is not guaranteed to be the overall optimal
solution.
Define the set Ωgen as the set of generated routes, this is of course a subset of all the routes
Ωgen ⊂ Ω, the cost of a route is denoted as cp for a route p ∈ Ωgen. Furthermore aip will contain
information of which customer a route p ∈ Ωgen visits, that is

aip =

1 If route p ∈ Ωgen visits customer i
0 Otherwise.

The decision that needs to be made is whether or not a route is used in the solution, this can
be modelled by a binary variable.

yp =

1 If route p ∈ Ωgen is used in the solution
0 Otherwise.

With this the set partitioning problem can be modelled as seen in model (2).

Min Z =
∑

p∈Ωgen

cpyp (2a)

Subject to:

∑
p∈Ωgen

aipyp = 1 ∀i ∈ V \ {0,n+ 1} (2b)

yp ∈ {0, 1} ∀ p ∈ Ωgen (2c)

(2a) is the objective function, minimising the cost of using the routes. Constraint (2b) make
sure that every customer is visited exactly once (here V is defined as in chapter 2), and lastly
(2c) defines the variables as binary.
The constraint (2b) could be changed to a set cover constraint, stating that each customer must
be visited at least once,∑

p∈Ωgen

aipyp ≥ 1 ∀i ∈ V \ {0,n+ 1} (3)
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5.1 set partitioning problem

Solutions where a customer is visited more than once will be considered infeasible by the ALNS
algorithm. But if the solution visits a customer twice this customer can be removed from one of
the routes, which would lead to a better solution. Instead of removing customers from a route,
I have ensured, through constrain (2b), that this does not happen, even though it could provide
better results.
As all the routes p ∈ Ωgen are feasible it is not necessary to include the time window constraints
and demand constraint, as these are satisfied in each of the single routes.

Many of the routes generated throughout the algorithm will be the same. By maintaining a
hashtable of all the previously generated routes it is possible to check, in constant time, for du-
plicates. This speeds up the process as the set of generated routes will be smaller, which means
it takes up less memory, and more importantly, can be solved faster. Also, the best solution is
given as input to the model, such that CPLEX can start from this solution. The timelimit is
set to 100 s, but as the best solution is given as input the method will output a solution that is
no worse than the best solution.

But when should you use this? You could solve the set partitioning problem several times
throughout the algorithm, or just in the end. Solving the set partitioning problem several times
throughout the algorithm might help to explore new areas of the solution space. Solving the
SP problem after termination of the ALNS algorithm allows the consideration of all generated
routes. The parameter ρ denotes the number of iterations between each calls to the set parti-
tioning model. This parameter will be tuned in chapter 6.

If the set partitioning problem provides a new best solution, the current solution is updated as
well, so this new area can be further explored. If it returns the current best solution, there are
three possibilities: 1) Do nothing, 2) set the current solution to the best solution, 3) increase
the temperature and set the current solution to the best solution. Doing nothing lets the
algorithm further explore the current region of the solution space. Setting the current solution
to the best solution is a lot like the resetting mechanism described in chapter 4. If the set
partitioning problem returns the same solution two consecutive times, it might be because the
set partitioning problem is solved too often, or the temperature is too low. ρ describes how often
the set partitioning is solved, and will be tested and assigned the value that seems to give the
best performance. Therefore the temperature could be increased in order to allow the algorithm
to search a larger solution space.
This implementation uses a combination of option 1) and 3) when the set partitioning model
returns the same solution as the last time the set partitioning model was solved. If less than 50%
of the total number of iterations has been executed it does nothing, and if at more than 50% of
the total number of iterations has been executed it sets the current solution to the best solution
and reheats the temperature to 5% more than it was when the best solution was achieved. The
reason behind this is to allow a large part of the solution space to be explored in the first half
of the algorithm, and in the second half, focus more on the region that has shown to produce
good solutions, but also increase the temperature to allow for the algorithm to explore solutions
close to this neighbourhood.
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5.2 route optimisation (tsptw)

5.2 route optimisation (tsptw)

The routes generated throughout the algorithm are not necessarily optimal with respect to the
visited customers, there might exist a route visiting the same set of customers, that is shorter.
The problem of finding the shortest single route between a set of customers can be formulated
as a Mixed Integer Program (MIP). Consider the set of customer that is visited in an already
generated route. As the generated route is feasible you know that the capacity constraint is
satisfied, and this constraint can thus be omitted. The solution should still be a route, i.e visit
every considered customer exactly once, and return to the depot. Furthermore the time-windows
should also be satisfied. This problem is know as the Travelling Salesman Problem with Time
Windows (TSPTW).

Define n as the number of customers, and V = {0, 1, . . . ,n+ 1} as nodes, where 0 and n+ 1
are the depot. Moreover define A as the full set of arcs (i, j). Let V +(i) be the nodes that can
be reached from the node i, and V −(i) the sets of nodes that can reach node i. The decision
needed is at which time the customer should be visited, and which arcs that should be used.
This can be modelled by a continuous time variable, wi, and a binary variable, xij defined as

xij =

1 If arc (i, j) is traversed
0 Otherwise.

In model (4) presented below cij denotes the cost of traversing arc (i, j) and tij is the time for
travelling along arc (i, j), which includes service time at node i.

Min Z =
∑

(i,j)∈A
cijxij (4a)

Subject to:

∑
j ∈V +(i)

xij = 1 ∀i ∈ V \ {n+ 1} (4b)

∑
k∈V −(i)

xki = 1 ∀i ∈ V \ {0} (4c)

wi + tij ≤ wj + (1− xij) ·M ∀(i, j) ∈ A (4d)
ai ≤ wi ≤ bi ∀i ∈ V (4e)

xij ∈ {0, 1} ∀(i, j) ∈ A (4f)
wi ≥ 0 ∀i ∈ V (4g)

In model (4), the objective function (4a) minimises the overall cost of the solution. Constraint
(4b) ensures that every node is left except the end node, and (4c) ensures that every node except
the start node is entered. Constraint (4d) and (4e) ensures the time windows are satisfied. This
is done similarly to the time windows constraint (1f) and (1g) in the Vehicle Routing Problem
with Time Windows formulation in chapter 2.

The Travelling Salesman Problem with Time Windows, is known to be NP-hard, and is also
hard in practice. Therefore it is not an good idea to try to optimise each and every route, as
some of the generated routes will be bad even when optimised. Instead we wish to determine
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5.3 exact insertion method

which routes are good and try to optimise these. A way this can be done is by considering the
set of generated routes, and solve a set partitioning problem to LP-optimality. The routes which
are in the optimal basis must possess some desirable property, and therefore it is examined if
these routes can be optimised. Afterwards the original route is marked as ’Optimised’ such that
we do not try to optimise that route again. Furthermore, if there exists an optimised version
that route is marked ’Optimised’ and is added to the set of generated routes.
Doing so the Route Optimisation cannot be tested without the inclusion of the set partitioning
model, as the set partitioning model is the only way to include the optimised route in the solution.

During testing it was revealed that not all problems could be solved to optimality within rea-
sonable time, and therefore a timelimit was set to 10 s, if this timelimit is reached the route is
marked as ’Optimised’, even though it has not been optimised. This is to prevent solving the
TSPTW again for this set of customers.

5.3 exact insertion method

Even though the Regret and Greedy insertion heuristics provide good results, it would be inter-
esting to see whether or not an exact insertion method could improve the overall result. As time
is an important factor it is crucial that the exact method is relative fast, therefore the devised
model should be as compact as possible, and therefore not everything will be accounted for in
the model.

Consider a partial solution, where a set of customers, I, need to be inserted. In this model a
customer can be inserted between two already inserted customers.
Define P (r) as the sets of positions where a customer can be inserted into in route r ∈ R. Let

p(r)− denote the customer before position p(r) and p(r)+ as the customer after position p(r),
see fig. 4 for a visual illustration. Figure 4 considers a part of a route r. The green diamonds
in the figure symbolises the insertion positions, and the associated number denotes the position,
p(r). The positions are used to reference the customers, which is shown by the labels associated
with the blue nodes.

1(r)−

1(r)+

2(r)−

2(r)+

1(r) 2(r)

Figure 4.: Illustration of the positions, p(r)− and p(r)+.

The parameters used in the model are listed and explained below:

• Q: Capacity of the vehicles

• δr: Current demand on route r. That is Q− δr is the remaining capacity.

• di: Demand for customer i ∈ I
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5.3 exact insertion method

• cirp(r): Cost of inserting customer i at position p(r) in route r

• ci: Cost of inserting customer i into an empty route.

• t̄i,j : The time it takes to go from one customer i to customer j, including service time at
customer i.

• ai: The time from when node i ∈ V accepts deliveries.

• bi: The time when node i ∈ V no longer accepts deliveries.

Where the set V is the full set of nodes, as defined in chapter 2.

In the model (5), there are 4 sets of variables, 2 binary sets of variables, and two continuous sets
of variables. The variables xirp(r) and σi are related to where the customers are inserted in the
solution. xirp(r) is a binary variable denoting, whether or not customer i is inserted in position
p(r) in route r.

xirp(r) =

1 If customer i is inserted in position p(r) in route r
0 Otherwise.

And σi denotes whether or not a customer is inserted into an otherwise empty route. This also
ensures that the model cannot be infeasible, providing that the instance is feasible.

σi =

1 If customer i is inserted into an empty route
0 Otherwise.

The variables wi and trp(r) are related to the time a customer is visited. wi denotes the time
an already inserted customer is visited. trp(r) denotes at which time position p(r) in route r
is visited. Figure 5 explains the relations between these variables. The blue nodes (labelled 0
through 5) make out the original route. The green nodes are the positions where customers can
be inserted. The solid line is the route after insertion, and a customer is inserted between the
nodes labelled 3 and 4.

0

w = 1

w = 8

1

w = 2

2

w = 3

3w = 4

4

w = 6

5

w = 7

t = 1

t = 2

t = 3

t = 5

t = 6

t = 7

Figure 5.: Explanation of the connection between the t and w variables.

Figure 5 shows a feasible assignment of the t and w variables when all travelling times are t̄ij = 1
for all (i, j). If no customer is inserted in position p(r) in route r, then the corresponding t
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5.3 exact insertion method

variable should be greater than or equal to the time the previous customer is visited, trp(r) ≥
wp(r)− , which is also shown in the figure.
With all this the model can be stated as seen below in model (5).

Min Z =
∑
i∈I

∑
r∈R

∑
p∈P (r)

cirpxirp +
∑
i∈I

ciσi (5a)

Subject to:∑
r∈R

∑
p∈P (r)

xirp + σi = 1 ∀i ∈ I (5b)

∑
i∈I

∑
p∈P (r)

dixirp ≤ Q− δr ∀r ∈ R (5c)

∑
i∈I

xirp ≤ 1 ∀r ∈ R, p ∈ P (r) (5d)

trp ≥ wp(r)− +
∑
i∈I

t̄p(r)−,ixirp ∀r ∈ R, p ∈ P (r) (5e)

wp(r)+ ≥ trp +
∑
i∈I

t̄i,p(r)+xirp +

(
1−

∑
i∈I

xirp

)
t̄p(r)−,p(r)+ ∀r ∈ R, p ∈ P (r) (5f)

∑
i∈I

aixirp ≤ trp ≤
∑
i∈I

bixirp +

(
1−

∑
i∈I

xirp

)
bp(r)− ∀r ∈ R, p ∈ P (r) (5g)

a0(r)− ≤ w0(r)− ≤ b0(r)− ∀r ∈ R (5h)
ap(r)+ ≤ wp(r)+ ≤ bp(r)+ ∀r ∈ R, p ∈ P (r) (5i)
xirp ∈ {0, 1} ∀i ∈ I, r ∈ R, p ∈ P (r) (5j)
σi ∈ {0, 1} ∀i ∈ I (5k)

The objective function, (5a), minimises the overall cost of inserting the removed customers.
Constraint (5b) ensures that either a customer is inserted into one of the existing routes or it
is inserted into its own route. Constraint (5c) ensures that the capacity is not exceeded, and
constraint (5d) ensures that at most a single customer can be inserted into a position.
Constraint (5e)-(5i) ensures that the time windows are satisfied. Equation (5e) sets the t variable
for every position. The sum on the right hand side makes sure that the correct travel time is
added, if any customer is inserted in the corresponding position. Figure 6 illustrates how trp is
updated. The encircled node denote which node the time is updated for. The solid arcs denote
the route and the dashed arcs symbolises which travel times are added to the wp(r)− variable.
If no customer is inserted in the position, then the constraint (6) becomes trp ≥ wp(r)− as shown
in fig. 6a. If a customer, î, is inserted, then trp ≥ wp(r)− + t̄p(r)−,î must be satisfied, as shown in
fig. 6b.

(a) trp ≥ wp(r)−

+

(b) trp ≥ wp(r)− + t̄p(r)−,î

Figure 6.: Illustration of how trp is updated in eq. (5e).
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5.3 exact insertion method

Constraint (5f) sets the w variable for the already inserted customer. Here there are two cases
to consider; no customer is inserted into the previous position, or a customer is inserted into
the position, both cases are shown in fig. 7. The encircled node denote which node the time is
updated for. The solid arcs denote the route and the dashed arcs symbolises which travel times
are added to the trp parameter.

+

(a) wp(r)+ ≥ trp + t̄î,p(r)+

+

(b) wp(r)+ ≥ trp + t̄p(r)−,p(r)+

Figure 7.: Illustration of how wi is updated in eq. (5f).

Consider an arbitrary position, p′(r) and assume there exists an î ∈ I such that xîrp′ = 1, then
constraint (5f) becomes

wp′(r)+ ≥ trp′ + t̄î,p′(r)+

here the travel time between the inserted customer and the considered customer is accounted
for. This case is shown fig. 7a. In the second case, fig. 7b, no customer is inserted in the position,
eq. (5f) then becomes

wp′(r)+ ≥ trp′ + t̄p′(r)−,p′(r)+

Where the travel time from the previous customer instead is taken into account.
Constraint (5g) defines the bounds on the t variables. Again, lets consider an arbitrary position
p′(r), if a customer î ∈ I is inserted into this position the bounds on the corresponding t variable
becomes

aî ≤ trp′ ≤ bî

If no customer is inserted the bounds enforced by constraint (5g) becomes

0 ≤ trp′ ≤ bp′(r)−

But due to constraint (5e) the bounds on the t variable becomes

wp′(r)− ≤ trp′ ≤ bp′(r)−

Where bp′(r)− can be considered as a ’big-M ’.
Constraints (5h) and (5i) defines the bounds on the w variables, and (5j) and (5k) respectively
defines the x- and σ-variable as binary.

This model has some limitations. For example it cannot insert multiple customers between
two already inserted customers, and if a new route is added it is not be able to add more cus-
tomers to this route. If two customers next to each other are removed by the destroy heuristic,
the model (5) is not able to recreate the original solution, but the greedy and the regret inser-
tion heuristic could recreate the solution. Therefore this insertion method is coupled with a new
destroy heuristic that do not remove two consecutive customers, such that it will not return a
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5.4 exact destroy/insertion

solution worse than the original solution. However, due to the limitations, the regret and greedy
insertion method could give a solution better than the one found by model (5).
Tests on a diverse set of instances, all with 100 customers, where a random number between 5
and 35 customers were deleted and approximately 150.000 executions shows that this model on
average finds the optimal solution in 0.05 seconds. Even though this is quite fast, the method
is still slower than the two heuristic methods. The exact method should however provide good
results, but as the execution time for the exact insertion method is substantially larger than
the two heuristics (regret and greedy), it is not a good idea to include this insertion method in
the adaptivity of the algorithm. This is because this method is expected to outperform the two
heuristic, and this would imply that this method is used most often, which is not desirable due
to the extra time this would lead to. Instead a parameter, θ1, is introduced. θ1 is the probability
of using this exact insertion method in a given iteration.

5.4 exact destroy/insertion

Model (5), as presented in section 5.3, assumes that a set of customers have already been re-
moved from the solution and then finds the overall best place to re-insert all of these customers.
This is somehow only a suboptimal approach as the solution heavily depends on which customers
already are removed from the solution. Instead you can combine the destroy and insertion pro-
cedure into a single, more complex, model.

The variable yi will denote whether or not a customer, i is removed from the solution, that is;

yi =

1 If customer i is removed from the solution
0 Otherwise.

The parameter γi will denote the profit of removing customer i. The rest of the variables, and
parameters are as described in section 5.3.
In the presented model two customers next to each other cannot both be removed. Furthermore
if a customer is removed there cannot be inserted a customer in either of the two positions next
to the removed customer, and as in model (5) two customers cannot be inserted into a single
position. These three situations are illustrated in fig. 8, where the blue nodes are nodes in the
original solution, and the new solution. The red rectangles are removed customers, and the
green nodes are inserted customers. Making these configurations infeasible ensures that it is
easy to calculate the cost of inserting a customer, as we know the customer before and after.
Similar it also makes it easier to compute the profit of removing a customer.

(a) Two consecutive customers re-
moved.

(b) Customer inserted next to a
removed customer.

(c) Two consecutive customers in-
serted.

Figure 8.: Disallowed solutions in model (6).

The overall model is presented below in model (6).

29



5.4 exact destroy/insertion

Min Z =
∑
i∈I

∑
r∈R

∑
p∈P (r)

cirpxirp +
∑
i∈I

ciσi −
∑
i∈I

γiyi (6a)

Subject to:∑
r∈R

∑
p∈P (r)

xirp + σi = yi ∀i ∈ I (6b)

∑
i∈I

∑
p∈P (r)

dixirp ≤ Q− δr +
∑
i∈r

diyi ∀r ∈ R (6c)

∑
i∈I

xirp ≤ 1−
(
yp(r)− + yp(r)+

)
∀r ∈ R, p ∈ P (r) (6d)

yp(r)− + yp(r)+ ≤ 1 ∀r ∈ R, p ∈ P (r) (6e)
y0 = 0 (6f)

trp ≥ wp(r)− +
∑
i∈I

t̄p(r)−,ixirp ∀r ∈ R, p ∈ P (r) (6g)

wp(r)+ ≥ trp +
∑
i∈I

t̄i,p(r)+xirp + t̄p(r)−2,p(r)+yp(r)−(
1−

∑
i∈I

xirp −
(
yp(r)− + yp(r)+

))
t̄p(r)−,p(r)+ ∀r ∈ R, p ∈ P (r) (6h)

∑
i∈I

aixirp ≤ trp ≤
∑
i∈I

bixirp +

(
1−

∑
i∈I

xirp

)
bp(r)− ∀r ∈ R, p ∈ P (r) (6i)

a0(r)− ≤ w0(r)− ≤ b0(r)− ∀r ∈ R (6j)(
1− yp(r)+

)
ap(r)+ ≤ wp(r)+ ≤

(
1− yp(r)+

)
bp(r)+ + yp(r)+bp(r)− ∀r ∈ R, p ∈ P (r) (6k)

xirp ∈ {0, 1} ∀i ∈ I, r ∈ R, p ∈ P (r) (6l)
σi ∈ {0, 1} ∀i ∈ I (6m)
yi ∈ {0, 1} ∀i ∈ I ∪ {0} (6n)

In model (6), the objective function, (6a) calculates the overall profit of removing and reinserting
the customers. Constraint (6b) makes sure that if a customer is removed, then it must also be
reinserted into the solution. Furthermore constraint (6b) also ensures that if a customer is not
removed, then it cannot be inserted. Constraint (6c) is the capacity constraint, making sure
that the capacity constraint on the trucks are not exceeded. The constraint (6d) ensures that a
customer only can be inserted into a position if none of the two customers next to the position
are removed, and if so, only a single customer can be placed at the position, thus making the
two situations shown in fig. 8b and fig. 8c infeasible. Equation (6e) ensures that two consecutive
customers cannot be removed, corresponding to the situation shown in fig. 8a, this constraint is
not strictly necessary as it is also enforced by constraint (6d). Constraint (6f) makes sure that
the depot is not removed.
Constraints (6g)-(6k) are the related to the time windows, and are somewhat quite similar to
constraint (5e)-(5i) of model (5), only with the addition of the extra variable, y. Constraint
(6g) sets the t-variable, and is the same as constraint (5e) explained in section 5.3. Constraint
(6h) sets the w-variable by considering the time the previous position is visited, and adding the
correct travel time depending on if a customer is visited or not. The term,(

1−
∑
i∈I

xirp −
(
yp(r)− + yp(r)+

))
· t̄p(r)−,p(r)+
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5.4 exact destroy/insertion

ensures that the travelling time from the previous customer to the considered customer only is
added if there is not inserted a customer in the previous position and none of the two customers
next to the position are removed. If the previous customer is removed then the travelling time
for the customer before the previous customer is added to the trp variable instead. Figure 9
illustrates which t̄i,j are considered in the 4 different cases in eq. (6h). In figure fig. 9, the green
diamonds are the positions, the red squares denotes a deleted customer and the blue nodes are
customers in the original and update route. The encircled node denotes which wi is updated.
The solid arcs are the route, and the dashed arcs denotes which t̄i,j is added to the trp variable.
When no customer is inserted and no customer is removed then constraint (6h) becomes

wp(r)+ ≥ trp + t̄p(r)−,p(r)+

This situation is shown in fig. 9a. On the other hand, if a customer, î is inserted in the position
pr then wp(r)+ should satisfy

wp(r)+ ≥ trp + t̄î,p(r)+

As shown in fig. 9b.
If the customer p(r)− is removed (yp(r)− = 1), then the time from the customer p(r)−2 should
instead be considered, and the constraint (6h) becomes

wp(r)+ ≥ trp + t̄p(r)−2,p(r)+

As shown in fig. 9c. If the customer the time is updated for is removed (yp(r)+ = 1), then we do
not have to add any time and the constraint becomes

wp(r)+ ≥ trp

This situation is shown in fig. 9d.

+

(a) wp(r)+ ≥ trp + t̄p(r)−,p(r)+

+

(b) wp(r)+ ≥ trp + t̄î,p(r)+

+

(c) wp(r)+ ≥ trp + t̄p(r)−2,p(r)+ (d) wp(r)+ ≥ trp

Figure 9.: Illustration of how wi is updated in eq. (6h).

Constraint (6i) sets the lower- and upper bounds for the t-variables, this constraint is the same
as (5g) explained in section 5.3. Constraint (6j) sets the proper time window for the depot in
the beginning of the route, and constraint (6k) defines the lower- and upper bound for the rest
of the w-variables. If the customer i′, is not removed (yi′ = 0) the constraint becomes

ai′ ≤ wi′ ≤ bi′

However, if the customer is removed constraint (6h) defines a lower bound, and in this case the
constraint (6k) should not be binding. If a customer j′ is removed the constraint becomes

0 ≤ wj′ ≤ bk′
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5.5 set partitioning insertion method

where k′ is the customer before j′. If j′ is removed then there is not inserted a customer just
before j′. Therefore wk′ = wj′ will be feasible as defined by the previous constraints. Therefore
the upper bound for the wj′ variable is bk′ in order to tighten the LP-relaxation.

It is always feasible to keep the solution as it is, and not removing a single customer. Therefore
the model cannot be infeasible, and z = 0 is an upper bound. The solution the model returns
is the optimal solution with respect to the solution that was given as input. Hence if the model
outputs an improved solution this new solution could be given as input to the model once more
to potentially get an even better solution. Therefore the model can, in theory, be solved several
consecutive times and improve the solution.

But when should this model be used? As the model guarantees that the solution is no worse than
the input solution it can be used when a new best solution is found. However, in the beginning
of the algorithm the quality of the new best solutions are poor therefore it is a good idea to
wait until the algorithm have been through at least half of the total number of iterations, as this
will fasten the algorithm. Furthermore a parameter θ2 is assigned. θ2 describe the probability
of using this method in a given iteration, similar to the parameter θ1 for the exact insertion
method. The parameter θ2 will be tuned in chapter 6.

5.5 set partitioning insertion method

The exact insertion method described in section 5.3 has some limitations. To overcome these
limitations in the form of another Mixed Integer Programming model is not straightforward,
and will also lead to the model being more computationally hard.
Another idea would be be to generate many diverse routes and choose the best combination of
these using a set partitioning model, as presented in 5.1. This is exactly what is done in the Set
Partitioning Insertion method (SPInsert).

Consider a partial feasible solution where a set of customers are removed, and needs to be
inserted. Furthermore, let R be the set of generated routes. The SPInsert method first adds
the routes from the original solution, before the customers were deleted, to the set R. This
ensures that the algorithm does not find a worse solution than the current. Hereafter the Regret
and Greedy heuristic are used and the routes from these two solutions are added to the set R.
After this NumRounds new randomised greedy solution are generated, and the routes from these
solutions are added to the set R.
Two methods to generate new solutions have been implemented. A random greedy method

and a Random k’th best.

• Random greedy:
The Random greedy method selects a customer at random and inserts the customer at
the place where it is inserted cheapest possible. After a customer have been added to a
route, this new route is added to the set R. This continues until all customers have been
inserted. Two consecutive calls of the Random Greedy method will most likely return
different solutions because the customers are selected in different order.

• Random k’th best
Just as the Random Greedy method, the Random k’th best method selects a random
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5.6 set partitioning destroy/insertion method

customer. The method takes a random parameter k ∈ {1, 2, . . . , k̂}, as input, where k̂
is the maximum allowed k. k describes how many insertions places to consider when
determining where the customer should be inserted. If k = 2 the two best insertion places
are found, and the customer is inserted into one of these places at random. If k = 3 the
three best insertion places are found, and the customer is into one of these places, each
chosen with equal probability.
After the customer have been inserted the new route is added to the set R. This continues
until all customers have been inserted.

For the Random k’th best method there are three random variables, in each iteration. 1) Which
customer to insert. 2) How many insertion places to consider, k. 3) Where to insert the
customer. Due to these random variables the probability of inserting a customer at the best
place is higher than the probability of the second best place. The following example calculates
these probabilities for k̂ = 3.
The probability of inserting a customer at the t’th best place can be calculated as

P (t) =
k̂−t∑
i=0

1
k̂− i

· 1
k̂

In the case where k̂ = 3 the probabilities are

P (1) = 1
3 ·

1
3 +

1
2 ·

1
3 +

1
1 ·

1
3 =

11
18

P (2) = 1
3 ·

1
3 +

1
2 ·

1
3 =

5
18

P (3) = 1
3 ·

1
3 =

2
18

That means, that with k̂ = 3 a given customer still have approximately 60% probability of being
inserted into the most affordable place. So it should still give relative good routes for k̂ = 3, but
also helps generate routes that would not be generated by the Random greedy method.
Every time a new solution is made one of these methods are chosen at random, and in the

end all the routes are considered by solving a set partitioning problem.

The SPInsert method takes as input a solution, x, a set of customers to be inserted D, and k̂
and returns a new solution x. When updating the set R hashing method are used in order to
ensure there are no duplicate routes in R.
As with the two previously described insertion method, θ3 will denote the probability of using
this insertion method in a given iteration.

5.6 set partitioning destroy/insertion method

A natural extension of the SPInsert method described in section 5.5, is to take a full feasible solu-
tion as input and destroy this solution NumDestroys number of times. Then for every restricted
solution use the SPInsert method to generate feasible routes with respect to the destroyed solu-
tion, and in the end consider all of the routes generated throughout this procedure using a set
partitioning model. Doing so, many different routes will be generated which improves the chance
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5.7 heuristic branch cut & price

of finding an improved solution. This method can, as with the Exact Destroy/Insertion method,
be used when a new best solution is found late in the algorithm. The parameter NumDestroys
will denote how many times the original solution is destroyed. Furthermore, a parameter, θ4 is
assigned that describes the probability of using the method in a given iteration.

5.7 heuristic branch cut & price

Throughout the ALNS algorithm a lot of information can easily be gathered and used to further
optimise the solutions. Such information includes; good routes and good edges. The set parti-
tioning model exploits the information regarding the routes. In order to exploit the good edges
a more sophisticated method must be used.

Branch & Price are used in most, if not all, state-of-the-art exact VRPTW algorithms. Branch
& Price is similar to Branch & Bound, the main difference is that the linear relaxations are
solved by column generation.
Column generation is a general approach which can be used to solve LP-problems by gradu-

ally considering more variables. Column generation considers two different problems, a master
problem and a sub problem (or pricing problem). In the master problem only few variables are
considered. The sub problem takes as input the dual variables from the master problem, and
searches for variables, which can improve the LP-solution, i.e variables with negative reduced
costs. These variables are hereafter added to the master problem which finds new dual variables
to be used in the next iteration of the sub problem. When the sub problem fails to find a
new variable with negative reduced costs the solution from the master problem has been proven
optimal. Thus the solution is determined in the master problem, and is proved optimal in the
sub problem. However, the solution is not necessarily integer feasible, and therefore you need
to branch.
When branching in Branch & Price it is not encouraged to branch on the master problem

variables. Doing so the sub problem needs to be extended to forbid the generation of disallowed
variables. Rather the branching decisions are imposed on the variables in the sub problem.

The master problem for VRPTW is similar to model (2), as described in the section 5.1, the
main difference is that is an LP-relaxation.

Min Z =
∑
p∈Ω

cpyp (7a)

Subject to:

∑
p∈Ω

aipyp = 1 ∀i ∈ V \ {0,n+ 1} (7b)

0 ≤ yp ≤ 1 ∀p ∈ Ω (7c)

The objective function (7a) minimises the overall cost, and constraint (7b) makes sure that every
customer is visited exactly once. Constraint (7c) defines the variables as linear. In model (7),
Ω is the full set of feasible routes. Instead of considering the full set of routes only a subset is
considered, and the problem solved is referred to as the Restricted master problem.
The set Ω consists of feasible routes, and thus the pricing problem needs to find feasible routes.
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5.7 heuristic branch cut & price

The problem is thus to find the shortest path that starts and ends at the depot, satisfy the
capacity and time window constraints and contains no cycles. This problem is known as an
Elementary shortest path problem with resource constraints (ESPPRC).

Let αi, i ∈ V \ {0,n + 1} be the dual variables associated with constraint (7b) of the mas-
ter problem, and let α0 = 0. All other parameters are as described in the mathematical model
for VRPTW in chapter 2. The variables are similar to the variables described in the same
chapter, but without the k index. The sub problem can be stated as seen in (8).

Min Z =
∑

(i,j)∈A
(cij − αi)xij (8a)

Subject to:

∑
j ∈V

xij ≤ 1 ∀i ∈ V \ {0,n+ 1} (8b)

∑
j ∈V

x0,j = 1 (8c)

∑
i∈V

xi,n+1 = 1 (8d)
∑
j ∈V

xji =
∑
j ∈V

xij ∀i ∈ V \ {0,n+ 1} (8e)

wi + tij ≤ wj + (1− xij) ·M ∀(i, j) ∈ A (8f)
ai ≤ wi ≤ bi i ∈ V (8g)∑

i∈V
di

∑
j ∈V

xij ≤ Q (8h)

xij ∈ {0, 1} ∀(i, j) ∈ A (8i)
wi ≥ 0 ∀i ∈ V (8j)

The constraints (8c)-(8j) are similar to the constraints (1c)-(1j) in the standard VRPTW formu-
lation, but without the k index as only a single route is needed. The constraint (8b) imposes
the path elementarity constraint, but is not strictly necessary due to the uniqueness of the time
variable, and positive travel times. The objective function minimises the reduced cost, and will
thus find the route that seems to be able to improve the solution the most at the moment.
Dror [11] proved that the ESPPRC problem is NP hard, and therefore the problem is most

often solved using relaxations or heuristics.

One of the current best exact VRPTW solvers are by Baldacci et al. [5], and is a Branch
Cut & Price algorithm where cutting planes are generated to strengthen the linear relaxation.
Branch Cut & Price (BCP) is an exact framework, and thus, in theory, ensures optimality given
enough time. But the problem here is the time, Baldacci et al. [5] reports an average time of
almost 8 hours for the R2 Solomon instances. This is far too long to be used within an heuristic
framework. In order to speed up the execution one can consider a reduced graph, and solve the
problem to optimality on that graph. However, this does not ensure overall optimality, but can
be used as a postoptimisation step in the end of the ALNS algorithm.
The problem then becomes how to reduce the graph, and which edges to consider. This the-

sis considers the edges used in z best unique obtained solutions. However, the best obtained
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5.7 heuristic branch cut & price

solutions are expected to be much alike each other, and thus many of the edges used will be the
same. To add more edges, information is extracted from the solution to the LP-relaxation of
the set partitioning problem. By solving the LP-relaxation, and extending the reduced graph to
include those edges used in the LP-solution will add more edges used in routes that posses some
desirable properties with respect to the LP-relaxation. To limit the number of edges added, an
upper bound, τ · n, has been set on the number of routes possibly used from the LP-solution.
Here τ is a parameter and n is the number of customers in the instance. If there are more
routes used in the LP-solution, then the routes are sorted with respect to the y-value in the
LP-solution, such that the ’best’ routes are added.

S. Ropke’s Branch Cut & Price algorithm presented in [28] are used to solve the VRPTW
problem on the reduced graphs. A time limit on 600 seconds have been used.

36



6 T E S T I N G

This section will describe how the parameters of the algorithms have been tuned. Section 6.1
focuses on tuning the parameters of the standard ALNS method. Section 6.2 considers the
described exact method, and focuses on whether or not the addition of these actually improves
the performance of the algorithm.

The parameters are tuned by testing the algorithm on the following five Solomon instances:
C204, R112, R208, RC103 and RC206. These five instances represent a diverse subset of the full
set of Solomon instance. One of the clustered instance, two random instances and two random
clustered instances are considered, furthermore instances with wide and tight time windows are
used. Generally it is not good to tune on too many instances as this will lead to ’over tuning’,
ensuring good performance on these instances with no knowledge for other instances.
In order to calculate the performance for a parameter value the solutions are compared to the
best known solutions by computing the gap. For the Solomon instances the optimal solutions
can be found in [26] and [28], in order to compare the results, the same rounding as in the exact
methods are made for the costs.
Denote the obtained solution by Z and the best known solution by Z∗ the gap is calculated as

Z −Z∗

Z∗
· 100%

In order to find the best parameter value, the gap for a given setting is calculated for all of the
instances. To compare different parameter settings the mean gap, x̄, is calculated along with
the standard deviation, σ.
The tests are run on DTU’s HPC system, with a 2.6 GHz Processor and where the MIP models
uses 8 threads. Furthermore, CPLEX version 12.1 is used to solve the MIP models.

6.1 alns

The described standard ALNS algorithm has in total 21 parameters - see appendix A. To narrow
the parameters testing phase, 14 values have been reused from the literature since they provided
good results for similar problems. Many of these values are based on the values used by Ropke
and Pisinger in [29], which considers a pickup and delivery problem with time windows. As this
problem is in the class of Vehicle Routing Problems, it is safe to assume that the values for those
parameters also works well for a VRPTW. Hence only 7 values have been tuned.
Section 6.1.1 shows the result of the tuning phase, and section 6.1.2 test other aspects of the
algorithm, e.g. the stochastic local search method mentioned in section 4.2.

6.1.1 Parameter Tuning

The 7 parameters that has been tuned is: The cooling factor, ζ, the start temperature parameter,
w, the maximum removal percentage, π, the segmentsize, η, the local search parameter, κ,

37
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resetting parameter, γ, and lastly the noise parameter ψ. For a given parameter value the
algorithm is run 20 times with 25000 iterations in order to calculate the mean performance.
To limit the testing, only a single parameter is tuned at a time, for the rest of the parameters,
initial guesses on good parameter values have been made by looking in the literature. This is of
course not optimal, but this was done in order to minimise the time spent tuning the algorithm,
and be able to test more values for the individual parameters.

Cooling Factor - ζ

The cooling factor defines, together with the start temperature, the temperature range of the
algorithm. Ropke and Pisinger [29] use ζ = 0.99975. Inspired by this the following values have
been tested,

ζ = { 0.9995, 0.99975, 0.9999, 0.999925, 0.999950, 0.999975}

The results can be seen in table 3.

Overall C204 R112 R208 RC103 RC206
ζ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

0.9995 1.20% 1.30 0.25% 1.08 1.63% 0.62 0.49% 0.55 2.55% 1.63 1.08% 0.70
0.99975 0.95% 1.06 0.50% 1.48 1.08% 0.57 0.56% 0.61 1.53% 1.23 1.11% 0.69
0.9999 0.72% 0.86 0.00% 0.00 0.78% 0.48 0.24% 0.29 1.70% 1.14 0.90% 0.61
0.999925 0.96% 1.36 0.53% 2.30 1.06% 0.55 0.26% 0.29 2.22% 1.01 0.73% 0.48
0.99995 1.18% 1.25 0.00% 0.00 1.40% 0.60 0.34% 0.44 3.21% 0.85 0.96% 0.41
0.999975 1.60% 1.78 0.00% 0.00 2.23% 0.42 0.20% 0.07 4.61% 1.00 0.96% 0.48

Table 3.: Performance of the algorithm for different values of the parameter ζ. x̄ denotes the average
gap and σ is the standard deviation. The numbers in bold marks the best result obtained
throughout the test.

Table 3 shows that ζ = 0.9999 gives the overall best performance, and also gives good results
on each of the five test instances.

Start Temperature Parameter - w

Ropke and Pisinger [29] defines the start temperature the same way as in this thesis, and the
parameter tuning shows that w = 0.05 performs best for the considered pickup and delivery
problem. Inspired by this the algorithm is tested with the following values.

w = { 0.005, 0.010, 0.015, 0.25, 0.05, 0.075, 0.1}

The result can be seen in table 4.
Table 4 shows that w = 0.015 works best, it gives the best overall performance, and standard
deviation for the considered test instances.

Maximum Removal Percentage - π

For the maximum removal percentage parameter π, the following values have been tested

π = { 20%, 25%, 30%, 35%, 40% }

The results can be seen in table 5
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Overall C204 R112 R208 RC103 RC206
w x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

0.005 0.96% 1.28 0.99% 1.98 1.18% 0.63 0.38% 0.39 1.70% 1.57 0.53% 0.45
0.01 0.75% 1.05 0.25% 1.08 0.85% 0.49 0.41% 0.51 1.51% 1.52 0.75% 0.75
0.015 0.71% 0.73 0.00% 0.00 0.98% 0.35 0.54% 0.63 1.37% 0.92 0.66% 0.50
0.025 0.76% 0.93 0.25% 1.08 0.83% 0.69 0.25% 0.28 1.51% 1.07 0.97% 0.50
0.05 1.06% 1.50 0.00% 0.00 1.36% 0.66 0.19% 0.08 2.89% 1.30 0.85% 1.54
0.075 1.29% 1.60 0.00% 0.00 1.56% 0.68 0.22% 0.07 3.72% 1.22 0.94% 1.58
0.1 1.54% 1.70 0.00% 0.00 2.01% 0.40 0.23% 0.04 4.36% 1.34 1.12% 0.36

Table 4.: Performance of the algorithm for different values of the parameter w. x̄ denotes the average
gap and σ is the standard deviation. The numbers in bold marks the best result obtained
throughout the test.

Overall C204 R112 R208 RC103 RC206
π t̄ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

20% 28.85 1.68% 1.66 2.07% 2.78 1.46% 0.53 0.77% 0.69 2.61% 1.68 1.51% 0.68
25% 34.39 1.53% 1.57 2.72% 2.46 1.21% 0.68 0.33% 0.31 2.27% 1.32 1.12% 0.54
30% 41.24 0.96% 1.17 0.74% 1.77 1.07% 0.57 0.30% 0.38 1.80% 1.28 0.91% 0.64
35% 47.37 0.72% 0.77 0.00% 0.00 0.86% 0.54 0.23% 0.28 1.70% 0.64 0.81% 0.66
40% 53.52 0.72% 0.85 0.00% 0.00 0.88% 0.56 0.20% 0.29 1.81% 0.95 0.73% 0.54

Table 5.: Performance of the algorithm for different values of π. t̄ denotes the average time in seconds, x̄
denotes the average gap and σ is the standard deviation. The numbers in bold marks the best
result obtained throughout the test.

Table 5 shows that low values for π is not as good as higher values. Moreover the algorithm is
faster the less customers that are removed, which intuitively makes sense. The average gap for
π = 35% and π = 40% is almost the same, but π = 35% is faster. Therefore π = 35% will be
used in the algorithm.

Segmentsize - η

Ropke and Pisinger uses in [29] a segmentsize on η = 100 but there is not given any explanation
of why this is chosen.
The following values have been tested.

η = {25, 50, 75, 100, 125, 150}

The results can be seen in table 6.

Overall C204 R112 R208 RC103 RC206
η x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

25 0.67% 0.79 0.00% 0.00 0.90% 0.56 0.15% 0.09 1.37% 0.96 0.93% 0.73
50 0.70% 0.89 0.00% 0.00 0.68% 0.61 0.21% 0.29 1.70% 1.15 0.93% 0.61
75 0.66% 0.77 0.00% 0.00 0.89% 0.55 0.28% 0.39 1.46% 1.03 0.68% 0.46
100 0.67% 0.72 0.00% 0.00 0.82% 0.52 0.45% 0.56 1.32% 0.86 0.77% 0.59
125 0.59% 0.67 0.00% 0.00 0.83% 0.52 0.33% 0.39 1.18% 0.81 0.63% 0.61
150 0.62% 0.75 0.00% 0.00 0.80% 0.46 0.32% 0.40 1.25% 1.08 0.75% 0.58

Table 6.: Performance of the algorithm for different values of η. x̄ denotes the average gap and σ is the
standard deviation. The numbers in bold marks the best result obtained throughout the test.

Table 6 shows that η = 125 produces the best result for these chosen five test instances. η = 125
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will therefore be used as the segmentsize. However, the differences are quite small, and might
as well be causes by the random nature of the algorithm.

Local Search Parameter - κ

κ defines how good a solution should be before trying to further optimise it using local search.
κ have been tested by only using the relocate neighbourhood as local search method, and the
following values have been tested

κ = {−∞, 0%, 1%, 2%, 3%, 4, 5%, 6%, 7%, 8%, 9%, 10%, ∞}

−∞ means that the local search procedure is not used at all, and ∞ means that it is used in
every iteration.
It is expected that a bigger value for κ results in better solutions, but comes at a cost, namely
the time spent, therefore we cannot only focus on the quality of the solutions, but will also need
to look at the extra time it takes to perform the local search. The performance table can be
seen in table 7, which also contains information on the overall time spent.

Overall C204 R112 R208 RC103 RC206
κ t̄ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

−∞ 36.61 0.94% 1.22 0.00% 0.00 1.02% 0.60 0.28% 0.44 2.62% 1.50 0.78% 0.70
0% 36.68 1.23% 1.46 0.25% 1.08 0.79% 0.50 0.32% 0.50 3.38% 1.31 1.40% 0.83
1% 37.58 1.03% 1.19 0.00% 0.00 1.21% 0.66 0.36% 0.59 2.62% 1.29 0.95% 0.71
2% 39.04 0.88% 1.01 0.00% 0.00 0.98% 0.58 0.27% 0.45 1.97% 1.24 1.20% 0.76
3% 40.41 0.75% 0.79 0.00% 0.00 0.96% 0.59 0.26% 0.36 1.50% 0.87 1.02% 0.79
4% 41.75 0.66% 0.79 0.00% 0.00 0.73% 0.37 0.28% 0.39 1.37% 1.04 0.90% 0.79
5% 42.80 0.67% 0.79 0.00% 0.00 0.73% 0.42 0.36% 0.45 1.48% 0.92 0.77% 0.79
6% 45.87 0.72% 0.81 0.25% 1.08 0.97% 0.50 0.30% 0.38 1.17% 0.71 0.93% 0.70
7% 48.57 0.78% 0.88 0.00% 0.00 0.91% 0.62 0.27% 0.39 1.65% 1.15 1.06% 0.56
8% 49.37 0.66% 0.86 0.00% 0.00 0.82% 0.61 0.15% 0.08 1.57% 1.12 0.75% 0.68
9% 50.89 0.67% 0.78 0.00% 0.00 0.86% 0.50 0.14% 0.09 1.50% 1.05 0.84% 0.46
10% 53.37 0.73% 0.72 0.00% 0.00 1.06% 0.59 0.17% 0.17 1.55% 0.99 0.87% 0.61
∞ 86.48 0.55% 0.61 0.00% 0.00 1.20% 0.69 0.16% 0.08 0.77% 0.50 0.60% 0.48

Table 7.: Performance of the algorithm for different values of κ. t̄ denotes the average time in seconds, x̄
denotes the average gap and σ is the standard deviation. The numbers in bold marks the best
result obtained throughout the test.

Table 7 shows that κ = ∞ seems to be the best, both looking at the average gap and the
standard deviation, and κ = 4% is the second best. However κ = 4% is considerably faster, and
κ = 4% more than halves the computation time compared with κ =∞. The small performance
increase do not justify the increase in the time spent, and therefore κ = 4% will be used.
The expectation that a bigger κ value gives better solutions seems to be incorrect. This could
be explained by the relative few number of tests on each instance, which means the randomness
of the algorithm have a higher impact. It could also be explained by the algorithm getting stuck
in a good local optimal solution far into the execution and is then unable to get away from it
again.

Resetting Parameter - γ

For the Resetting parameter, γ the following values have been tested.

γ = {2500, 5000, 7500, 10000, 12500, 15000, 17500, 20000, ∞}
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γ =∞ have been tested to see if the addition of the resetting mechanism actually improves the
solutions. The results is seen in table 8.

Overall C204 R112 R208 RC103 RC206
γ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

2500 0.62% 0.74 0.00% 0.00 0.76% 0.51 0.45% 0.65 1.21% 1.01 0.69% 0.51
5000 0.57% 0.61 0.00% 0.00 0.61% 0.40 0.29% 0.33 0.98% 0.72 0.98% 0.59
7500 0.77% 0.94 0.00% 0.00 0.78% 0.60 0.38% 0.53 1.85% 1.21 0.83% 0.63
10000 0.73% 0.79 0.00% 0.00 0.87% 0.50 0.29% 0.46 1.50% 0.88 0.97% 0.69
12500 0.81% 0.97 0.00% 0.00 0.73% 0.40 0.21% 0.29 2.13% 1.06 0.96% 0.71
15000 0.82% 0.89 0.00% 0.00 0.71% 0.54 0.52% 0.55 1.80% 1.10 1.08% 0.88
17500 0.72% 0.85 0.00% 0.00 1.08% 0.59 0.38% 0.45 1.37% 1.17 0.76% 0.70
20000 0.81% 0.98 0.01% 0.02 0.76% 0.48 0.37% 0.51 1.98% 1.25 0.94% 0.70
∞ 0.78% 0.83 0.00% 0.00 0.81% 0.62 0.30% 0.35 1.61% 0.94 1.17% 0.64

Table 8.: Performance of the algorithm for different values of γ. x̄ denotes the average gap and σ is the
standard deviation. The numbers in bold marks the best result obtained throughout the test.

Table 8 shows that γ = 5000 is best as it gives the best average gap, and lowest standard
deviation. Comparing the results for γ = ∞ with γ = 5000 we see that the addition of the
resetting mechanism is worthwhile as it improves the average gap from 0.78% to 0.57%.
The stopping criteria is 25000 iterations, this means that 20% of the algorithm is allowed to run
without any improvements before resetting.

Noise Parameter - ψ

For the noise parameter, ψ the following values have been tested.

ψ = {0%, 1%, 2%, 3%, 4%, 5%}

Intuitively small values for ψ should give the best result as this gives most focus to the best
insertion, but still helps diversify the search. The results is shown in table 9.

Overall C204 R112 R208 RC103 RC206
ψ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

0% 0,98% 1,15 0,27% 0,82 0,69% 0,55 0,42% 0,00 2,58% 1,13 0,93% 0,80
1% 0,93% 0,97 0,07% 0,05 0,98% 0,61 0,67% 0,00 2,00% 1,19 0,92% 0,76
2% 1,00% 1,05 0,06% 0,05 1,10% 0,51 0,36% 0,00 2,18% 1,16 1,32% 0,99
3% 0,96% 1,12 0,06% 0,05 0,86% 0,55 0,33% 0,00 2,53% 1,20 1,03% 0,81
4% 0,95% 1,13 0,00% 0,00 1,03% 0,59 0,55% 0,00 2,32% 1,30 0,87% 0,92
5% 1,01% 1,13 0,00% 0,00 0,90% 0,58 0,50% 0,00 2,48% 1,36 1,19% 0,67

Table 9.: Performance of the algorithm for different values of ψ. x̄ denotes the average gap and σ is the
standard deviation. The numbers in bold marks the best result obtained throughout the test.

Table 9 shows that ψ = 1% gives the best result in this test. However, the differences are rather
small, and could as well be explained by the random nature of the algorithm. Also looking at
the performance for ψ = 0% we see that the performance for C204 is quite bad compared to
the rest parameter values, this is most likely just an unlucky execution. As the potential gain
is small, ψ = 0% is selected in the algorithm as this also help keep the algorithm simple.

41



6.1 alns

6.1.2 Algorithm Tests

Stochastic Relocate Local Search Test

As described in section 4.2, two versions of the relocate neighbourhood have been implemented,
a deterministic and a stochastic. The stochastic should help diversify the search, and find other
solutions than the deterministic relocate local search.

Tests shows that the deterministic method produces better results than by using the stochastic
method. In order to try to explain why this is, a test were set up. In the test the standard
criteria for using the local search method were used, κ = 4%, and the deterministic local search
method were the only local search method used to improve the solution. The stochastic method
were used on the same solution as the deterministic one, but only to measure the improvement,
and not change the actual solution, i.e to compare the two methods. This was done for every
non local optimal solution. The test were executed once for all of the 56 Solomon instances,
which result in an approximate of a quarter million executions of the local search method.
Doing this the improvement of the stochastic method can be compared with the improvement
for the deterministic method. Formally, let x be a solution that is not local optimal with re-
spect to the relocate neighbourhood. Furthermore, let GID be the improvement in gap using
the deterministic relocate local search method on x, and GIS defined similarly, but instead for
the stochastic local search method. Figure 10 is a histogram of the values v = GID −GIS ,
that is negative values means that the stochastic method is better than the deterministic. The
histogram is grouped such that observation where −0.25 < v ≤ 0, belongs to the group 0. The
group −1.5 however contains all the observations less than −1.5, and 2.75 contains all the ob-
servations greater than 2.75.
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Figure 10.: Comparison between stochastic local search and deterministic local search. The placement
of the bars represent the difference in gap improved by the local search methods, a negative
value means that the stochastic local search performs better. The height of bars represent
percentage of the frequency.
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Figure 10 clearly suggest that the deterministic method is better than the stochastic. The figure
shows that −0.25 < v ≤ 0 in almost 60% of the observations - further data analysis in fact
shows that v in 55% of the cases is numerical 0. The figure also shows that there are far more
observations where the difference is positive, which means that the deterministic performs better.
In only 12% of the observations are the stochastic method better than the deterministic method,
whereas the deterministic method is strictly better than the stochastic method in 33% of the
observations.
The minimum v is −9.86, and the maximum is 4.25, the average however is 0.20 which also

suggest that the deterministic method gives the best results.

That the deterministic method gives the best result was expected. The only aspect not cov-
ered in fig. 10 is in to what extent the stochastic method diversifies the search. Or almost
equivalently, how many times the deterministic local search method returns the same solution.
This was checked in the same test, by using hashing methods to determine the number of unique
solutions the deterministic local search method returns, and comparing with the total number of
local search calls. The data shows that 14% of the calls to the deterministic local search method
returns a solution that has already been found by the local search method.

Local Search Tests

The 6 different local search methods described in section 4.2.3 have been tested by using each
of the methods as the single local search method, and then running the 5 test instance 20 times.
Table 10 shows the results, where ’No-Local’ means that no local search method have been used.
Table 10 looks at the time, as well as the quality of the solutions.

Overall C204 R112 R208 RC103 RC206
ψ t̄ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

No-Local 66.26 0.94% 1.05 0.09% 0.04 0.83% 0.59 0.54% 0.60 2.15% 1.27 1.09% 0.96
Reloc 69.24 0.72% 0.93 0.09% 0.04 0.60% 0.52 0.36% 0.55 1.80% 1.32 0.75% 0.60
3Opt* 235.41 0.92% 1.14 0.00% 0.00 1.25% 0.64 0.48% 0.59 2.28% 1.53 0.58% 0.63
Adapt 152.41 0.72% 0.89 0.00% 0.00 0.87% 0.53 0.24% 0.42 1.64% 1.21 0.86% 0.67
Re&3O 366.45 0.57% 0.79 0.00% 0.00 0.76% 0.65 0.32% 0.55 1.27% 1.11 0.48% 0.56
Ra-1o 177.50 0.58% 0.86 0.00% 0.00 0.78% 0.58 0.21% 0.32 1.49% 1.31 0.43% 0.49
Ra-2o 283.20 0.46% 0.62 0.00% 0.00 0.59% 0.57 0.11% 0.09 1.05% 0.72 0.54% 0.61

Table 10.: Performance of the algorithm for using different local search methods. x̄ denotes the average
gap, t̄ is the time spent in seconds and σ is the standard deviation. The numbers in bold
marks the best result obtained throughout the test.

Table 10 clearly shows that the Ra-2o method is the best; it gives the best average solution, and
smallest standard deviation. However the time spent is quite large, and almost 4 times as great
as the time when only using the relocate neighbourhood, which also provides good results.
The Ra-1o method gives quite good results in a time that is 2.5 greater than the time compared
to only using the relocate neighbourhood.
This suggest the following two approaches.

1. ALNS relocate
Use the Relocate neighbourhood as the only local search method. The test shows that this
should provide good results in reasonable time.

43



6.2 exact methods

2. ALNS random optimal
Use Ra-1o method when the solution is within the threshold, κ, of the best achieved
solution, and then use the Ra-2o method when a new global solution is found, in order
to ensure it is local optimal for both of the neighbourhoods. Doing so will result in a
local search method that is stochastic. This is quite contradictory comparing with the
comparison between the deterministic and stochastic relocate methods. The difference
here is that the random variable only determines which neighbourhood to consider, and
not which customer to insert as was the case with the stochastic relocate method. This
local search method chooses deterministic between two stochastic methods. This should
provide good results, but the time is expected to be approximately 3 times larger than the
ALNS relocate method.

Both of these methods will be tested further in chapter 7, to see the performance for the Solomon
instances. Only the relocate local search methods have been used in the following tests.

6.2 exact methods

This section focuses on testing the exact methods described in chapter 5.
Each of the methods have been tested by solving the previously introduced 5 test 20 times.
The following parameters have been tested; The set partitioning parameter, ρ, the use of the
route optimiser and the probabilities of using the 4 insertion methods, θ1, θ2, θ3 and θ4. The
parameters k̂, Numrounds and NumDestroys for the SPInsert/Destroy method as well as z and
τ for the Branch Cut and Price heuristic have been set by ad hoc testing, due to missing time.

k̂ = 3, Numrounds = 50, NumDestroys = 10, z = 10, τ = 0.50

6.2.1 Set Partitioning - ρ

For the set partitioning parameter, ρ the following values have been tested.

ρ = {2500, 5000, 7500, 10000, 12500, 15000, 25000, ∞}

In all the cases is the set partitioning problem solved in the end after the 25000 iterations, except
ρ =∞ where the set partitioning problem is not solved at all.
Table 11 shows the results from the test.

Table 11 shows that it actually is a good idea to solve the set partitioning problem throughout the
algorithm, and the performance is best when ρ = 2500, achieving an average solution just 0.21%
from the optimal, comparing with 0.93% when the set partitioning is not used. However the
average execution time is almost doubled, but as the performance is that much better it seems
worth the extra time. Intuitively smaller values for ρ should also be better as the set partitioning
problem is solved more often, however solving more often than every 2500’th iteration seems too
often, and therefore ρ = 2500 is chosen in the algorithm.

6.2.2 TSPTW

As described in chapter 5 the route optimiser cannot be tested without the addition of the set
partitioning model, as this is the only way to include the optimised routes in the solution.
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Overall C204 R112 R208 RC103 RC206
ρ t̄ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

2500 134.17 0.21% 0.37 0.00% 0.00 0.19% 0.15 0.19% 0.30 0.04% 0.16 0.62% 0.58
5000 127.45 0.25% 0.41 0.00% 0.00 0.39% 0.32 0.19% 0.33 0.00% 0.01 0.69% 0.57
7500 138.34 0.33% 0.66 0.00% 0.00 0.33% 0.27 0.21% 0.43 0.22% 0.96 0.90% 0.76
10000 92.18 0.32% 0.59 0.00% 0.00 0.44% 0.32 0.29% 0.54 0.06% 0.22 0.82% 0.97
12500 98.18 0.26% 0.44 0.00% 0.00 0.31% 0.27 0.21% 0.43 0.08% 0.25 0.71% 0.59
15000 113.60 0.30% 0.64 0.00% 0.00 0.35% 0.31 0.24% 0.52 0.22% 0.95 0.69% 0.76
25000 88.43 0.39% 0.60 0.00% 0.00 0.61% 0.42 0.39% 0.62 0.39% 0.90 0.54% 0.51
∞ 69.69 0.93% 1.45 0.53% 2.39 0.62% 0.48 0.36% 0.56 2.02% 1.45 1.12% 0.86

Table 11.: Performance of the algorithm for different values of ρ. t̄ denotes the average time in seconds,
x̄ denotes the average gap and σ is the standard deviation. The numbers in bold marks the
best result obtained throughout the test.

Table 12 shows the comparison between only using the set partitioning Problem (with ρ = 2500)
and then also using the TSPTW model to optimise the routes. As previously described a time-
limit on 10 s has been set.
Preliminary tests showed little to no improvement, therefore it was decided to do a full scale
tests to see if the TSPTW model had an impact, and thus all 56 Solomon instances are solved
10 times.

Best Solution Average Solution Optimals
t̄ x̄ max x x̄ max x Total Instances

SPP 101.15 0.03% 0.38% 0.18% 1.09% 331 42
TSPTW 161.75 0.04% 0.54% 0.17% 1.29% 331 42

Table 12.: Performance of the algorithm with and without the Route Optimiser. t̄ is the average time
used for the algorithm, x̄ denotes the average gap and max x is the worst achieved solution
both when considering the best solution, or the average solution. The Optimal columns
denotes how many optimal solutions were found, and for how many instances the algorithm
found an optimal solution.

Table 12 shows that the addition of the route optimiser does not have an effect. The difference
in the gap can be explained by the random nature of the algorithm, and the time is 60% higher
than without.
Looking into the data shows that out of all the routes in the best found solution only 3.8% of
these were found using the route optimiser. Furthermore only 2.1% of the calls to the TSPTW
model actually resulted in a better route. In 2.5% of the calls to the model, the model stopped
without finding an optimal solution, and was stopped due to the timelimit. These 2.5% of the
calls, corresponds to 53% of the time used, and excluding these the model found an optimal
solution using on average 0.23 seconds.

Baldacci et al. describes in [6], an exact method for the TSPTW problem that outperforms
all other exact methods. However, it is not worthwhile to implement faster algorithm in this
case as the slow MIP-procedure does not improve the quality of the solutions.
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6.2.3 Exact Insertion Method - θ1

The parameter θ1 describes the probability of using the Exact Insertion method in a given
iteration.
No time limit have been set, hence the model returns the optimal solution. The following values
have been tested.

θ1 = {0%, 1%, 2%, 3%, 4%, 5%}

Furthermore, the Exact Insertion method have also been included in the adaptiveness of the
algorithm. For this test the number of iterations were lowered to 5000 and the cooling factor,
ζ, were adjusted such that the algorithm went through the same temperature range. Table 13
shows the performance for these tests. The table reports the performance and the average time
for the test.

Overall C204 R112 R208 RC103 RC206
θ1 t̄ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

0% 65.66 0.65% 0.82 0.00% 0.00 0.77% 0.61 0.15% 0.31 1.28% 1.12 1.05% 0.70
1% 73.69 0.60% 0.67 0.06% 0.05 0.74% 0.63 0.20% 0.36 1.14% 0.62 0.84% 0.75
2% 105.27 0.70% 0.74 0.06% 0.05 0.85% 0.59 0.30% 0.51 1.39% 0.67 0.91% 0.80
3% 119.57 0.73% 0.88 0.09% 0.04 0.69% 0.40 0.42% 0.62 1.68% 1.30 0.75% 0.54
4% 130.03 0.72% 0.80 0.07% 0.05 0.69% 0.51 0.27% 0.45 1.21% 0.92 1.36% 0.83
5% 150.35 0.68% 0.70 0.21% 0.65 0.76% 0.51 0.31% 0.49 1.21% 0.66 0.90% 0.69

Adapt 125.16 1.75% 1.73 0.00% 0.00 1.84% 0.73 1.20% 0.88 4.26% 1.73 1.43% 0.96

Table 13.: Performance of the algorithm for different values of θ1. t̄ denotes the average time in seconds,
x̄ denotes the average gap and σ is the standard deviation. The numbers in bold marks the
best result obtained throughout the test.

Table 13 shows that θ1 = 1% performs the best. However the difference is quite small, and
could be explained by the relative small number of times an instance is solved. The algorithm
for θ1 = 0% is the same as the algorithm used when the set partitioning parameter, ρ, was ∞
(results shown in table 11). Even though the algorithm is the same, the quality of the solutions
differs a lot. This is due to the random nature of the algorithm and too few number of times
an instance is solved. As there is not a clear improvement, and to keep the algorithm simple
θ1 = 0% is chosen.
When looking at the performance of adaptive test it is clear that this is quite bad. Whether or
not the bad performance is due to the few number of iterations or the that insertion method
is bad is unclear. The underlying data, however, shows that the exact insertion method was
only chosen 19% of the times, and it is thus being outperformed by at least one of the heuristic
method. This point in the direction that the insertion method actually is bad, even when time
is not considered.
As previously described the algorithm finds an optimal solution using on average 0.05 seconds.

6.2.4 Exact Destroy/Insertion Method - θ2

The parameter θ2 describes the probability of using the Exact Destroy/Insertion method in a
given iteration.
Similar to the Exact Insertion method, no time limit was set, and the model always returns
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the optimal solution. As the model is more complex, and expected to be slower than the Exact
Insertion method smaller values for θ2 have been tested

θ2 = {0%, 0.2%, 0.4%, 0.6%, 0.8%, 1%}

Furthermore, the method have also been included in the adaptivity of the algorithm. For this
test the number of iterations were changed to 5000, and the cooling effect changed such that
the algorithm went through the same temperature range. The method have also been applied
solely as an improvement heuristic; trying to improve the new best solutions found after 20000
iterations, this test is denoted by ’Best’ in table 14, that shows the result.

Overall C204 R112 R208 RC103 RC206
θ2 t̄ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

0% 43.45 0.81% 0.99 0.00% 0.00 0.95% 0.67 0.43% 0.62 1.69% 1.42 1.00% 0.74
0.2% 92.86 0.68% 0.73 0.00% 0.00 0.93% 0.53 0.25% 0.48 1.40% 0.77 0.85% 0.59
0.4% 144.84 0.63% 0.78 0.00% 0.00 0.74% 0.56 0.26% 0.47 1.36% 0.93 0.80% 0.78
0.6% 201.36 0.78% 0.90 0.00% 0.00 0.88% 0.56 0.32% 0.54 1.69% 1.10 1.02% 0.78
0.8% 238.56 0.62% 0.81 0.00% 0.00 0.80% 0.55 0.23% 0.42 1.26% 1.26 0.83% 0.56
1% 293.75 0.75% 1.28 0.00% 0.00 0.86% 0.48 0.42% 0.60 1.55% 1.19 0.90% 1.40

Adapt 775.32 1.60% 1.49 0.25% 1.11 1.87% 0.57 0.66% 0.63 3.38% 1.33 1.83% 1.24
Best 69.08 0.67% 0.88 0.00% 0.00 0.63% 0.45 0.23% 0.37 1.34% 1.33 1.16% 0.71

Table 14.: Performance of the algorithm for different values of θ2. t̄ denotes the average time in seconds,
x̄ denotes the average gap and σ is the standard deviation. The numbers in bold marks the
best result obtained throughout the test.

In the adaptivity test the method is considered as a destroy heuristic, and thus ’competes’ with
the 5 other destroy heuristic. As can be seen from table 14, the adaptivity does not gives good
results. The time is almost 20 times as high with only one fifth of the iterations. The exact
Destroy/insertion method is only used 14% of the times, on average, which suggests that the
method does not perform as good as expected.
Comparing the result when using the method as solely as an improvement heuristic and the

configuration θ2 = 0%, it seems that the improvement heuristic improves the performance a lot.
But looking into the data, it is revealed that the method only manages to improve the solution
in 7 out of 177 tries, and hence the difference in performance must be due to the random nature
of the algorithm.
Even when using the method only with 0.2% probability the overall time almost doubles, and

there is not any significant difference in the quality of the solutions, therefore θ2 = 0% is chosen
in the final algorithm, thus the method is not used.
Throughout this test the model was in total used 165000 times, and the average time was 1.04
seconds.

6.2.5 Set Partitioning Insert - θ3

The following two parameters for the set partitioning insert method were set by ad hoc testing,

k̂ = 3, Numrounds = 50,

The probability parameter for the set partitioning insert method have been tested for the fol-
lowing values.

θ3 = {0%, 1%, 2%, 3%, 4%, 5%}
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Furthermore the method have been included in the adaptiveness of a algorithm with fewer
iterations, just as in the previous two sections.
Table 15 shows the results, where the performance, as well as the time is reported.

Overall C204 R112 R208 RC103 RC206
θ3 t̄ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

0% 70.16 0.91% 0.99 0.00% 0.00 0.96% 0.64 0.45% 0.58 1.86% 1.31 1.25% 0.71
1% 82.41 0.73% 0.82 0.00% 0.00 0.80% 0.54 0.34% 0.46 1.51% 1.09 0.98% 0.60
2% 97.84 0.78% 0.85 0.00% 0.00 0.82% 0.58 0.37% 0.56 1.70% 1.02 1.01% 0.54
3% 111.26 0.78% 0.94 0.00% 0.00 0.99% 0.59 0.31% 0.49 1.80% 1.23 0.82% 0.69
4% 126.65 0.70% 0.71 0.00% 0.00 0.99% 0.52 0.42% 0.60 1.32% 0.63 0.79% 0.71
5% 146.96 0.64% 1.25 0.00% 0.00 0.75% 0.58 0.41% 0.57 1.59% 1.21 0.44% 1.37

Adapt 163.12 1.52% 1.42 0.00% 0.00 2.22% 0.37 1.09% 0.69 3.13% 1.79 1.17% 0.80

Table 15.: Performance of the algorithm for different values of θ3. t̄ denotes the average time in seconds,
x̄ denotes the average gap and σ is the standard deviation. The numbers in bold marks the
best result obtained throughout the test.

Table 15 shows that θ3 = 5% gives the best results. However, the small increase in the quality of
the solutions do not justify the large increase in the time spent compared to θ3 = 1%. θ3 = 1%
gives good results with little added time.
The adaptive test does not provide good results, but this is most likely due to the few iterations
used. The underlying data shows that the SPInsert method were used 51% of the times, which
means it must have outperformed both of the other heuristics. Inspired by this, θ3 = 1% is
chosen in the final algorithm as this should add the smallest amount of time, but still the
method is used, as the adaptive test showed promising results.

6.2.6 Set Partitioning Destroy Insert - θ4

The parameter, NumDestroys for the set partitioning destroy insert method were, as previously
described set to 10.
θ4 describes the probability of using the set partitioning destroy insert method. This method is
quite slow, and therefore only small values for θ4 have been tested.

θ4 = {0%, 0.2%, 0.4%, 0.6%, 0.8%, 1%}

As with the rest of the methods it has also been included in the adaptivity (labelled as a destroy
heuristic), in a test with 5000 iterations. Similar as with the Exact Destroy/Insert method it
has also been used solely as an improvement heuristic, when finding a new best solution after
20000 iterations. Table 16 shows the result. Out of the 8 tests the one not using the method
performs best. The adaptivity test is approximately 10 times as slow using only one fifth of the
iterations. However the method is on average being used in 49% of the iterations. This is quite
high considering it ’competes’ with 5 other destroy heuristics. In the ’Best’ test the method is
used 197 times, and only manages to find a new best solution in 12 of these cases.
The quality of the solutions from the rest of the tests are very much alike the quality of solutions
for θ4 = 0%, which might be due to that the method is not used often enough. However, the
times reported shows that the method increases the overall time considerably. θ4 = 0% is chosen
in the final algorithm, hence the method is not used.
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Overall C204 R112 R208 RC103 RC206
θ2 t̄ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

0% 44.11 0.65% 0.82 0.00% 0.00 0.85% 0.65 0.30% 0.47 1.24% 1.24 0.85% 0.51
0.2% 66.75 0.70% 0.96 0.00% 0.00 0.83% 0.64 0.16% 0.31 1.59% 1.33 0.91% 0.87
0.4% 89.08 0.69% 0.86 0.00% 0.00 1.01% 0.63 0.17% 0.31 1.22% 1.30 1.04% 0.59
0.6% 106.72 0.76% 0.98 0.00% 0.00 0.61% 0.49 0.21% 0.46 1.85% 1.10 1.11% 0.99
0.8% 134.09 0.70% 0.92 0.00% 0.00 0.91% 0.64 0.36% 0.58 1.61% 1.27 0.64% 0.72
1% 156.31 0.67% 1.15 0.00% 0.00 0.70% 0.53 0.29% 0.50 1.28% 1.28 1.08% 1.21

Adapt 478.54 1.39% 1.26 0.00% 0.00 1.59% 0.45 1.11% 0.70 3.01% 1.47 1.24% 0.71
Best 66.90 0.66% 0.69 0.00% 0.00 0.84% 0.61 0.45% 0.54 1.27% 0.70 0.75% 0.62

Table 16.: Performance of the algorithm for different values of θ4. t̄ denotes the average time in seconds,
x̄ denotes the average gap and σ is the standard deviation. The numbers in bold marks the
best result obtained throughout the test.
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This chapter reports the computational results. Section 7.1 reports the results for the Solomon
instances for several algorithms, where some of the previously described methods have been
added gradually to better measure the quality of the individual methods.
Section 7.2 reports the results, for the final algorithm, for the Gehring & Homberger instances
with 200, 400 and 600 customer.

7.1 solomon instances

This section reports the results for 5 different algorithms for the 100 customer Solomon instances.

1. ALNS Reloc
Standard ALNS only using the Relocate neighbourhood as the local search method.

2. ALNS Ra-1/2o
Standard ALNS using the Ra-1o local method and the Ra-2o method when a new best
solution is found.

3. ALNS SPP
ALNS Reloc with the addition of the set partitioning problem.

4. ALNS SPInsert
ALNS SPP using the SPInsert method with 1% probability in each iteration.

5. ALNS BCP
ALNS SPP using the heuristic Branch Cut & Price method as a postoptimisation step.

Table 17 shows the overall result, where each of the 56 Solomon instances were solved 10 times.

Best Solution Average Solution Optimals
t̄ x̄ max x x̄ max x Total Instances

ALNS Reloc 59.01 0.13% 1.64% 0.43% 2.45% 264 35
ALNS Ra-1/2o 208.16 0.10% 1.55% 0.32% 2.07% 295 37
ALNS SPP 90.55 0.03% 0.54% 0.13% 0.74% 353 42
ALNS SPInsert 98.58 0.03% 0.41% 0.15% 1.14% 355 43
ALNS BCP 109.87 0.01% 0.54% 0.11% 0.70% 387 49

Table 17.: Performance of the algorithms for the Solomon instances. t̄ is the average time used for the
algorithm, x̄ denotes the average gap and max x is the worst achieved solution both when
considering the best solution, or the average solution. The Optimal columns denotes how
many optimal solutions were found, and for how many instances the algorithm found an
optimal solution. Each instance were solved 10 times for each of the algorithms

Table 17 shows that ALNS Ra-1/2o improves the average gap by 0.11% when comparing with
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ALNS Reloc. 0.11% is equivalent to an improvement of 25%. However, the runtime is approxi-
mately 3.5 times as great, which is far too much considering the improvement.
ALNS SPP improves the gap for the best solutions considerably, from 0.13% to 0.03%, and the

average gap is 0.13%. The time is however increased by 50%, but this is an reasonable increase
in time considering the huge improvement. Comparing ALNS SPInsert with ALNS SPP there
is not any significant distinction beside the extra time.
ALNS BCP further improves results, and more than halves the average gap for the best solu-

tions comparing with ALNS SPP (0.033% to 0.014%). The ALNS BCP method finds in total
the optimal solution for 49 out of the 56 test instances. A more detailed solution summary for
the ALNS BCP algorithm is shown in table 18.

Best found solution Average solution Best found solution Average solution
TD xb TD x t̄ Opt TD xb TD x t̄ Opt

C101 827.30 0.00% 827.30 0.00% 32.31 10 C201 589.10 0.00% 589.10 0.00% 50.77 10
C102 827.30 0.00% 827.30 0.00% 30.34 10 C202 589.10 0.00% 589.10 0.00% 47.36 10
C103 826.30 0.00% 826.30 0.00% 32.34 10 C203 588.70 0.00% 588.70 0.00% 50.37 10
C104 822.90 0.00% 822.90 0.00% 33.97 10 C204 588.10 0.00% 588.10 0.00% 62.24 10
C105 827.30 0.00% 827.30 0.00% 30.98 10 C205 586.40 0.00% 586.40 0.00% 52.01 10
C106 827.30 0.00% 827.30 0.00% 28.72 10 C206 586.00 0.00% 586.00 0.00% 49.08 10
C107 827.30 0.00% 827.30 0.00% 29.13 10 C207 585.80 0.00% 585.80 0.00% 54.44 10
C108 827.30 0.00% 827.30 0.00% 29.16 10 C208 585.80 0.00% 585.80 0.00% 53.28 10
C109 827.30 0.00% 827.30 0.00% 29.83 10

R101 1637.70 0.00% 1637.70 0.00% 35.01 10 R201 1143.30 0.01% 1143.30 0.01% 41.77 0
R102 1467.70 0.08% 1467.70 0.08% 35.20 0 R202 1029.60 0.00% 1031.22 0.16% 75.23 1
R103 1208.70 0.00% 1208.70 0.00% 35.42 10 R203 870.80 0.00% 873.12 0.27% 205.00 4
R104 971.50 0.00% 971.50 0.00% 81.68 10 R204 731.30 0.00% 735.61 0.59% 167.31 2
R105 1355.80 0.04% 1355.80 0.04% 37.36 0 R205 949.80 0.00% 949.80 0.00% 96.71 10
R106 1234.60 0.00% 1234.60 0.00% 66.45 10 R206 880.60 0.54% 880.95 0.58% 89.85 0
R107 1064.60 0.00% 1064.91 0.03% 182.57 9 R207 794.00 0.00% 797.77 0.47% 149.61 7
R108 932.10 0.00% 937.26 0.55% 502.59 3 R208 701.00 0.00% 701.94 0.13% 104.11 5
R109 1146.90 0.00% 1146.90 0.00% 118.64 10 R209 854.80 0.00% 856.21 0.16% 139.08 2
R110 1068.00 0.00% 1068.00 0.00% 173.61 10 R210 900.50 0.00% 906.83 0.70% 101.15 1
R111 1048.70 0.00% 1048.70 0.00% 186.20 10 R211 746.70 0.00% 748.10 0.19% 80.63 3
R112 948.90 0.03% 952.25 0.38% 344.05 0

RC101 1619.80 0.00% 1619.80 0.00% 103.27 10 RC201 1261.80 0.00% 1261.93 0.01% 38.46 8
RC102 1457.40 0.00% 1457.40 0.00% 228.94 10 RC202 1092.30 0.00% 1092.30 0.00% 58.75 10
RC103 1258.00 0.00% 1259.07 0.09% 246.13 7 RC203 923.70 0.00% 923.70 0.00% 50.96 10
RC104 1132.30 0.00% 1132.30 0.00% 213.40 10 RC204 783.90 0.05% 785.61 0.27% 64.79 0
RC105 1513.70 0.00% 1514.05 0.02% 163.48 3 RC205 1154.00 0.00% 1154.00 0.00% 42.56 10
RC106 1373.50 0.06% 1373.54 0.06% 441.76 0 RC206 1051.10 0.00% 1053.85 0.26% 52.31 5
RC107 1207.80 0.00% 1208.76 0.08% 138.40 1 RC207 962.90 0.00% 968.59 0.59% 119.08 1
RC108 1114.20 0.00% 1118.49 0.39% 376.48 5 RC208 776.10 0.00% 776.10 0.00% 68.19 10

CTD x̄b CTD x̄ t̄ (s) Opt CTD x̄b CTD x̄ t̄ (s) Opt

C1 7440.30 0.00% 7440.30 0.00% 31 90 C2 4699.00 0.00% 4699.00 0.00% 52 80
R1 14085.20 0.01% 14094.02 0.09% 150 82 R2 9602.40 0.05% 9624.85 0.30% 114 35
RC1 10676.70 0.01% 10683.41 0.08% 239 46 RC2 8005.80 0.01% 8016.08 0.14% 62 54
All 54509.40 0.01% 54557.66 0.11% 110 387

Table 18.: Solution statistics for every Solomon data set for ALNS BCP. TD is the travel distance. xb is
the gap for the best solution, and x is the gap for the average solution. t̄ is the time spent in
seconds, and Opt denotes how many optimal solution was found for each of the instances.

Table 18 shows that the algorithm finds an optimal solution in all of the 170 tests for the C-Class,
and in total the algorithm finds 387 optimal solutions out of the 560 tests. For both the R and
RC-Class at least half of the instances are solved with an average gap below 0.08%, but the
average gap goes as high as 0.70% for the R-Class, and 0.59% for the RC-Class - see Figure 11.
Figure 11 figure shows a box plot for the average solutions for the three considered instance

classes and the overall average performance for each data set. The figure makes it clear that the

51



7.1 solomon instances

0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

G
ap

Overall C-Class R-Class RC-Class

Figure 11.: A box plot based on the the average performance for each data set. The plot shows the 25%
quartile, median, 75% quartile and the maximum gap for each of the three instances classes
and overall.

ALNS BCP algorithm have the best performance on the clustered instance. It also shows that
75% of the instances are solved with an average gap below 0.15%.

The ALNS BCP algorithm can be considered as three different methods combined; an ALNS
part, the set partitioning model and the Branch Cut & Price heuristic. Table 19 shows the
average time for each instance for each part, as well as the total time. Furthermore the table
also shows the average number of routes considered in the last set partitioning problem, and the
percentage of edges considered by BCP the heuristic.
Table 19 shows that the ALNS run time is fairly consistent, and uses 41 seconds on average. The
run time is larger for the instances with wider time windows, which was also to be expected as
a customer can be inserted more places. The set partitioning and Branch Cut & Price methods
are fast for the C-instances, which are known to be ’easy’. For the R-instances both the SP and
BCP method are fast for most of the instances, but slow for few. More routes are generated for
the instances with tight time windows, but there is not a clear relation between the number of
routes and the time it takes to solve the set partitioning problem. Furthermore the table shows
that only between 1%-3% of the total number of edges is considered in the BCP heuristic. In
average, the time spent in the ALNS method is equivalent to 38% of the total time, 45% for the
set partitioning method and 18% for the BCP heuristic.
Figure 12 illustrates the average number of routes in the end of the algorithm. The box plot

is visual illustration of the data presented in table 19, and shows that the average number of
routes is highly instance dependent.
Table 20 shows information related to the BCP heuristic. The first three columns after the in-
stance name shows how many times out of 10 the heuristic improved the solution, or terminated
prematurely due to the time limit (600 s). Hereafter the average percentage of the total number
of edges considered is shown. The fifth column is the average time in seconds, for the instance.
In the 9 cases where the time limit is reached, the algorithm failed to find a feasible solution.
For the instances R108 and R203 the algorithm terminated twice due to the time limit. The 8
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Run times (s) Run times (s)
ALNS SP BCP Total Avg. Routes Avg. % edges ALNS SP BCP Total Avg. Routes Avg. % edges

C101 31.6 0.4 0.3 32.3 9129 1.31% C201 50.1 0.1 0.6 50.8 343 1.19%
C102 29.2 0.5 0.6 30.3 7297 1.37% C202 45.9 0.2 1.2 47.4 2470 1.34%
C103 30.9 0.9 0.6 32.3 9651 1.50% C203 48.9 0.6 0.8 50.4 7636 1.29%
C104 30.9 2.5 0.6 34.0 33690 1.63% C204 60.0 1.3 0.9 62.2 16692 1.31%
C105 30.0 0.6 0.3 31.0 16014 1.38% C205 50.4 0.3 1.3 52.0 4040 1.37%
C106 27.6 0.8 0.3 28.7 12580 1.39% C206 46.9 0.3 1.9 49.1 4318 1.50%
C107 28.1 0.7 0.4 29.1 15396 1.39% C207 53.3 0.2 0.9 54.4 2953 1.32%
C108 27.2 1.5 0.5 29.2 24640 1.43% C208 51.6 0.4 1.3 53.3 4790 1.44%
C109 27.1 2.0 0.7 29.8 30416 1.49%

R101 30.7 4.0 0.3 35.0 47060 1.63% R201 35.3 4.8 1.6 41.8 40517 1.68%
R102 31.5 3.6 0.1 35.2 63343 1.59% R202 42.4 7.0 25.9 75.2 47203 2.47%
R103 29.0 6.3 0.1 35.4 69008 1.83% R203 51.5 3.0 150.5 205.0 28739 1.55%
R104 28.5 45.6 7.6 81.7 66036 2.85% R204 69.2 3.9 94.2 167.3 29994 2.11%
R105 24.8 12.0 0.5 37.4 73805 2.09% R205 61.6 4.4 30.7 96.7 29753 1.85%
R106 37.9 25.8 2.8 66.4 82737 2.47% R206 72.3 3.8 13.8 89.8 25883 1.86%
R107 40.8 79.2 62.6 182.6 81688 2.80% R207 93.0 5.1 51.4 149.6 30311 1.89%
R108 41.3 270.5 190.9 502.6 64212 3.09% R208 89.9 4.6 9.6 104.1 26773 1.78%
R109 34.9 75.1 8.7 118.6 77064 2.26% R209 49.5 4.3 85.3 139.1 32019 2.18%
R110 37.2 72.1 64.3 173.6 102127 2.82% R210 49.7 4.7 46.8 101.1 33511 2.69%
R111 39.4 82.3 64.5 186.2 71152 2.54% R211 63.0 4.4 13.3 80.6 29705 1.67%
R112 32.8 296.7 14.6 344.1 66387 2.86%

RC101 21.6 81.2 0.4 103.3 59612 2.16% RC201 32.6 3.7 2.1 38.5 38289 1.75%
RC102 23.0 204.5 1.5 228.9 77682 2.48% RC202 52.0 4.2 2.5 58.8 43140 1.71%
RC103 22.8 218.5 4.8 246.1 78203 2.92% RC203 46.6 2.9 1.5 51.0 31905 1.39%
RC104 24.8 180.0 8.6 213.4 82224 2.98% RC204 60.1 1.4 3.3 64.8 15737 1.45%
RC105 25.2 137.4 0.9 163.5 70614 2.09% RC205 35.6 3.0 3.9 42.6 36195 1.84%
RC106 22.2 417.9 1.6 441.8 89802 2.62% RC206 38.2 4.3 9.9 52.3 36625 1.90%
RC107 23.0 111.0 4.4 138.4 80789 2.79% RC207 46.6 6.1 66.3 119.1 37966 2.83%
RC108 37.6 335.1 3.7 376.5 84124 2.68% RC208 52.3 3.3 12.7 68.2 32124 1.69%

Avg. 41.4 49.1 19.3 109.9 41359 1.96%

Table 19.: Time used in the ALNS, SP and BCP parts of the algorithm for the Solomon instances. Avg.
Routes is the average number of routes considered in the last set partitioning problem. Avg.
% edges is the average percentages of edges considered by the BCP heuristic. The times shown
are the average time in seconds for each of the 56 Solomon data sets.
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Figure 12.: Number of generated unique routes in the algorithm. The plot shows the minimum, 25%
quartile, the median, the 75% quartile and the maximum number of average routes generated
for each instance.

remaining runs for these two instances were solved using on average 38 s and 89 s respectively.
Therefore these 2 cases must have been ’unlucky’ cases, either missing an important edge or
having a few extra edges that made the problem considerably harder.

BCP Improvement BCP Improvement
No Yes TLim Avg. % edges t̄ No Yes TLim Avg. % edges t̄

C101 10 1.31% 0.3 C201 10 1.19% 0.6
C102 10 1.37% 0.6 C202 10 1.34% 1.2
C103 10 1.50% 0.6 C203 10 1.29% 0.8
C104 10 1.63% 0.6 C204 10 1.31% 0.9
C105 10 1.38% 0.3 C205 10 1.37% 1.3
C106 10 1.39% 0.3 C206 10 1.50% 1.9
C107 10 1.39% 0.4 C207 10 1.32% 0.9
C108 10 1.43% 0.5 C208 10 1.44% 1.3
C109 10 1.49% 0.7

R101 10 1.63% 0.3 R201 5 5 1.68% 1.6
R102 10 1.59% 0.1 R202 6 4 2.47% 25.9
R103 10 1.83% 0.1 R203 10 2 1.55% 150.5
R104 10 2.85% 7.6 R204 7 3 1 2.11% 94.2
R105 10 2.09% 0.5 R205 10 1.85% 30.7
R106 10 2.47% 2.8 R206 10 1.86% 13.8
R107 1 9 1 2.80% 62.6 R207 8 2 1.89% 51.4
R108 6 4 2 3.09% 190.9 R208 7 3 1.78% 9.6
R109 10 2.26% 8.7 R209 10 1 2.18% 85.3
R110 9 1 1 2.82% 64.3 R210 7 3 2.69% 46.8
R111 10 1 2.54% 64.5 R211 6 4 1.67% 13.3
R112 8 2 2.86% 14.6

RC101 10 2.16% 0.4 RC201 9 1 1.75% 2.1
RC102 10 2.48% 1.5 RC202 10 1.71% 2.5
RC103 9 1 2.92% 4.8 RC203 10 1.39% 1.5
RC104 10 2.98% 8.6 RC204 10 1.45% 3.3
RC105 7 3 2.09% 0.9 RC205 10 1.84% 3.9
RC106 10 2.62% 1.6 RC206 7 3 1.90% 9.9
RC107 6 4 2.79% 4.4 RC207 9 1 2.83% 66.3
RC108 10 2.68% 3.7 RC208 10 1.69% 12.7

Table 20.: Overview of BCP performance for the Solomon instances. t̄ is the average time spent for the
BCP heuristic, in seconds.

Figure 13 on page 56 is a detailed illustration of the development of the algorithm. The data
comes from an average out of 560 executions of ALNS SPP (10 for each of the 56 Solomon
instances), where the data were printed in the end of every segment (every 125 iteration).
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Figure 13a shows the temperature throughout the algorithm. The steep increases are when
the algorithm reheats the temperature due to no changes in the best solution. However, adding
5% to what the temperature was when the the best solution was achieved should not lead to
these steep increases seen in fig. 13a. A quick review of the how the temperature was actually
reheated revealed an error, which lead to the steep increases. Appendix B, on page 69, explains
this error and shows how the graphs look after correcting the error.
Figure 13b shows the average number of routes considered in the set partitioning model

throughout the algorithm. Here it is clear that more routes are added when the temperature
increases, as seen from the gradient.
Figure 13c plots the probabilities for the insertion methods. The regret method is best in the

beginning of the algorithm, hereafter the greedy method has a ’come back’ when the tempera-
ture increases as this allows more solutions to be accepted, thus increasing the score.
Figure 13d shows the probabilities for the destroy methods. The figure shows that the Random

Route Removal destroy heuristic is the worst, and the probability immediately starts decreas-
ing from the beginning. Furthermore, the graph also shows that Shaw Removal, ShawWorst
Removal and Random Removal are equally good, with a slight advantage for Shaw Removal. The
probability for Worst Removal slowly decreases in the beginning of the algorithm, but slowly
comes back when the temperature increases.
From fig. 13e it is clear when the set partitioning problem is being solved (every 2500 itera-

tion), as the gap clearly becomes smaller. The plot also shows that the algorithm on average
only finds minor improvements the last 2500 iterations, and hence more iterations would not be
able to improve the quality of the solutions substantially.
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(a) The temperature throughout the algorithm.

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000
0

10000

20000

30000

40000

Iteration

#
R
o
u
te
s

Number of routes in Set partitioning problem

(b) Number of generated unique routes in the algorithm

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000
40%

42%

44%

46%

48%

50%

52%

54%

56%

58%

60%

Iteration

P
ro
b
ab

il
it
y

Regret Insertion Greedy Insertion

(c) Probability for the insertion methods throughout the
algorithm

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

5%

10%

15%

20%

25%

Iteration

P
ro
b
a
b
il
it
y

Shaw Removal ShawWorst Removal Random Removal
Worst Removal Random Route Removal

(d) Probability for the destroy methods throughout the
algorithm

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000
0%

1%

2%

3%

4%

5%

Iteration

G
ap

Gap

(e) The gap for the current best solution throughout the
algorithm.

Figure 13.: Detailed illustration of the development of the algorithm.

56



7.2 gehring & homberger instances

7.2 gehring & homberger instances

This section reports the results for the Gehring and Homberger instances with 200, 400 and 600
customers, for the ALNS Reloc, ALNS SPP and ALNS BCP algorithms.
Not many have tried to solve these instances using exact methods, and the heuristic approaches
often tries to minimise the number of vehicles, and then find a minimum cost distribution plan
using this number of vehicles. Therefore the algorithms are compared with the best solution
found by one of the three algorithms. For the 200 and 400 customer instances the results are
compared to an ALNS 75K configuration of the algorithm described in [23]. The results from
ALNS 75K were provided by my supervisor, Stefan Røpke.

7.2.1 200 Customers

Table 21 shows the results for the ALNS BCP (referred to as BCP in the table), ALNS SPP
(SPP) and ALNS Reloc (ALNS) algorithms. Each instance were solved 10 times.

BCP SPP ALNS BCP SPP ALNS
Best x̄ t̄ x̄ t̄ x̄ t̄ Best x̄ t̄ x̄ t̄ x̄ t̄

C1_2_1 2698.6 0.00% 149 0.00% 148 0.00% 147 C2_2_1 1922.1 0.00% 290 0.00% 287 0.00% 274
C1_2_2 2694.3 0.00% 155 0.00% 153 0.00% 162 C2_2_2 1851.4 0.26% 325 0.28% 309 0.44% 288
C1_2_3 2675.8 0.00% 384 0.00% 362 0.01% 150 C2_2_3 1768.3 0.68% 707 0.68% 375 1.32% 350
C1_2_4 2625.6 0.03% 1181 0.15% 1120 0.71% 160 C2_2_4 1706.9 0.79% 1348 0.79% 732 0.78% 391
C1_2_5 2696.0 0.00% 168 0.00% 167 0.00% 306 C2_2_5 1869.6 0.41% 324 0.41% 284 0.27% 268
C1_2_6 2694.9 0.00% 155 0.00% 154 0.00% 142 C2_2_6 1844.9 0.00% 333 0.00% 293 0.31% 308
C1_2_7 2694.9 0.00% 179 0.00% 178 0.00% 150 C2_2_7 1842.3 0.24% 344 0.28% 298 0.58% 272
C1_2_8 2684.0 0.00% 261 0.00% 257 0.01% 146 C2_2_8 1817.5 0.25% 329 0.35% 296 1.33% 266
C1_2_9 2639.6 0.01% 545 0.03% 537 0.73% 153 C2_2_9 1815.1 0.28% 537 0.45% 327 0.67% 352
C1_2_10 2627.1 0.73% 1218 1.29% 1150 2.18% 158 C2_2_10 1791.3 0.08% 887 0.16% 353 0.08% 365

R1_2_1 4686.1 0.00% 276 0.01% 270 0.45% 254 R2_2_1 3480.6 0.05% 344 0.29% 340 1.30% 234
R1_2_2 3962.2 0.02% 1019 0.03% 872 0.57% 206 R2_2_2 3019.1 0.10% 413 0.18% 384 0.66% 291
R1_2_3 3389.8 0.54% 1760 0.54% 1156 0.80% 146 R2_2_3 2550.0 0.01% 567 0.03% 452 0.56% 320
R1_2_4 3104.6 1.17% 1779 1.17% 1169 0.93% 104 R2_2_4 1928.5 0.66% 676 0.68% 642 1.08% 432
R1_2_5 4053.2 0.11% 1388 0.11% 1007 0.59% 134 R2_2_5 3063.6 0.28% 762 0.38% 353 0.61% 261
R1_2_6 3569.3 0.47% 1774 0.47% 1168 0.46% 128 R2_2_6 2677.2 0.14% 477 0.14% 427 0.48% 307
R1_2_7 3144.4 0.53% 1763 0.55% 1153 1.76% 115 R2_2_7 2305.7 0.73% 877 0.80% 531 0.87% 360
R1_2_8 3011.1 1.44% 1836 1.44% 1219 0.14% 102 R2_2_8 1842.4 0.89% 978 0.89% 727 1.18% 544
R1_2_9 3739.9 0.21% 1703 0.21% 1090 0.54% 121 R2_2_9 2844.0 0.13% 532 0.29% 402 0.63% 275
R1_2_10 3344.1 0.63% 1748 0.63% 1144 0.88% 100 R2_2_10 2553.0 0.51% 484 0.62% 418 1.29% 286

RC1_2_1 3521.0 0.31% 1651 0.42% 1100 0.90% 107 RC2_2_1 2802.9 0.06% 296 0.06% 283 0.24% 587
RC1_2_2 3231.0 0.40% 1716 0.40% 1151 0.83% 88 RC2_2_2 2483.3 0.18% 451 0.32% 396 0.86% 316
RC1_2_3 3013.3 0.75% 1754 0.75% 1149 1.11% 183 RC2_2_3 2229.1 0.31% 635 0.31% 552 0.37% 408
RC1_2_4 2918.2 1.29% 1768 1.29% 1164 1.19% 149 RC2_2_4 1854.8 0.93% 754 0.98% 562 0.84% 574
RC1_2_5 3326.9 0.29% 1752 0.35% 1246 1.71% 130 RC2_2_5 2491.4 0.11% 449 0.16% 345 0.45% 295
RC1_2_6 3316.3 0.19% 1676 0.21% 1106 0.95% 148 RC2_2_6 2496.4 0.03% 411 0.03% 401 0.07% 340
RC1_2_7 3205.4 1.21% 1774 1.21% 1166 1.18% 132 RC2_2_7 2287.7 0.15% 435 0.19% 399 0.73% 458
RC1_2_8 3134.8 0.73% 1970 0.73% 1363 0.60% 136 RC2_2_8 2151.2 0.15% 508 0.15% 476 0.39% 350
RC1_2_9 3128.9 0.55% 1770 0.55% 1165 0.29% 137 RC2_2_9 2086.6 0.15% 808 0.16% 486 0.40% 479
RC1_2_10 3053.4 0.88% 1778 0.88% 1172 0.54% 106 RC2_2_10 1989.2 0.63% 802 0.64% 550 0.48% 546

C1 0.08% 439 0.15% 423 0.36% 167 C2 0.30% 542 0.34% 355 0.58% 313
R1 0.51% 1505 0.52% 1025 0.71% 141 R2 0.35% 611 0.43% 468 0.86% 331
RC1 0.66% 1761 0.68% 1178 0.93% 132 RC2 0.27% 555 0.30% 445 0.48% 435
All 0.36% 902 0.40% 649 0.66% 253

Table 21.: Solution statistics for every Gehring/Homberger data set with 200 customers for ALNS BCP,
ALNS SPP and ALNS Reloc. Best is the best solution found by one of the three algorithms,
x̄ is the average gap comparing with the best found solution. t̄ denotes the time, in seconds,
used. Each instance were solved 10 times for each of the algorithms

The time for ALNS SPP and ALNS Reloc are comparable for most of the C-instances. ALNS
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Reloc is slower than ALNS SPP in some cases, and provides the best average result other cases.
This is due to the randomness of the algorithms. ALNS Reloc uses on average 253 seconds,
and achieves an averages solution 0.66% from the best found. For 190 of the 600 ALNS SPP
executions at least 900 seconds were used to solve the set partitioning problems, and thus might
hit the time limit several times, which has a huge impact on the overall run time. On average
377 seconds are to used solve the set partitioning problem. ALNS BCP further improves the
solution found by ALNS SPP, and almost halves the average gap, comparing with ALNS Reloc.
Table 22 shows for how many times out of 10 the BCP heuristic improved the solution found by
ALNS SPP, furthermore it shows the average percentage of edges considers, as well as the time
spent.

BCP Improvement BCP Improvement
No Yes TLim Avg. % edges t̄ No Yes TLim Avg. % edges t̄

C1_2_1 10 0.60% 0.9 C2_2_1 10 0.59% 3.2
C1_2_2 10 0.70% 2.1 C2_2_2 9 1 0.65% 16.1
C1_2_3 5 5 0.98% 22.3 C2_2_3 10 4 1.07% 331.9
C1_2_4 1 9 1.31% 60.7 C2_2_4 10 10 1.52% 615.7
C1_2_5 10 0.60% 0.9 C2_2_5 10 0.67% 40.2
C1_2_6 10 0.60% 1.0 C2_2_6 10 0.74% 39.2
C1_2_7 10 0.62% 1.0 C2_2_7 8 2 0.69% 46.8
C1_2_8 9 1 0.81% 3.8 C2_2_8 7 3 0.71% 32.8
C1_2_9 8 2 1.00% 8.1 C2_2_9 6 4 1 0.86% 209.9
C1_2_10 1 9 1.18% 68.1 C2_2_10 8 2 2 0.74% 534.4

R1_2_1 6 4 1 0.76% 6.5 R2_2_1 2 8 0.76% 4.3
R1_2_2 5 5 1 1.00% 146.7 R2_2_2 6 4 0.80% 29.0
R1_2_3 10 10 1.42% 604.3 R2_2_3 9 1 1 0.85% 114.7
R1_2_4 10 10 1.69% 610.2 R2_2_4 7 3 0.64% 33.4
R1_2_5 9 1 3 1.08% 381.6 R2_2_5 6 4 4 1.09% 408.6
R1_2_6 9 1 9 1.40% 606.7 R2_2_6 9 1 0.75% 49.8
R1_2_7 9 1 9 1.40% 610.5 R2_2_7 9 1 4 1.05% 346.4
R1_2_8 10 10 1.79% 617.3 R2_2_8 10 3 0.82% 250.3
R1_2_9 10 10 1.25% 612.9 R2_2_9 4 6 0.98% 129.7
R1_2_10 10 10 1.39% 604.1 R2_2_10 8 2 0.83% 65.6

RC1_2_1 6 4 6 1.13% 551.1 RC2_2_1 9 1 0.72% 12.5
RC1_2_2 10 9 1.38% 565.6 RC2_2_2 8 2 0.81% 55.0
RC1_2_3 10 10 1.45% 604.7 RC2_2_3 10 0.90% 83.7
RC1_2_4 10 10 1.68% 604.2 RC2_2_4 9 1 2 0.93% 192.3
RC1_2_5 6 4 5 1.29% 506.1 RC2_2_5 4 6 0.86% 104.0
RC1_2_6 9 1 8 1.28% 570.3 RC2_2_6 9 1 0.66% 10.7
RC1_2_7 10 10 1.43% 607.8 RC2_2_7 7 3 0.73% 36.0
RC1_2_8 10 10 1.53% 607.6 RC2_2_8 10 0.67% 32.5
RC1_2_9 10 10 1.49% 604.5 RC2_2_9 9 1 4 1.05% 322.3
RC1_2_10 10 10 1.58% 606.1 RC2_2_10 8 2 4 0.99% 252.1

Table 22.: Overview of BCP performance for the GH200 instances. t̄ is the average time spent for the
BCP heuristic, in seconds.

In total the BCP heuristic terminated due to the time limit in 200 out of the 600 executions, and
found an improvement in 106 runs. In 197 out of the 200 executions where the full 600s seconds
were used, the heuristic failed to find a feasible solution. Table 22 also shows that between 0.59%
and 1.79% of the total number of edges is considered, and on average only 1.02% is included in
the problem. This is almost half of the percentage of edges considered for the Solomon instances
(1.96%), but the average number of edges considered is more than doubled (from 200 to 410),
which is the main reason for the longer run time.

Table 23 compares ALNS BCP with results from an ALNS 75K configuration of the algorithm
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presented in [23].1 However, there is a slight difference between the algorithms. ALNS 75K uses
truncated precision for both the travel times and costs, whereas ALNS SPP uses full precision
for both the travel times and costs throughout the algorithm, and in the end uses truncated
precision to calculate the cost of the best solution. The BCP heuristic uses truncated precision,
but ALNS SPP might have failed to adds some arcs as these were considered infeasible when
using full precision. This favours ALNS 75K in the comparison.

ALNS BCP ALNS 75K ALNS BCP ALNS 75K
Best x̄ t̄ xb x̄ t̄ Best x̄ t̄ xb x̄ t̄

C1_2_1 2698.60 0.00% 149 0.00% 0.00% 22 C2_2_1 1922.10 0.00% 290 0.00% 0.72% 29
C1_2_2 2694.30 0.00% 155 0.00% 0.00% 28 C2_2_2 1851.40 0.26% 325 0.03% 1.05% 35
C1_2_3 2675.80 0.00% 384 0.02% 0.06% 31 C2_2_3 1768.30 0.68% 707 -0.17% 0.72% 40
C1_2_4 2625.60 0.03% 1181 0.00% 0.05% 31 C2_2_4 1706.90 0.79% 1348 -0.01% 0.49% 41
C1_2_5 2696.00 0.00% 168 -0.04% -0.04% 24 C2_2_5 1869.60 0.41% 324 0.00% 0.62% 35
C1_2_6 2694.90 0.00% 155 0.00% 0.00% 24 C2_2_6 1844.90 0.00% 333 0.29% 0.85% 38
C1_2_7 2694.90 0.00% 179 0.00% 0.00% 27 C2_2_7 1842.30 0.24% 344 0.03% 0.37% 38
C1_2_8 2684.00 0.00% 261 0.00% 0.00% 28 C2_2_8 1817.50 0.25% 329 -0.03% 0.60% 41
C1_2_9 2639.60 0.01% 545 0.00% 0.00% 30 C2_2_9 1815.10 0.28% 537 0.37% 0.58% 40
C1_2_10 2627.10 0.73% 1218 0.00% 0.00% 32 C2_2_10 1791.30 0.08% 887 0.18% 0.69% 43

R1_2_1 4686.10 0.00% 276 -0.36% -0.25% 24 R2_2_1 3480.60 0.05% 344 1.88% 3.10% 36
R1_2_2 3962.20 0.02% 1019 -1.02% -0.71% 27 R2_2_2 3019.10 0.10% 413 0.57% 3.54% 39
R1_2_3 3389.80 0.54% 1760 -0.29% 0.27% 31 R2_2_3 2550.00 0.01% 567 0.17% 1.31% 41
R1_2_4 3104.60 1.17% 1779 -1.27% -0.77% 33 R2_2_4 1928.50 0.66% 676 0.54% 2.79% 45
R1_2_5 4053.20 0.11% 1388 0.28% 0.46% 24 R2_2_5 3063.60 0.28% 762 0.89% 1.70% 41
R1_2_6 3569.30 0.47% 1774 -0.07% 0.13% 27 R2_2_6 2677.20 0.14% 477 1.96% 3.61% 43
R1_2_7 3144.40 0.53% 1763 0.66% 1.00% 30 R2_2_7 2305.70 0.73% 877 0.43% 2.72% 44
R1_2_8 3011.10 1.44% 1836 -1.93% -1.67% 32 R2_2_8 1842.40 0.89% 978 1.03% 2.73% 46
R1_2_9 3739.90 0.21% 1703 0.00% 0.28% 26 R2_2_9 2844.00 0.13% 532 1.17% 2.73% 44
R1_2_10 3344.10 0.63% 1748 -1.22% -0.98% 28 R2_2_10 2553.00 0.51% 484 1.79% 3.30% 47

RC1_2_1 3521.00 0.31% 1651 0.01% 0.28% 24 RC2_2_1 2802.90 0.06% 296 -0.11% 0.42% 34
RC1_2_2 3231.00 0.40% 1716 -0.05% 0.13% 27 RC2_2_2 2483.30 0.18% 451 0.86% 1.23% 38
RC1_2_3 3013.30 0.75% 1754 -0.30% 0.07% 30 RC2_2_3 2229.10 0.31% 635 0.20% 0.75% 40
RC1_2_4 2918.20 1.29% 1768 -2.04% -1.74% 32 RC2_2_4 1854.80 0.93% 754 0.37% 1.98% 42
RC1_2_5 3326.90 0.29% 1752 0.20% 0.37% 25 RC2_2_5 2491.40 0.11% 449 0.41% 1.07% 40
RC1_2_6 3316.30 0.19% 1676 -0.03% 0.14% 25 RC2_2_6 2496.40 0.03% 411 0.17% 0.89% 40
RC1_2_7 3205.40 1.21% 1774 -0.86% -0.47% 26 RC2_2_7 2287.70 0.15% 435 0.35% 2.15% 45
RC1_2_8 3134.80 0.73% 1970 -2.04% -1.51% 27 RC2_2_8 2151.20 0.15% 508 0.66% 1.77% 44
RC1_2_9 3128.90 0.55% 1770 -1.53% -1.17% 27 RC2_2_9 2086.60 0.15% 808 0.23% 1.76% 45
RC1_2_10 3053.40 0.88% 1778 -1.86% -1.53% 29 RC2_2_10 1989.20 0.63% 802 0.31% 2.80% 48

Average 2699.18 0.36% 902 0.01% 0.69% 34

Table 23.: Comparison between ALNS BCP and ALNS 75K for the GH200 instances. The column ’Best’
denotes the best solution found by the ALNS BCP heuristic, x̄ is the average gap, comparing
with the column ’Best’. t̄ is the average time. For ALNS 75K xb denotes the gap between the
best found solution by ALNS BCP and ALNS 75k.

Table 23 shows that ALNS 75K is more than 30 times faster than ALNS BCP, while still achiev-
ing best solutions close to the best solutions found by ALNS BCP. However, ALNS BCP finds
solutions that on average are better than ALNS 75K, and the average gap for the solutions found
by ALNS BCP is half of the average gap for ALNS 75K.

7.2.2 400 Customers

Table 24 shows the results for the ALNS BCP (referred to as BCP in the table), ALNS SPP
(SPP) and ALNS Reloc (ALNS) algorithms for the Gehring and Homberger instances with 400
customers. Each instance were solved 10 times.

1 In the test ALNS 75K used 8 threads, and the actual times have thus been multiplied with 8 to make the
comparison more fair.
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BCP SPP ALNS BCP SPP ALNS
Best x̄ t̄ x̄ t̄ x̄ t̄ Best x̄ t̄ x̄ t̄ x̄ t̄

C1_4_2 7113.30 0.00% 797 0.00% 771 0.00% 848 C2_4_2 3914.10 0.34% 1826 0.36% 1576 0.94% 1368
C1_4_3 6932.70 0.38% 1941 0.44% 1419 2.52% 740 C2_4_3 3761.20 1.22% 2906 1.22% 2318 1.54% 1497
C1_4_4 7238.80 1.62% 2159 1.62% 1543 0.65% 715 C2_4_4 3596.10 1.21% 3017 1.21% 2413 1.40% 1490
C1_4_5 7138.80 0.00% 575 0.00% 565 0.00% 789 C2_4_5 3923.30 0.22% 1651 0.36% 1564 1.84% 1273
C1_4_6 7140.10 0.00% 518 0.00% 508 0.12% 841 C2_4_6 3860.20 0.07% 2062 0.53% 1900 2.09% 1154
C1_4_7 7136.20 0.00% 526 0.00% 517 0.06% 738 C2_4_7 3876.90 2.58% 2702 2.93% 2137 2.88% 1260
C1_4_8 7098.00 0.10% 1448 0.13% 1431 2.32% 731 C2_4_8 3827.80 2.39% 3056 2.39% 2451 2.29% 1462
C1_4_9 7025.30 1.73% 2134 1.75% 1572 3.29% 729 C2_4_9 3910.90 1.00% 2809 1.00% 2203 0.66% 1276
C1_4_10 7210.30 3.19% 2230 3.19% 1625 0.74% 687 C2_4_10 3753.00 2.51% 3183 2.51% 2514 1.93% 1049

R1_4_1 10357.00 0.14% 2429 0.14% 1823 1.38% 884 R2_4_1 7523.30 0.94% 2605 1.02% 2006 2.14% 1355
R1_4_2 9068.90 1.52% 2521 1.52% 1905 0.72% 626 R2_4_2 6488.40 1.33% 2917 1.46% 2289 1.78% 1657
R1_4_3 8061.50 3.01% 2425 3.01% 1788 1.14% 521 R2_4_3 5400.90 0.62% 3835 0.62% 3318 0.94% 1952
R1_4_4 7623.00 3.23% 2173 3.23% 1568 1.44% 507 R2_4_4 4223.40 0.49% 3465 0.50% 3116 0.82% 2063
R1_4_5 9314.40 0.98% 2244 0.98% 1615 0.83% 605 R2_4_5 6568.00 0.58% 2244 0.73% 1652 1.37% 1357
R1_4_6 8592.70 1.84% 2462 1.84% 1814 0.69% 554 R2_4_6 5848.70 0.98% 2588 1.00% 2061 1.39% 1712
R1_4_7 7956.00 1.51% 2446 1.51% 1843 0.81% 496 R2_4_7 4921.00 0.98% 3882 0.98% 3328 0.78% 1942
R1_4_8 7621.90 2.43% 2428 2.43% 1824 1.24% 486 R2_4_8 4011.00 0.32% 2787 0.32% 2286 1.25% 2137
R1_4_9 9001.00 1.14% 2243 1.14% 1597 0.46% 542 R2_4_9 6081.30 0.80% 2473 0.82% 1953 1.75% 1474
R1_4_10 8434.50 1.86% 2191 1.86% 1550 0.74% 500 R2_4_10 5675.70 1.12% 3242 1.14% 2676 2.14% 1572

RC1_4_1 8729.90 1.84% 2629 1.84% 2014 1.30% 587 RC2_4_1 6148.10 0.07% 1678 0.23% 1480 1.05% 1340
RC1_4_2 8202.50 1.53% 2210 1.53% 1588 0.81% 545 RC2_4_2 5407.50 0.01% 2133 0.06% 2056 0.76% 1509
RC1_4_3 7815.40 2.10% 2192 2.10% 1588 0.96% 486 RC2_4_3 4573.00 0.19% 2096 0.22% 1946 1.00% 2697
RC1_4_4 7617.80 1.59% 2468 1.59% 1867 1.20% 503 RC2_4_4 3606.10 0.23% 3369 0.23% 2894 0.71% 2931
RC1_4_5 8512.60 1.66% 2539 1.66% 1926 1.17% 576 RC2_4_5 5401.70 0.49% 2591 0.50% 2037 1.55% 1949
RC1_4_6 8491.40 1.94% 2509 1.94% 1904 1.25% 566 RC2_4_6 5342.10 0.24% 2368 0.25% 1881 1.12% 1844
RC1_4_7 8348.10 1.40% 2513 1.40% 1897 0.81% 553 RC2_4_7 5002.90 0.34% 2450 0.35% 2003 1.19% 1731
RC1_4_8 8180.00 1.84% 2498 1.84% 1873 0.98% 528 RC2_4_8 4712.50 0.34% 3008 0.34% 2500 1.27% 1612
RC1_4_9 8087.60 1.79% 2457 1.79% 1855 1.16% 518 RC2_4_9 4513.90 1.02% 2750 1.02% 2251 1.84% 2285
RC1_4_10 7958.20 1.56% 2514 1.56% 1912 0.84% 494 RC2_4_10 4284.20 0.68% 2919 0.70% 2637 1.24% 2135

C1 0.70% 1310 0.71% 1072 0.97% 762 C2 1.15% 2465 1.25% 2049 1.59% 1323
R1 1.77% 2356 1.77% 1733 0.95% 572 R2 0.82% 3004 0.86% 2469 1.44% 1722
RC1 1.72% 2453 1.72% 1842 1.05% 535 RC2 0.36% 2536 0.39% 2169 1.17% 2003
All 1.09% 2354 1.12% 1889 1.19% 1153

Table 24.: Solution statistics for every Gehring/Homberger data set with 400 customers for ALNS BCP,
ALNS SPP and ALNS Reloc. Best is the best solution found by one of the three algorithms,
x̄ is the average gap comparing with the best found solution. t̄ denotes the time, in seconds,
used. Each instance were solved 10 times for each of the algorithms
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The run times for ALNS SPP for the R1 and RC1 instances is considerably larger than the run
times for ALNS Reloc. In each run the set partitioning problem is solved 10 times, each with a
time limit on 100 seconds. The average run time for ALNS SPP is approximately 1200 seconds
slower for these two instance classes, which is a clear indication that the set partitioning problem
is too hard to be solved, within the time limit. ALNS Reloc gives the best results for the R1
and RC1 classes, which could be explained by the combination of returning too often to the best
solution in the set partitioning method and the faulty way of reheating the temperature, which
is incorporated in the set partitioning method. For the rest of the classes ALNS SPP gives
better results than ALNS Reloc, and the difference in time is not as drastic as seen for the R1
and RC1 classes. For 21 out of 60 instance the overall best found solution is found by the ALNS
Reloc heuristic. Overall ALNS BCP gives the best average results, but is only 0.10% better
than ALNS Reloc and the average run time is more than doubled.
Table 25 shows how many times out of 10 the BCP heuristic improves the solution found by the
ALNS SPP, as well as the average time spent and the average percentage of edges considered.

BCP Improvement BCP Improvement
No Yes TLim Avg. % edges t̄ No Yes TLim Avg. % edges t̄

C1_4_1 10 0.28% 4.1 C2_4_1 7 3 0.30% 22.9
C1_4_2 10 0.33% 26.0 C2_4_2 7 3 1 0.39% 250.1
C1_4_3 7 3 7 0.53% 522.0 C2_4_3 9 1 9 0.54% 588.6
C1_4_4 10 10 0.86% 615.5 C2_4_4 10 10 0.79% 603.5
C1_4_5 10 0.29% 9.5 C2_4_5 8 2 0.33% 86.6
C1_4_6 10 0.30% 9.7 C2_4_6 6 4 0.35% 162.1
C1_4_7 10 0.29% 9.1 C2_4_7 9 1 8 0.54% 565.4
C1_4_8 10 0.37% 17.4 C2_4_8 10 10 0.62% 604.6
C1_4_9 9 1 9 0.56% 561.7 C2_4_9 10 10 0.68% 605.6
C1_4_10 10 10 0.69% 604.6 C2_4_10 10 10 0.69% 668.9

R1_4_1 10 10 0.45% 606.2 R2_4_1 9 1 9 0.52% 598.9
R1_4_2 10 10 0.73% 615.8 R2_4_2 8 2 8 0.61% 628.0
R1_4_3 10 10 0.89% 637.1 R2_4_3 10 7 0.58% 516.7
R1_4_4 10 10 1.04% 604.9 R2_4_4 8 2 5 0.57% 349.5
R1_4_5 10 10 0.59% 628.4 R2_4_5 6 4 6 0.55% 591.6
R1_4_6 10 10 0.79% 648.7 R2_4_6 9 1 8 0.73% 527.3
R1_4_7 10 10 0.92% 603.6 R2_4_7 9 1 9 0.81% 553.8
R1_4_8 10 10 1.04% 604.5 R2_4_8 10 8 0.64% 500.6
R1_4_9 10 10 0.72% 646.6 R2_4_9 7 3 7 0.62% 519.7
R1_4_10 10 10 0.79% 640.9 R2_4_10 9 1 9 0.75% 566.1

RC1_4_1 10 10 0.62% 615.3 RC2_4_1 1 9 0.43% 198.3
RC1_4_2 10 10 0.79% 622.0 RC2_4_2 2 8 0.37% 77.0
RC1_4_3 10 10 0.95% 604.0 RC2_4_3 4 6 2 0.40% 149.7
RC1_4_4 10 10 1.03% 601.0 RC2_4_4 8 2 7 0.58% 475.3
RC1_4_5 10 10 0.75% 612.6 RC2_4_5 8 2 8 0.54% 553.6
RC1_4_6 10 10 0.75% 605.5 RC2_4_6 9 1 7 0.50% 487.0
RC1_4_7 10 10 0.79% 616.4 RC2_4_7 8 2 7 0.51% 447.0
RC1_4_8 10 10 0.89% 624.3 RC2_4_8 9 1 8 0.66% 507.9
RC1_4_9 10 10 0.89% 602.0 RC2_4_9 10 8 0.59% 499.8
RC1_4_10 10 10 0.87% 601.6 RC2_4_10 7 3 4 0.53% 281.6

Table 25.: Overview of BCP performance for the GH400 instances. t̄ is the average time spent for the
BCP heuristic, in seconds.

In total 421 executions terminated due to the time limit, and an improvement were found in
77 executions, most of them for the RC2 instances. This is a clear indication that the problems
becomes too large to be solved efficiently using Branch Cut & Price, even if only a small per-
centage of the edges is considered.
Table 26 compares the results from ALNS BCP with the results from the previously described
ALNS 75K algorithm. To make the comparison more fair, the column ’Best’ is the best solution
found by ALNS BCP, and could thus be different from the best solution reported in Table 24,
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as this table reported the best result found by one of the three tested algorithms.

ALNS BCP ALNS 75K ALNS BCP ALNS 75K
Best x̄ t̄ xb x̄ t̄ Best x̄ t̄ xb x̄ t̄

C1_4_1 7138.80 0.00% 776 0.00% 0.00% 49 C2_4_1 4100.30 0.00% 1437 1.20% 3.84% 56
C1_4_2 7113.30 0.00% 797 0.00% 0.00% 57 C2_4_2 3914.10 0.34% 1826 0.58% 3.52% 73
C1_4_3 6932.70 0.38% 1941 0.01% 0.07% 61 C2_4_3 3761.20 1.22% 2906 2.90% 4.92% 80
C1_4_4 7243.40 1.55% 2159 -6.27% -6.06% 66 C2_4_4 3596.10 1.21% 3017 1.85% 3.57% 88
C1_4_5 7138.80 0.00% 575 0.00% 0.00% 51 C2_4_5 3923.30 0.22% 1651 0.43% 2.69% 66
C1_4_6 7140.10 0.00% 518 0.00% 0.00% 51 C2_4_6 3860.20 0.07% 2062 1.66% 3.40% 73
C1_4_7 7136.20 0.00% 526 0.00% 0.00% 53 C2_4_7 3876.90 2.58% 2702 0.22% 2.54% 73
C1_4_8 7098.00 0.10% 1448 -0.21% -0.19% 54 C2_4_8 3871.10 1.24% 3056 -2.08% 1.04% 80
C1_4_9 7025.30 1.73% 2134 -0.88% -0.73% 56 C2_4_9 3910.90 1.00% 2809 -0.18% 0.69% 75
C1_4_10 7308.00 1.81% 2230 -6.47% -6.36% 58 C2_4_10 3786.00 1.62% 3183 -0.59% 1.31% 84

R1_4_1 10357.00 0.14% 2429 0.11% 0.71% 49 R2_4_1 7523.30 0.94% 2605 4.36% 7.56% 70
R1_4_2 9121.40 0.94% 2521 -1.49% -1.12% 54 R2_4_2 6488.40 1.33% 2917 8.31% 10.50% 90
R1_4_3 8198.50 1.29% 2425 -3.83% -3.35% 58 R2_4_3 5400.90 0.62% 3835 5.87% 8.35% 92
R1_4_4 7803.40 0.84% 2173 -6.02% -5.57% 60 R2_4_4 4223.40 0.49% 3465 2.89% 6.42% 98
R1_4_5 9314.40 0.98% 2244 -0.60% -0.16% 49 R2_4_5 6568.00 0.58% 2244 5.03% 7.14% 80
R1_4_6 8673.60 0.89% 2462 -2.86% -2.18% 54 R2_4_6 5848.70 0.98% 2588 3.95% 7.37% 93
R1_4_7 7956.00 1.51% 2446 -4.01% -3.32% 58 R2_4_7 4938.60 0.62% 3882 3.86% 5.57% 95
R1_4_8 7694.40 1.47% 2428 -5.25% -4.66% 62 R2_4_8 4011.00 0.32% 2787 3.75% 6.17% 100
R1_4_9 9026.60 0.85% 2243 -2.51% -2.25% 50 R2_4_9 6081.30 0.80% 2473 5.65% 7.03% 88
R1_4_10 8494.00 1.15% 2191 -3.79% -3.27% 52 R2_4_10 5675.70 1.12% 3242 4.59% 6.64% 94

RC1_4_1 8768.00 1.39% 2629 -1.81% -1.49% 48 RC2_4_1 6148.10 0.07% 1678 1.77% 3.10% 66
RC1_4_2 8276.50 0.62% 2210 -3.75% -3.37% 54 RC2_4_2 5407.50 0.01% 2133 2.69% 5.10% 79
RC1_4_3 7871.20 1.37% 2192 -3.59% -3.23% 59 RC2_4_3 4573.00 0.19% 2096 3.07% 5.06% 91
RC1_4_4 7635.50 1.35% 2468 -3.56% -3.22% 65 RC2_4_4 3606.10 0.23% 3369 2.71% 4.55% 99
RC1_4_5 8543.40 1.29% 2539 -3.52% -3.11% 47 RC2_4_5 5401.70 0.49% 2591 1.61% 3.46% 77
RC1_4_6 8491.40 1.94% 2509 -3.18% -2.68% 48 RC2_4_6 5342.10 0.24% 2368 2.00% 3.74% 72
RC1_4_7 8362.50 1.23% 2513 -3.88% -3.39% 49 RC2_4_7 5002.90 0.34% 2450 2.41% 4.60% 85
RC1_4_8 8235.20 1.16% 2498 -4.51% -3.92% 50 RC2_4_8 4712.50 0.34% 3008 3.61% 4.53% 88
RC1_4_9 8165.50 0.82% 2457 -4.34% -4.15% 52 RC2_4_9 4513.90 1.02% 2750 1.77% 5.40% 88
RC1_4_10 7998.20 1.05% 2514 -4.00% -3.69% 53 RC2_4_10 4284.20 0.68% 2919 3.08% 5.13% 93

Average 6410 0.81% 2354 -0.02% 1.24% 69

Table 26.: Comparison between ALNS BCP and ALNS 75K for the GH400 instances. The column ’Best’
denotes the best solution found by the ALNS BCP heuristic, x̄ is the average gap, comparing
with the column ’Best’. t̄ is the average time. For ALNS 75K xb denotes the gap between the
best found solution by ALNS BCP and ALNS 75k.

The table shows that ALNS 75K generally finds the best solution, and are better for the C1, R1
and RC1 instances, which could be explained by the difference in the travel times used throughout
the algorithm. ALNS BCP is however better for the C2, R2 and RC2 instances, and on average
finds solutions that are better than the ones found by ALNS 75K.

7.2.3 600 Customers

When solving the C1, R1 and RC1 instances with 600 customers, too many unique routes were
generated to consider them all in the set partitioning model, as CPLEX ran out of memory
when making the model. Therefore these instances have only been solved using ALNS Reloc.
Furthermore each of the instances have only been solved 5 times, due to the larger execution
time. The result is shown in table 27
For 17 of the 30 C2, R2 and RC2 instances ALNS Reloc finds the best solution, and have the best
average performance for 22 of these instances. This is most likely due to the set partitioning
problem getting too hard, thus not being able to find an improved solution. This makes the
algorithm return to the best found solution in the last part of the execution. When the number
of customers is increased, so is the solution space, and thus it could be that the algorithm re-
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7.2 gehring & homberger instances

BCP SPP ALNS BCP SPP ALNS
Best x̄ t̄ x̄ t̄ x̄ t̄ Best x̄ t̄ x̄ t̄ x̄ t̄

C1_6_1 14076.6 - - - - 0.00% 1557 C2_6_1 7752.20 0.01% 3242 0.08% 3176 0.49% 2736
C1_6_2 13960.5 - - - - 0.21% 1697 C2_6_2 7471.50 0.05% 3699 0.12% 3579 1.00% 2472
C1_6_3 14426.8 - - - - 1.06% 1641 C2_6_3 7337.30 1.07% 5173 1.07% 4565 1.11% 2783
C1_6_4 15069.0 - - - - 0.46% 1589 C2_6_4 7037.20 1.34% 6172 1.34% 5570 1.07% 2990
C1_6_5 14066.9 - - - - 0.00% 1698 C2_6_5 7616.00 0.38% 5420 0.44% 4938 1.92% 2176
C1_6_6 14120.8 - - - - 0.11% 1758 C2_6_6 7713.40 1.44% 4434 1.44% 3827 1.02% 2282
C1_6_7 14066.9 - - - - 0.72% 1665 C2_6_7 7888.60 1.67% 4279 1.67% 3676 0.48% 2642
C1_6_8 15111.0 - - - - 0.88% 1865 C2_6_8 7572.70 2.83% 4595 2.83% 3931 0.44% 2417
C1_6_9 14910.9 - - - - 1.25% 1745 C2_6_9 7624.10 2.03% 4920 2.03% 4167 1.34% 2542
C1_6_10 15071.8 - - - - 1.24% 1875 C2_6_10 7482.60 1.87% 5854 1.87% 5252 1.10% 2490

- - - -
R1_6_1 22087.4 - - - - 0.25% 2897 R2_6_1 15154.30 1.61% 5530 2.67% 4993 2.27% 5023
R1_6_2 19504.1 - - - - 0.41% 1780 R2_6_2 13256.40 1.10% 6602 1.10% 5906 0.59% 6168
R1_6_3 18151.8 - - - - 0.49% 1486 R2_6_3 10639.00 1.58% 5961 1.58% 5348 0.54% 5481
R1_6_4 17235.0 - - - - 0.67% 1353 R2_6_4 7991.30 0.90% 6540 0.90% 5916 0.59% 6120
R1_6_5 19850.6 - - - - 1.05% 1840 R2_6_5 14303.10 0.70% 5688 0.70% 5085 0.23% 4988
R1_6_6 18766.3 - - - - 0.50% 1575 R2_6_6 12290.60 0.80% 6092 0.80% 5489 0.25% 6543
R1_6_7 17944.2 - - - - 0.36% 1429 R2_6_7 10029.50 0.86% 6404 0.86% 5796 0.40% 6388
R1_6_8 17033.9 - - - - 1.40% 1389 R2_6_8 7620.00 0.97% 6500 0.97% 5892 0.48% 7204
R1_6_9 19209.3 - - - - 1.11% 1677 R2_6_9 13050.80 0.95% 5141 0.95% 4539 0.62% 4022
R1_6_10 18673.1 - - - - 0.66% 1518 R2_6_10 12223.80 1.19% 5353 1.19% 4750 0.36% 6606

- - - -
RC1_6_1 17822.0 - - - - 0.55% 2260 RC2_6_1 12187.80 1.01% 4730 1.01% 4106 0.37% 4158
RC1_6_2 17000.9 - - - - 0.40% 2399 RC2_6_2 10472.80 1.15% 5588 1.15% 4948 0.89% 5714
RC1_6_3 16535.3 - - - - 0.62% 2099 RC2_6_3 9018.70 0.77% 7479 0.77% 6877 0.42% 6579
RC1_6_4 16201.8 - - - - 0.84% 1952 RC2_6_4 7042.10 1.00% 8047 1.00% 7423 1.21% 6016
RC1_6_5 17741.9 - - - - 0.31% 2220 RC2_6_5 11252.50 1.44% 8543 1.44% 7941 0.42% 5077
RC1_6_6 17600.3 - - - - 0.49% 2099 RC2_6_6 11087.30 1.30% 6022 1.30% 5421 0.71% 4693
RC1_6_7 17286.0 - - - - 0.80% 1949 RC2_6_7 10513.40 1.07% 6941 1.07% 6339 0.31% 5221
RC1_6_8 17232.9 - - - - 0.43% 1656 RC2_6_8 9953.90 1.20% 7411 1.20% 6809 0.78% 6072
RC1_6_9 17141.4 - - - - 0.35% 1628 RC2_6_9 9558.30 1.23% 7686 1.23% 7085 1.60% 6154
RC1_6_10 17067.4 - - - - 0.70% 1562 RC2_6_10 9127.30 1.21% 7827 1.21% 7223 1.22% 6162

C1 0.59% 1709 C2 1.27% 4779 1.29% 4268 1.00% 2553
R1 0.69% 1694 R2 1.07% 5981 1.17% 5372 0.63% 5854
RC1 0.55% 1982 RC2 1.14% 7027 1.14% 6417 0.79% 5585
*1 0.61% 1795 *2 1.16% 5929 1.20% 5352 0.81% 4664
All 1.16% 5929 1.20% 5352 0.71% 3230

Table 27.: Solution statistics for every Gehring/Homberger data set with 600 customers for ALNS BCP,
ALNS SPP and ALNS Reloc. Best is the best solution found by one of the three algorithms,
x̄ is the average gap comparing with the best found solution. t̄ denotes the time, in seconds,
used. ALNS SPP and ALNS BCP failed to solve the C1, R1, RC1 instances due an out of
memory error when making the set partitioning models in CPLEX. Each instance were solved
5 times for each of the algorithms
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7.2 gehring & homberger instances

turns too often to the best found solution. Moreover, if the algorithm often returns to the best
solution the temperature is increased too much (due to the previously mentioned error when
reheating the temperature), which makes the algorithm more unpredictable and more random.
Table 28 shows how many times out of 5 the BCP heuristic improved the solution.

BCP Improvement
No Yes TLim Avg. % edges t̄

C2_6_1 5 0.20% 66.4
C2_6_2 2 3 0.21% 120.5
C2_6_3 5 5 0.46% 607.8
C2_6_4 5 5 0.64% 602.8
C2_6_5 2 3 2 0.24% 481.5
C2_6_6 5 5 0.38% 607.3
C2_6_7 5 5 0.46% 602.4
C2_6_8 5 5 0.46% 664.1
C2_6_9 5 5 0.48% 753.0
C2_6_10 5 5 0.56% 601.7
R2_6_1 3 2 3 0.34% 536.6
R2_6_2 5 5 0.47% 696.3
R2_6_3 5 5 0.64% 612.4
R2_6_4 5 5 0.75% 624.2
R2_6_5 5 5 0.47% 603.0
R2_6_6 5 5 0.62% 602.2
R2_6_7 5 5 0.75% 608.1
R2_6_8 5 5 0.74% 608.0
R2_6_9 5 5 0.47% 601.2
R2_6_10 5 5 0.58% 602.4
RC2_6_1 5 5 0.36% 623.8
RC2_6_2 5 5 0.46% 640.0
RC2_6_3 5 5 0.67% 602.4
RC2_6_4 5 5 0.72% 623.4
RC2_6_5 5 5 0.47% 602.8
RC2_6_6 5 5 0.45% 600.7
RC2_6_7 5 5 0.54% 601.5
RC2_6_8 5 5 0.64% 602.0
RC2_6_9 5 5 0.59% 600.9
RC2_6_10 5 5 0.62% 604.0

Table 28.: Overview of BCP performance for the GH600 instances. t̄ is the average time spent for the
BCP heuristic, in seconds.

From table table 28 it is clear that the BCP problems are getting too hard, to be solved within
10 minutes, and an improved solution is only found in 13 out of the 150 tests. That is despite
the fact that only 0.52% of the edges are considered on average.

Figure 14 shows how the run times scales with the number of customers. The data for ALNS
SPP and ALNS BCP with 600 customers are based on data only solving the instances with wide
time windows (C2, R2, RC2).
For the instances with 100, 200 and 400 customers the average run time scales linearly for the
ALNS SPP and ALNS BCP. Hereafter the set partitioning problems become significantly harder
as well as the ALNS run time almost triples, as can be seen from the ALNS Reloc graph. These
are the two main reasons for the drastic increase in the run time.
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Figure 14.: Average run times for ALNS Reloc, ALNS SPP, ALNS BCP for 100, 200, 400 and 600
customers. The dotted lines are based on data only solving half of the instances.
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8 C O N C L U S I O N

This thesis have considered the VRPTW, and have tested different matheuristic approaches used
within an Adaptive Large Neighbourhood Search algorithm. The results showed that combining
a set partitioning method and a Branch Cut & Price heuristic gave the best results.
The final algorithm considers all of the generated routes by solving a set partitioning problem

several times throughout the algorithm, and in the end a Branch Cut & Price heuristic is used as
a postoptimisation step. The algorithm solved all of the 100 customer Solomon instances with
an average best gap of 0.01%, and found the optimal solution for 49 out of the 56 instances, using
on average 110 seconds. The average gap were 0.11%. The algorithm were also tested on the
200, 400 and 600 customer Gehring and Homberger instances, and showed promising results for
the 200 customer instances, but the set partitioning and heuristic Branch Cut & Price methods
failed to find improvements within the timelimit for most of the 400 and 600 customer instances.

By considering all of the generated routes through a set partitioning problem, the average gap
for the 100 customer instances were more than halved, but incurred an additional 55% extra
time. When the number of customers grew larger CPLEX v12.1 (released 2009) were unable to
solve most of the problems within 100 seconds. This might be attributed to the larger number of
routes generated. However, when solving the 100 customer instances on another computer using
CPLEX version 12.4 the inclusion of the set partitioning approach only added 16.9% to the over-
all execution time, while maintaining the same overall quality of the solutions. Therefore I have
reason to believe that CPLEX has gotten alot better at solving set partitioning problems, which
would improve the solution quality of the larger instance as well as reduce the run times. The
developers of CPLEX, IBM, supports the fact that they have gotten better at solving general
MIP models since version 12.1 [16].
For the largest of the instances CPLEX ran out of memory when making the set partitioning

models, and hence a filtering on the routes is necessary. Such a filtering could be not to include
routes from solutions that, for example, are 20% worse than the current best solution. However
doing so, the decision to include a route is taken based on the full solution, and not the route
itself. Instead, dual information from the LP-solution to the set partitioning problem could be
extracted and used to calculate the reduced costs of a route. Doing so the decision can be based
on the actual routes and not the solution which it is a part of.
The results shows that the inclusion of the set partitioning method, improved the solution

considerably for most of the medium-large to large sized instances, while only incurring little
extra time. As many combinatorial optimisation problems can be formulated as a (generalised)
set partitioning/set cover problem, this result have wider applicability than just for the Vehicle
Routing Problems, and the set partitioning approach should be included in any metaheuristic
where the solution quality is the key factor.

The Branch Cut & Price heuristic were successfully used as a postoptimisation step for the
medium-large sized 100 customer instances, and also provided several improvements for the 200
customer instances. For the 400 and 600 customer instances there were little to no improvements
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conclusion

within the timelimit. However, the results proves the effectiveness of using Branch Cut & Price
in a mathheuristic manner for further optimising good solutions, for problems where the exact
methods are mature enough to efficiently solve the problems.
The Branch Cut & Price heuristic were applied solely as a postoptimisation step in the end of

the algorithm. An idea for further research could be to include it in the ALNS algorithm, and
feed any new feasible improved solution back to the ALNS algorithm. The ALNS heuristic could
then be used to further explore these new neighbourhoods and use Branch Cut & Price again
to possibly further improve any new best solutions found by ALNS. This way it would still be
used as a postoptimisation step, but would have greater interaction with the ALNS algorithm,
and thus the strength for both of these methods can be combined.

Most of the VRTPW heuristic approaches uses a prioritised evaluation function, first minimising
the number of vehicles and then the total travel distance. This thesis only minimises the total
travel distance. Thus making it hard to compare the described algorithm with the state-of-the
art. An idea for further work could be to change the evaluation function in order to compare
the algorithm with the best known solutions using the prioritised evaluation function.

The standard ALNS method were far slower than an ALNS 75K configuration of the algo-
rithm presented in [23], even though ALNS 75K executed three times as many iterations. When
developing the algorithm I have had a lot of focus on doing things the best way with respect
to computational cost, but I am sure there exists parts that can be optimised. For example,
whether or not a customer can be inserted into a route can be checked in constant time, instead
of going through the full route, as is done in the current version. Furthermore the current algo-
rithm runs sequentially, and could be updated to run in parallel to further utilise the power of
modern computers.

A 3Opt* local search neighbourhood, were tested and it improved the quality of the solutions
compared to using a more simple relocate neighbourhood. Though, the computational cost asso-
ciated with this 3Opt* neighbourhood were far too high. The 2Opt* neighbourhood is commonly
used as a local search method in state-of-the-art metaheuristic for the VRPTW, as described in
the recent VRPTW survey [9]. The 2Opt* neighbourhood is part of the 3Opt* neighbourhood.
An idea for further research could be to compare the 2Opt* neighbourhood with the 3Opt*
neighbourhood, both with respect to the quality of the solutions and the incurred time.

In the parameter tuning phase the randomness had a huge impact on the quality of solutions.
This might be attributed to the relative few number of times each instance were solved, and thus
each instance should have been solved more times to give a clear view of the performance for the
parameter value, and to even out the effect of the randomness. This was not done as time was
rather spent on developing, and testing new solution methods. However, the parameter values
still gave good results.
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A L I S T O F PA R A M E T E R S

Method Parameter Description Value Source
Construction

α1 Distance weight 1 [4]
α2 Time weight 0 [4]
µ Importance of savings in distance 0.9 [4]
λ Importance of distance to depot 0.75 [4]

Local Search
κ When to use Local Search(x) 4% Tuned

SA
w Setting Tstart 0.015 Tuned
ζ Cooling factor 0.9999 Tuned

Resetting Mechanism
γ When to Reset 5000 Tuned

Destroys
Max Removal Percentage

π Max Removal Percentage 35% Tuned
Worst Removal

pworst Probability factor 4 [19]
Shaw Removal

ϕ Distance weight 9 [29]
χ Time weight 3 [29]
ψ Demand weight 2 [29]
ω Same route weight 5 [29]
pshaw Probability factor 4 [30]

Exact Methods
Set partitioning problem

ρ When to the solve SPP model 2500 Tuned
Probabilities

θ1 Exact Insertion Probability 0% Tuned
θ2 Exact Destroy/Insertion probability 0% Tuned
θ3 SPInsert probaility 1% Tuned
θ4 SPInsert/Destroy probaility 0% Tuned

SPInsert & SPDestroy/Insert
k̂ Number of considered insert places 3 Ad hoc
Numrounds Number of generated solutions 50 Ad hoc
NumDestroys Number of destroys 10 Ad hoc

Branc cut & Price
z Number of best solutions used 10 Ad hoc
τ Max number of routes from LP-solution used 0.50 Ad hoc

Overall
σ1 New global best reward 33 [29]
σ2 Better current solution reward 9 [29]
σ3 New current solution reward 13 [29]
r Reaction factor 0,1 [29]
η Segmentsize 125 Tuned
ψ Noise Parameter 0% Tuned

Table 29.: List of Parameters. The value of a parameter is either tuned or found in the literature. Source
shows whether or not the parameter is tuned, and if not the source for the value.
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B A B R I E F N O T E O N R E H E AT I N G

As briefly noted in chapter 7, the reheating did not work as intended, this brief note explains
what was actually done instead.
Let T̂ denote the temperature when the best solution was found. When reheating it was the
intention that the temperature should be reheated to 5% above this temperature

T ← T̂ · 1.05

What was actually done was to remember which iteration the best solution were updated, and
then use this to set the temperature.
Let i denote the current iteration, B the iteration in which the best solution were found, and ζ
the cooling factor. The temperature have been cooled by ζ, i−B times and hence,

T ← T

ζi−B
· 1.05 (9)

would set the correct temperature the first time the temperature is reheated. However this does
not work if the best solution is not updated before reheating again, as it assumes that the only
impact on the temperature is the cooling effect. This is not the case as the temperature has
been reheated.

Figure 15 illustrates what happens when reheating the temperature. Consider a not so ex-
treme case where the best solution is obtained in iteration 14000, which is illustrated by the red
vertical line. The dotted curves illustrates what the temperature would have been considering
the temperature now and then tracking backwards as described by eq. (9).
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Figure 15.: Illustration of how the reheating works.

In the figure the temperature, when reheating, is set to the previous curves value at iteration
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14000 (without adding the extra five percent). If the best solution is found in the beginning of
the algorithm, the temperature changes are obviously more extreme, thus leading to the extreme
change shown in fig. 13, shown on 56.
This error was revealed too late in order to rerun all the results. In order to have the results in
chapter 7 based on the same algorithm, the results for the Solomon instances were not changed
to how it would have looked if the reheating was implemented correctly. However the overall
results for ALNS SPP on the Solomon instances, with the correct reheating, is shown in table
30.

Best Solution Average Solution Optimals
x̄ max x x̄ max x Total Instances

ALNS SPP 0.03% 0.54% 0.13% 0.74% 353 42
ALNS SPP correct reheat 0.05% 0.48% 0.16% 1.77% 366 44

Table 30.: Comparison between ALNS SPP and ALNS SPP with the correct reheating of the algorithm
for the Solomon instances. x̄ denotes the average gap and max x is the worst achieved solution
both when considering the best solution, or the average solution. The Optimal columns
denotes how many optimal solutions were found, and for how many instances the algorithm
found an optimal solution.

The small differences shown in table 30 can be explained by the random factor, and if anything
the old, faulty, way of reheating is best.

Figure 16 shows the development of the algorithm, with the reheating fixed. The figure almost
shows the same picture as fig. 13 on page 56, but without the drastic jumps in the temperature.
In the end of the algorithm fewer routes are added to the set partitioning problem, and the
Greedy insertion and Worst removal still has a comeback, but not a big as before. For the
figure showing the gap, there is not any noticeable difference compared to before.

For the Solomon instances the best obtained solution were on average found in iteration 11500,
leading to the extreme case shown in fig. 13a. For the Gehring & Homberger instances with 200
customers the best obtained solution were on average found in iteration 12200 thus a similar
steep increase in the temperature is expected for those instances. However, for the Gehring &
Homberger instances with 400 customers the best obtained solution were on average found in
iteration 17700, and the impact is thus expected to be less, and even less for the Gehring &
Homberger instances with 600 customers as the best obtained solution on average were found
in iteration 20500.

70



a brief note on reheating

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000
0

5

10

15

20

25

Iteration

T
em

p
er
a
tu
re

Temperature

(a) The temperature throughout the algorithm.
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Figure 16.: Detailed illustration of the development of the algorithm, with the reheating fixed.
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C L E A R N I N G O B J E C T I V E S

DTU’s Study handbook defines the following general Learning Objectives for a master thesis.1

An MSc from DTU:

• Can identify and reflect on technical scientific issues and understand the interaction be-
tween the various components that make up an issue

• Can, on the basis of a clear academic profile, apply elements of current research at inter-
national level to develop ideas and solve problems

• Masters technical scientific methodologies, theories and tools, and has the capacity take
a holistic view of and delimit a complex, open issue, see it in a broader academic and
societal perspective and, on this basis, propose a variety of possible actions

• Can, via analysis and modelling, develop relevant models, systems and processes for solving
technological problems

• Can communicate and mediate research-based knowledge both orally and in writing

• Is familiar with and can seek out leading international research within his/her specialist
area.

• Can work independently and reflect on own learning, academic development and speciali-
sation

• Masters technical problem-solving at a high level through project work, and has the capac-
ity to work with and manage all phases of a project - including preparation of timetables,
design, solution and documentation

1 See http://shb.dtu.dk/Default.aspx?documentid=3200&Language=en-GB&lg=&version=2013/2014, section 11.
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