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Abstract
This project surveys the current field of argumentation mining and investigates the methods
proposed by Raquel Mochales Palau and Marie-Francine Moens in [53]. The survey describes
many of the modern methods used, together with models and representations of arguments in
computers and some philosophical aspects of argumentation theory.

In [53] they use a machine learning system to detect argumentative propositions in texts. The
motivation for this method is questioned, as most propositions seems to be argumentative in
some context. The method is implemented and tested, although the method of testing is differ-
ent from that of [53] as the original data is unavailable, making the exact experiments of [53]
impossible to reproduce. The method was capable of selecting similar samples from unlabelled
text-sources, and could potentially help increase the size of the used database.

A different system created in [53] detects argumentative structures by using a context-free gram-
mar. An alternative to this system is created here, where a textual entailment approach is used
to detect entailment between claims and premises. It uses machine learning methods together
with the same features as the argumentative proposition detection system mentioned above. The
learning schemes tested were logistic regression, linear SVM and radial basis function SVM. For
improving performance, sample-normalization, feature-scaling, outlier detection and removal,
and feature reduction were tested as preprocessing. Furthermore the well-known Word2Vec and
Doc2Vec schemes were used to create an alternative feature-space. The best-performing system
found was a stacking ensemble, which used a logistic regression classifier to post-process the
outputs of 11 other classifiers. This ensemble was capable of detecting premise-claim links with
an F1-score of 68% and accuracy of 73%. This performance is comparable to the one from [53].
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Chapter 1

Introduction
The intentions with this project was to survey the current field of argument mining, and investi-
gate the use and possible improvements of one of the systems used today. Argument mining is the
use of computers for automatically detecting arguments in text. The field encompass elements
from natural language processing and machine learning, together with some more philosophical
aspects in argument theory, which analyses arguments and their use. Chapter 2 describes the
related work done within argumentation mining as well as describing some theories on argumen-
tation.

The investigative part of the project focus of the work of [53]. This article takes on several tasks,
two of which this report will also analyse. The first task is to detect argumentative elements in
pre-segmented text. For this system, [53] suggests some features derived from paragraphs, which
machine learning algorithms use to detect argumentative elements. This method is discussed
and tested here, although, due to changes made in the related database, the method is investi-
gated slightly differently. The other task is the detection of argumentative structures, which is
handled by detecting links between argumentative premises and conclusions in a bipartite graph.
For this task [53] uses a grammar. Instead of the grammar, this project investigates the use of
the same features as used for the previous task to detect the links with machine learning tech-
niques. Various methods will be used to improve the classification task, including normalizations
of the data, feature reduction, outlier removal and a simple ensemble method. Furthermore the
Word2Vec (vector representations of words[42]) and Doc2Vec (vector representations of texts
[37]) methodologies are tested for making alternative features for detecting arguments.

The data used by [53] is the Araucaria Database. This database does not exist in the same state
as used previously. The database was found with only the arguments (not their origins). This
limits the possibility of reproducing the results of [53], as the origins of the arguments are needed
to test detection of arguments. In order to handle this the problems are defined differently. Also
some additional data was gathered from online sites, where some of the sites are believed to be
the origins of some the the Araucaria arguments.
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Chapter 2

Argumentation Mining
Survey

2.1 Related Work

Below is a summary of the many approaches and efforts related to the field of automatic argu-
mentation analysis or computational argumentation, which argumentation mining (AM) is part
of. The first part is a description of the different fields that argumentation mining is currently
being applied to (or attempted to be applied to), followed by a section on the progress made
within argumentation mining.

2.1.1 Domains

Legal Domain

Argumentation mining has had a lot of scientific attention in the last two decades. Much of
the attention have focussed on analysing arguments in legal texts. There are several reasons for
using legal texts: they are typically publicly accessible, they are well structured and consistent
in language and phrasing, they are sorted within topics and cases, and there is a large com-
mercial interest. The usages for argumentation mining in the legal sector includes filtering and
searching through legal documents. As legal reasoning is complicated and often requires digging
into similar cases of the past, an information retrieval system that can detect specific arguments
could be very valuable. [46] made some important progress in detecting argumentative sentences
and classifying these sentences into being premises or claims. They use the Araucaria Database
[65], which was intended for the development of automatic argument analysis, and later ([53])
use documents from the European Court of Human Rights [25]. [4] further motivates the use of
argumentation mining in legal texts to improve information retrieval. [3] wants to use argumen-
tation analysis to detect Almost Identical Expressions (AIE) in legal texts, which is important
for the understanding and correct interpretation of laws.

Online Community

Another domain for argumentation mining is the vast amount of online data, such as social
networks, debate forums, new sites etc. The amount of textual data online is increasing and can
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Argumentation Mining Survey Related Work

at times be overwhelming. A very useful purpose for AM would be to summarize debates with
all arguments for and against some claim, filter out irrelevant comments and search through
sites to find specific arguments one is interested in. Such systems could heavily improve the
online debating environment and the data is readily available, although a big obstacle with
such data is the inconsistency in language and grammar, which is a big challenge for the field.
[16] has worked with online data from Procon.org [54] and Idebate.org [6]. From these two sites
they gathered arguments and comments for and against two topics: the legalization of gay
marriage and the inclusion of God in the American Pledge of Allegiance. They stored these
in the ComArg database, which is available online [15]. The choice of debates was motivated
by ”...[they have a] larger-than-average number of comments (above 300) and are well-balanced
between pro and con stances”. [19] used Debatepedia[5] to collect a database which they also made
available online through [20]. Debatepedia lets users place pro- and con-comments, and thus
creates an user-tagged dataset. [22] motivates the use of AM on online content, by addressing its
usefulness with Quaestio-it [41], which is an online platform for visualizing argumentation graphs.
Automatic extraction of arguments could convert plain text into such graphs, using systems such
as Quaestio-it, to give users an overview of the subject. [29] and [30] have made a lot of work
on the argumentation-theoretical perspective. They determine that different argumentation
theories and representations should be applied to different situations and domains on the web,
as no theory or representation is sufficiently efficient and broad to cover them all. Furthermore
they create a dataset from various sources within the educational domain, which is available
online [31].

Other Domains

Others have worked on argumentation mining within the scientific community, with one goal
being the automatic extraction of arguments in scientific articles. [71] has made some theoretical
progress in modelling scientific argumentation, and using these to determine the implicit inten-
tions of scientific authors. [27] has worked on a corpus of argumentation in biomedical genetics
research articles. [12] works on using arguments to enable computers to understand motives,
intentions and reasoning of characters in stories.

Finally the field of artificial intelligence has shown an interest in argument modelling, as a
communications tool for multi-agent systems. In these systems the agents have different and
limited knowledge about the world, and communicate to make collective decisions. The artificial
intelligence perspective does not handle human arguments, as in argumentation mining, but has
made a lot of progress in the modelling of arguments and in the combination of different agents’
knowledge. [7] works with collective rationality, in which a group has to make the best possible
collective decision. As they each come with different knowledge they can use argumentation-
schemes to combine knowledge and make a rational decision. [73] works with strategies for the
individual agent, who can persuade other agents by tactically weakening the others arguments
for decisions. [24] uses argumentation for multi-agent negotiation, in which the individuals have
their own utilities that can be collectively maximized.

Databases

In the survey of this project, some databases were found available online. An overview of these
databases are found in appendix A.5 and include:

1. Araucaria

2. ComArg

3. NoDE

4. Habernal 2015

5. RTE-7
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Representation and Usage

One notable effort made towards argumentation mining is the development of the Argument
Interchange Format by [23]. This format has set a standard for how to represent arguments in
computers, and is important for the distribution of relevant datasets. This format was intended
to be flexible enough for all situations, while maintaining some common definitions. [29] discuss
the various abstract models and annotation schemes for arguments and concludes that no single
representation will suffice for all online content. They do although recommend two annotation
models; Toulmin’s model and a Claim-Premises scheme, and argue the benefits of the two. [1]
takes the abstract argumentation models and AIF format into a more practical setting and de-
signs a Relational Argument DataBase (RADB).

Others have worked with specific situations in argumentation. [2] investigates modelling and
detection of counter arguments through a case study. [17] takes argumentation mining into a
dialogue domain, instead of written documents which is the norm of the field. This creates ad-
ditional challenges due to the amount of implicit information in dialogue. [9] works on including
the uncertainty specifications in natural language into argumentation representations in com-
puters (for example the words ”definitely” and ”possible” indicates different levels of certainty
in an argument). [33] analyses algorithms for analysing argumentation graphs, and so prepares
the ”goal” of argumentation mining while motivating the field by identifying possibilities.

2.1.2 Argumentation Mining

Argumentation Mining

Argumentation mining largely consists of two tasks: extracting the atomic elements of arguments
(claims and premises) and connecting the components to create argumentation structures. The
first part is in some cases divided further into two parts: 1 delimiting sentences/proposi-
tions and 2 classifying the resulting elements into being argumentative or not and possibly
into premises/claims. Likewise the structure-creation is sometimes done by first 3 linking the
atomic elements into individual arguments and then 4 linking these arguments depending on
whether they support or attack each other. Figure 2.1 illustrates this process.

Figure 2.1: Main tasks/process of argumentation mining. Some steps
are merged in some systems.

In [40] various machine-learning methods and features used for argumentation mining are in-
vestigated. One important conclusion drawn here, is that most work focus on selecting clever
features rather than customizing machine-learning methods (off-the-shelf implementation are
usually used). They thus promote a larger focus on implementing specific machine-learning
methods for the purpose. Some of the methods that have been tried are Naive Bayes, Support
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Argumentation Mining Survey Related Work

Vector Machine, Maximum Entropy, Logistic Regression, Decision Trees and Random Forests.

A system started by [46] and developed since through [53], [44] and [45], made large progress
in argumentation mining. They first detected argumentation elements using an entropy maxi-
mization classifier, with accuracy of about 73%. The features they chose were:

• Unigrams, bigrams and trigrams

• Part-Of-Speech tagged: adverbs, verbs and modal auxiliaries

• Word couples (any pair of two words in same segment)

• Text statistics: sentence length, average word length and number of punctuation marks

• Sequence of punctuation marks

• Key words and phrases characteristic to argumentation developed by [35]

• Parse features: depth of parse-tree and number of subclauses in tree

A second system detects the argumentative role (premise or claim) of each proposition using an
entropy-maximisation and SVM combination. They maintain an F1-score of 74%. They also
compare the last method with a context-free grammar, which produces an F1-score of 67%. Fi-
nally they create a system to detect argumentative structures, which performs with an F1-score
of 60%.

This system is modified in [48] by creating a topic model and removing topic-related words. This
leaves argumentation-related words back, which reduces the dimensionality of the problem. On
the structural aspect they use a parser to detect the main subject and main verb in a sentence
and use these pairs as features (ex. ”I.think” and ”view.be” from sentences ”I think that ...”
and ”My view is that ...”).

The argumentation mining problem is sometimes cast into a Textual Entailment problem, as
done in [19]. Textual entailment is defined as a relation between a hypothesis and a text. Entail-
ment holds if the hypothesis can be inferred from the text. A textual entailment system detects
such a relation between the text and the hypothesis or a contradiction between the text and the
hypothesis. Given a claim, textual entailment therefore represents a ”guided” argumentation
mining, aimed and proving/disproving a specific claim instead of detecting all arguments. This
version of argumentation mining is similar to opinion mining. [16] uses textual entailment, tex-
tual text similarity and stance alignment for a five-class classifier. The classes are (1) explicit
attacking arguments, (2) implicit attacking arguments, (3) indifferent propositions, (4) implicit
supporting arguments and (5) explicit supporting arguments in text. They have an accuracy of
70.5% to 81.8% depending on problem formulation.

Instead of relying on parsers for segmentation, [36] investigates a machine learning approach to
argument mining. Their system segments the text, then classify propositions as argumentative
or not, after which it connects the propositions into argument structures. They use two Bayes
classifiers to detect the starting word of a propositions and the ending word of a proposition, with
fairly simple features. They compute a topic model and uses the distance between propositions
in the topic space as a basis for detecting argumentative structure. Those propositions that are
not connected into any structure are afterwards sorted out and considered non-argumentative.

10



Argumentation Mining Survey Argumentation

2.2 Argumentation

Argumentation is an important part of human communication and is constantly used in web
debates, social forums, for legal matters, in educational systems, academia, social life, politics,
democracy etc. As previously outlined, the automatic analysis of human argumentation is es-
pecially being research with respect to legal documents and debates (like [4], [53], [46]), as well
as online, user-generated contents (such as [16], [18], [22], [29])

Computational-argumentation has also created interest in the field of artificial intelligence and
multi-agent systems ([51]). Here argumentation can be used for agents to agree on solutions and
understanding other agents rationale. Using argumentation as a communicative tool in multi-
agent systems is a big field of research and has an collaborative, university arranged annual
workshop ([62]).

This section describes various approaches to analysing arguments. First a brief description of
argumentation theory is made, which is the philosophical approach to analysing arguments.
These create the foundation and motivation for analysing arguments with computers. The next
section is on argumentation mining, which is the focus of this project.

An brief overview of logic related to argumentation is found in chapter 3.

2.2.1 Argumentation Theory

Argumentation theory is an interdisciplinary field, analysing the way in which conclusions are
made from logical reasoning. It is studied within politics, philosophy, science, mathematics,
computer science as well as other fields. The philosophical perspective on argumentation is the
cornerstone of the modern tools and abstract models used to represent and analyse arguments,
whether manually or by computers. These studies typically start by defining argumentation,
creating various definitions depending on context and formality. Some definitions are fairly
broad in an attempt to contain all possible versions of argumentation, which is useful when
building systems aimed at analysing any argument. [76] defines argumentation as follows:

Argumentation is a verbal, social, and rational activity aimed at convincing a rea-
sonable critic of the acceptability of a standpoint by putting forward a constellation of
propositions justifying or refuting the proposition expressed in the standpoint.

This definition above is used here, with the exception that verbal is broadened to include any
sort of communication: verbal, written, symbolic etc. There are a few important aspects of this
definition. First of all argumentation is a way of communicating. Also it is a social construct
requiring multiple agents (due to the usage of argumentation systems in artificially intelligent
multi-agent systems, we don’t restrict the social interactions to be between people). Argumenta-
tion is also a rational activity, where the agents use rationale and logic in their communication,
which excludes other communicative ways of affecting opinions, such as seduction, various rhetor-
ical methods and emotional persuasion. It also requires the listening agents to use rationale to
understand the arguments. Finally it consists of some kind of standpoint, along with various
supporting or refuting propositions.
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Components of Argumentation

Figure 2.2: Graphical representa-
tion of an argument.

To analyse arguments, we first need to define the com-
ponents of argumentation. The following definitions are
inspired by [11]:

Argument: An argument is composed by a set of
premises and a claim, where the claim can be logi-
cally drawn through deductive reasoning from the
premises.

Deduction: Deductive reasoning is the process where
a claim is logically true, given a set of premises
(if the premises are true, then the claim must be
true).

Claim: The conclusion of an argument. Also called
the consequent.

Premis A proposition used to support a claim.

Support: The support of an argument is the set of premises used to deduce the claim. Also
called the justification.

Proponent: The agent making the argument, advocating and defending the claim.

Audience: The recipients of the argument, who will decide whether to believe the argument
or not (and possibly argue against the claim).

In human argumentation probability is typically an important aspect. The logical analysis is
therefore often augmented by probabilities and uncertainties.

Interaction of Arguments

Argumentation is also defined by [11], but with more focus on argumentation being the process
by which arguments and counterarguments are constructed and handled. Here handled means
evaluating the arguments and judging their justification and truthfulness. In this context, mul-
tiple arguments are used with and against each other. The following constructs describe the
relationships between multiple arguments (classical logic used to assist descriptions):

Contradiction: One statement contradicts another statement if and only if, they are mutually
inconsistent. This happens if one claims is equal to another claim negated (claims a and
 a are contradicting), but also if a set of claims can deduce the negation of another claim
( a contradicts b, bÑ a).

Counterargument: A counterargument appears when the claim of one argument contradicts
a proposition (claim or premise) of another argument. There are two types of counterar-
guments: rebutting arguments and undercutting arguments.

Rebutting Argument: A rebutting argument is a counterargument, where the argument’s
claim contradicts another arguments claim. Example: a, aÑ b rebuts c, cÑ  b.

Undercutting Argument: An undercutting argument is a counterargument, where the ar-
gument’s claim contradicts a premise of another argument. Example: a, a Ñ  c is an
undercutting argument for c, cÑ b.
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Toulmins Argumentation Layout Model

To represent argumentation within a computer, an abstract model of arguments and their in-
teractions is needed. [75] was early in creating an abstract model of argumentation, and many
uses his theories as a foundation for models used in computer science. These abstract models
for arguments can be represented as directed graphs. Some of the philosophical models of argu-
mentation is motivated by the manual, practical analysis of argumentation and the models used
in computers are commonly more generalized version of the philosophical ones.

Toulmin also based his model on a claim (or qualified claim), which is the conclusion of an
argument. The support/premises is split into two:

Support: Pieces of information. Also known as evidence, proof, data, grounds, etc. In logic,
the Toulmin support would be of the form a, b, c.

Warrant: The part of the argument that links the support to the claim. They can be rep-
resented as rules. In logic these look like a Ñ b, c Ñ d, e Ñ  f . Toulmin emphasises
that warrants may be implicit. For example ”He committed the crime, therefore he must
be punished.” This argument contains an implicit warrant that people who commit crimes
should be punished. The support is that he committed the crime and the claim that he
should be punished.

Furthermore Toulmin introduces two other concepts to argumentation-structures:

Backing: Any statement that supports a warrant.

Qualifier: A word that emphasizes the strength of a statement. Argument structures can be
represented as logic, but in actual argumentation, arguments are typically not absolute.
Rather argumentation includes a lot of probability. Qualifiers are words like ”definitely”,
”always” and ”sometimes”, which indicates the degree of confidence in a proposition. In
a more scientific setting, qualifiers could for example be actual probabilities derived from
empirical evidence. This inclusion of probability could be a motivation for using fuzzy
logic when representing argumentation.

Figure 2.3: Toulmin’s argumentation model. The structure is recur-
sive, as the rebuttals and claims are arguments themselves.

In Toulmin’s view, there are four different basic argument structures: A simple argument is a
standalone argument for a claim (the base case). Subordinatively compound argumenta-
tion occurs when a chain of arguments supports each other and finally the claim. When several
arguments has the same claim, they can either be arranged in Coordinatively compound
argumentation, which is when each of the arguments depend on each other. In this case the
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arguments could be collected to one argument, as none of the arguments can stand alone. The
other arrangement is Multiple argumentation, where multiple standalone arguments have
the same claim. This is a stronger way of arguing, as each of the arguments are valid without
the others, and multiple counterarguments will therefore be needed to rebut.

Generic Argumentation Layout Model

The theories of Toulmin were philosophically motivated, as opposed to models used in computers.
If claims are broadened, so that claims and premises includes both logical literals (like a and
 b) and logical statements (such as a Ñ b), then a warrant together with its backing becomes
an argument itself. The same goes for rebuttals together with any support they may have. This
creates a generic model for argumentation structures, which creates a recursive, directed graph.
In this representation, any collection of premises which logically deduces a claim will, together
with the claim, compose an argument. If we have two rebutting arguments, these two will have
the same claim, but with a negation. This could create two distinct graphs, as there may be
no shared propositions in the graphs. In argumentation one would often want to analyse all
arguments for and against some claim. Thus a useful representation would be one where every
argument contain a set of premises, a claim and an identifier for whether the argument rebuts
or supports the claim (two different types of edges). This would connect all related arguments
in one directed graph, which can be recursively illustrated as:

Figure 2.4: Generic argumentation layout model, with examples ex-
pressed in logic. Arguments can have more than two premises and any
claim can be a premise of another argument.

It is natural to represent an argument with a directed graph, as the premises can deduce the
claim, while the claim can not deduce the premises. From the above illustration, one might infer
that the representation is a tree. An argumentation structure could though be created, where
repeated arguments creates a cycle, so that a chain of arguments from a set of premises ends up
creating one or more of the same premises. This creates a so-called circular argument, which is
often considered a logical fallacy ([10]). Unless some self-reinforcing / positive feedback loop is
needed in the argumentative representation, it may therefore be wise to keep the representation
as a tree. If special cases of needed circular reasoning arise then one could expand the model at
that time.

Another important aspect of the model is what set of premises to allow in an argument. In human
argumentation one might find arguments with multiple premises, for which several subsets of
the premises can entail the claim. Although this may be the way the arguments are presented
in language, it may create a cluttered representation. For example undercutting arguments
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may not be sufficient counterarguments, as they may only reject a subset of the premises. An
alternative is to restrict arguments to only contain a minimal set of premises, that entails the
claim. This is illustrated below:

(a) Example of an argument, which is a
conjunction of two minimal arguments.

(b) Example of two minimal arguments,
which together composes the same infor-
mation as the conjunctive version.

Figure 2.5

The disjunct representation does not cause need for storing more premises, as the two arguments
can refer to some of the same premises.

A final possible restriction to the modelling of arguments, would be to only allow one instance
of each argument: that is, not store two or more arguments using the same premises and claim,
even if they are made multiple times in the source of the arguments.

Combining two logical expression produce a conjunction of the two expressions (combining a with
b creates a^ b). Conjunction therefore compose the natural limits of given pieces information in
argumentation. For an argument to be useful, it generally requires at least one conjunction (at
least two logical expressions separated by ^) in order to produce new information. For much of
the work in argumentation mining this restriction is ignored, as detecting multiple premises for
one claim allows the programmer to later combine pieces of information into complete arguments.

2.2.2 Argument Interchange Format (AIF)

The initial specifications of an argument interchange format was proposed in [23]. The format
was developed to be a unified abstract model for arguments, which could efficiently be processed
by machines. AIF introduces a standard for three main concepts: argumentation representa-
tion, communication of arguments and description of argument context. The argumentation
representation is the most relevant aspect to this report, and is thus briefly described here.

AIF represents arguments and their interactions with a directed graph, which they name an
Argument Network (AN). An AN is not restricted to be a-cyclic or the like, as the framework is
meant to be very flexible and restrictions can be introduce for specific situations. An AN contains
two types of nodes. An information node or I-node relates to content and represent claims
and premises. A Scheme node or S-node represents argumentation schemes and reasoning.
They connect I-nodes (and other S-nodes) to assert the kind of reasoning used. Scheme nodes
are further divided into three kinds:

RA-node RA-nodes represents an inference scheme. Inference is when a conclusion is reached
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on the basis of evidence and reasoning.

PA-node PR-nodes represents preference schemes. A preference scheme is when the proponent
concludes that one situation is preferable over another. The preference may be implicit.

CA-node CA-nodes are conflict application nodes. They are used to connect arguments whose
claims conflict.

AIF also proposes some standard attributes to nodes, such as title, creation date, type etc.
Although the specific implementation can use any attributes wanted.

In [13]’s analysis of AIF they define AN mathematically as:

Definition 2.1. An AIF argument graph G is a simple digraph pV,Eq where:

• V “ I ∪ RA ∪ CA ∪ PA is the set of nodes in G, where I and the I-nodes, RA are the
RA-nodes, CA are the CA-nodes and PA are the PA-nodes; and

• E Ď pV ˆ V qzpI ˆ Iq is the set of the edges in G; and

• if v P V zI then v has at least one direct predecessor and one direct successor.

�

[23] also defines the semantics of edges between any types of nodes. For example RA-node with
I-nodes as parents uses premises to apply reason, while a CA-node having RA-nodes as parents
notes a conflict of reasoning.

2.2.3 Argument Representation in This Project

This project focus on two tasks:

Ñ Detection of Argumentative Elements Corresponding to task 2 in
figure 2.1.

Ñ Detection of Links Between Premises
and Claims

Corresponding to task 3 in
figure 2.1, with the modification
that premises and claims have
been classified/separated.

The first task is a classification of text-segments and thus uses no particular representation of
arguments. The seconds task creates argumentation graphs represented very simplistically in
the project. A bipartite graph is created with a premise/claim bisection (a text segment can
appear as two nodes, one in each section). A link between two nodes in the bipartite graph notes
a textual entailment relationship between the premise and the claim; the claim can be backed up
up by the premise. Complex argument-structures are represented when a text segment appears
in two nodes, one in each section, and there are edges adjacent to both nodes.
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Chapter 3

Theory
The following describes in detail the different methods, schemes, theories and terminology rele-
vant to the project.

3.1 Logic

When describing arguments it is useful to use logical terminology and notation. The following
describes some basic components of propositional logic, which can be further elaborated in [49].
A proposition or logical statement is a sentence or statement which is either true or false.
These exist in three forms: atoms, literals and compound propositions:

Atom An atom is a single piece of information. For example: ”Socrates is a man” and ”All
men are mortal”. In logical notation these are represented by a single letter or word, for
example: a, α and word.

Literal A literal is an atom or a negated atom. Notation-wise negation is represented by  .
Thus examples of literals are: a,  α and  word.

Compound Propositions Any collection of literals separated by logical operators are com-
pound propositions. ”Socrates is a man and all men are mortal” is therefore a compound
proposition, which in notation could be represented as a^ b.

A logical operator is a function on logical values, that produces another logical value dependent
on the input. Table 3.1 shows a collection of common propositional operators.

Table 3.1: Logical Operators.

Operator Short name Symbol

Conjunction and ^

Disjunction or _

Negation / denial non / not  

Implication implies / only-if Ñ

Reverse implication if Ð

Double implication if-and-only-if / iff Ø

Exclusive disjunction exclusive or / xor ‘
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Entailment occurs when one proposition s follows logically from a logical sentence S. s is here
called a logical consequence of S. This is noted as

S |ù s, (1)

which means s is true whenever S is true.

A logical clause is any proposition of the form

A1 _A2 _ ..._An Ð B1 ^B2 ^ ...^Bm. (2)

This can be considered a rule where, if all the propositions on the right (All B’s) are true, then
at least one proposition on the left (one A) must be true. A special case of a clause is the
definite clause, where there is only one A

AÐ B1 ^B2 ^ ...^Bm. (3)

The definite clause is relevant to argumentation mining, because it represents the structure of a
typical argument: if a certain set of premises are true then the arguments claim must be true.

A clause can be rewritten to a form consisting exclusively of a disjunction of literals:

A1 _ ..._An Ð B1 ^ ...^Bm ùñ A1 _ ..._An _ B1 _ ..._ Bm (4)

AÐ B1 ^B2 ^ ...^Bm ùñ A_ B1 _ B2 _ ..._ Bm (5)

This makes it useful to consider clauses as being sets of literals, that are implicitly joined by
disjunction. This leads to two equations, which are identical across two notations

C “ L1 _ L2 _ ..._ Ln “

n
ł

i“1

Li
notation
ðùùùñ C “ tL1, L2, ..., Lnu “

n
ď

i“1

Li. (6)

A tautology is a proposition which is true in every interpretation (always true). An example is

aÑ a, (7)

which is true irrelevantly of the value of a.

An inconsistency or contradiction is a compound proposition which can not be true. An
example is

a^ a. (8)
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3.2 Additional Notation

3.2.1 Sets

As set-theory compliments logic, the following set symbols and operators are commonly used in
argument analysis (and other mathematical/computational projects):

H The empty set
Z The set of integers
Z` “ N The set of positive inters (natural numbers)
Z˚ The set of positive inters and zero
Z´ The set of negative inters
R The set of rational numbers
Ă Proper subset
Ď Subset
P Element in set
∩ Set intersection
∪ Set union

3.2.2 Strings

String-notation is used to mathematically work with strings. ε represents the empty string and
q denotes concatenation (A q B is the resulting string found from concatenating A and B).

The Kleene star and Kleene plus are useful both in logic and grammars, but also due to their
importance in regular expressions.

Definition 3.1. The Kleene star ˚, also called the free monoid, is a unary operator on sets of
strings, which is recursively defined as

V0 “ tεu

Vi “ tw q v | w P Vi´1, v P V u i P N

V ˚ “
ď

iPZ˚

Vi.

The Kleene star can be expressed as a ”zero or more”-set. �

Definition 3.2. The Kleene plus `, is a unary operator on sets of strings, which is recursively
defined as

V1 “ tv|v P V u

Vi “ tw q v | w P Vi´1, v P V u i P Nzt1u

V ` “
ď

iPZ`

Vi.

The Kleene plus can be expressed as a ”one or more”-set and can alternatively be defined as

V ` “ V ˚ztεu. (9)

�
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3.3 Grammars

For a computer scientist, a formal language is a set of strings and symbols constrained by
specified rules. Meaning can often be derived from sentences from the language, but it is not
required by the formal definition. The alphabet of a language is the set of symbols, letters, or
tokens from which the strings of the language may be formed. The alphabet is usually finite. A
grammar is an exact finite recipe for constructing any sentence in a language, and so describes
all constraints of the language. As sentences can be constructed from the grammar, they are
said to be generative. Languages and grammars are used for many purposes, like for exam-
ple defining the syntax and structure of programming languages. [28] was used for inspiration
to the following descriptions and is recommended for learning more about grammars and parsing.

The building blocks for grammars are production rules, which can be logically written in the
following as

A -> B

A -> C.

The rules state that token A can be replaced by either B or C.

In a frequently used and more compact notation the two rules are replaced by

A -> B | C,

where | here indicates alternatives in the rule. Furthermore a grammar contains terminal sym-
bols and non-terminal symbols. Terminal symbols are the final symbols that compose the
sentences of the language, while non-terminal symbols are intermediate symbols used for the
construction.

The formal definition for a generative grammar is now:

Definition 3.3. A generative grammar is a 4-tuple pVN , VT , R, Sq such that:

1. VN is a finite set of symbols called the non-terminal symbols.

2. VT is a finite set of symbols called the terminal symbols.

3. VN ∩ VT “ Ø

4. R is the rules and is a set of pairs pP,Qq such that P P pVN ∪ VT q` and Q P pVN ∪ VT q˚

5. S P VN

�

S is a non-terminal symbol, which is the starting-point of a sentence-generation. Thus to gen-
erate a sentence, one starts with S and uses rules to go from there to the wanted terminals. A
correctly created sentence contains only non-terminals.

An example grammar is (inspired by [28]):

VN : Item, List, End, Sentence

VT : chair, ball, cup

S : Sentence

R : Sentence -> Item | List End

List -> Item | Item, List

Item -> chair | ball | cup

, Item End -> and Item
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This grammar can create any list of the three items, ”chair”, ”ball” and ”cup”, while correctly
placing commas and finishing off the list with an ”and”. To use the grammar one starts with
”Sentence”, which can be turned into a single item or into a list of items.

3.3.1 Hierarchy of grammars

The Chomsky Hierarchy of grammars is an ordering of the expressiveness of grammars. Any
lower type grammar contains all following grammars.

Type-0 grammar: Unrestricted grammars
This type include all grammars than can be expressed within the above definition.

Type-1 grammar: Context-sensitive grammars
Rules are of the form

αAβ -> αγβ, (10)

where

α, β P pVT ∪ εq, A P VN and γ P pVN ∪ VT q`. (11)

Thus the rules of context-sensitive grammars changes A while noticing and maintaining
the context α and β. Note that α and β can be empty, but γ can not. A rule can
thus not decrease the number of symbols. Furthermore these grammars can only change
non-terminals, where unrestricted grammars can change anything.

Type-2 grammar: Context-free grammars
Rules are of the form:

A -> γ, (12)

where

A P VN and γ P pVN ∪ VT q`. (13)

Context-free grammars are a special-case of context-sensitive grammars, where α “ β “ ε.
Again γ can not be empty. Since no terminal symbol will never be used in the head of
a rule and only one symbol appears on the left-hand side of the rules, these grammars
create tree-structures. Context-free grammars are the theoretical basis for most parsers
and programming languages.

Type-3 grammar: Regular grammars (left/right)
Exists in two equivalent forms and have rules like:

(right regular) (left regular)
A -> γB A -> Bγ,

(14)

where
A P VN , B P pVN ∪ εq and γ P VT . (15)

Here γ can only be one symbol and each rule can maintain at most one non-terminal.
These grammars are used in regular expressions, which is used to define search patterns.
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3.4 Natural Language Processing (NLP)

Natural Language Processing is the overall field of automated processing natural language (for
example English). NLP is generally concerned with text, but, when combined with signal
processing, it also creates the foundation for speech recognition, which operates on audio, and
optical character recognition, which operates on images. Some of the most known tasks within
NLP are (although many other tasks exist as well):

- Automatic Summarization
Creates an automatically generated summary of a text.

- Machine Translation
Translates a specified text from one language to another.

- Natural Language Generation
Translating data in a machine to informative sentences readable by a human.

- Sentence Breaking
Determining the breaking-points for sentences in a text.

- Sentiment/Opinion Analysis
Determining the opinion of the writer towards a specific subject.

3.4.1 Parsing and Part-Of-Speech Tagging (POS)

Parsers are systems that are used to analyse the syntactical structure of a sequence of symbols.
In context with NLP, parsers are used to detect the structure of sentences and the types of words
(part-of-speech). Listing 3.1 shows The Stanford Parser’s ([34]) output on a test sentence and
illustrates the use. The parser has broken the sentence ”This is a classical test sentence.” into
the individual words and annotated what use the words have. The output shows the structure
of the sentence, together with the part-of-speech tags. For example ”test” and ”sentence” has
been classified as NN (noun), while ”This” has been classified as DT (determiner).

Listing 3.1: Output from the Stanford Parser with input sentence:
”This is a classical test sentence.”

(ROOT
(S

(NP (DT This ) )
(VP (VBZ i s )

(NP (DT a ) ( JJ c l a s s i c a l ) (NN t e s t ) (NN sentence ) ) )
( . . ) ) )
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Parsers have often been implemented using context-free grammars, where the possible structures
of the related language are noted as rules. A simple example is:

VN : S, NP, VP, V, N, Det, Adj

VT : dog, cat, sees, meets, big, small, scared, a, the

S : S

R : S -> NP VP

VP -> V NP

NP -> Det N | Det Adj N

N -> dog | cat

V -> sees | meets

Adj -> big | small | scared

Det -> a | the

If a parser with this grammar was given the sentence ”the big dog meets the scared cat”, it
would attempt to reconstruct the sentence using the above rules. From this reconstruction it
would reach the conclusion, that the part-of-speech tags were ”Det Adj N V Det Adj N”. The
grammars of a language can become very big and traversing the possible search graphs can
be very cumbersome. Furthermore there may be different ways to parse the same sentence, in
which case it can be useful to denote some probabilities within the grammar (experience from
training data), which denotes the probabilities of the rules and therefore each parsing. The
Stanford Parser is a probabilistic natural language parser, which can estimate the probabilities
of different parsings for a sentence. The specifics of this parser can be found in [34].

3.5 Machine Learning

The following pages describe the used machine learning techniques and is heavily inspired by
[14]. N will refer to the number of samples and M the number of dimensions in a feature-space.
||x|| is the 2-norm / Euclidean length of vector x. 1 is a vector of 1’s, where the length will can
be derived from the context.

There are many different machine learning algorithms (or learners), and they differ in their
ability to handle different problems and data. The algorithms are made to learn underlying
structures and find patterns in data. The data used to train the algorithms will typically ex-
hibit the underlying structure to a certain extend, but may also contain some random variation
which is typically not the target interest. Furthermore it can happen that some of the training
data has been incorrectly classified or measured, giving rise to outliers which are not useful for
learning. Two important terms in machine learning are the concepts of overfitting and bias.
Overfitting occurs when an algorithm is sufficiently flexible to learn, not only the underlying
structure of the training data, but also the noise that may occur in the samples. By learning
this random variation the model becomes unable to generalize when given new data, as the new
data have been affected differently by the noise. Bias occurs when the algorithm is not flexible
enough to capture the underlying structure. The result is a system that is unable to learn the
”true” model, irrelevantly of how small the noise may be or how many samples are given. With
such a system one could incorrectly blame the deficiencies of the system on the noise of the data,
which may be smaller than observed with the learner.
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When some algorithms are given very high-dimensional data, a phenomenon called the Curse of
Dimensionality can occur. Having many dimensions creates many internal parameters in the
algorithms, whose value needs to be learned from the training data. For many machine learning
schemes there will be one or more parameters per feature. This creates situations where the
machine learning scheme has many degrees of freedom relative to (and possible more than) the
number of datapoints. The high flexibility of the algorithm allows it to learn the variation of the
data causing overfitting. It can thus be attractive to reduce the number of features to a smaller
feature space (which hopefully still captures the target structure of the data).

In machine learning it is common practise to split data into test-data and training-data.
The training data is used to train and optimize learners, while the independent test set is
used to evaluate the final performance. In order to correctly measure performance, the test-
set can not be used to train or optimize any parameters of the learning algorithm, as this
could bias the final performance estimate (due to overfitting and inability to generalize). When
splitting data it is important to keep enough data both for the training part, but also for
evaluating performance, as small test-sets can create variance in performance estimates. k-
Cross validation is a method used to get good performance estimates, where the data is split
into k parts. Each of the parts i taken out as a test-set, after which an algorithm is trained on
the remaining k ´ 1 parts (creating a total of k trained models). Each model is then evaluated
on the independent test set, and their performances averaged. This reduces the bias in the
performance estimate from averaging, as well as allowing the user to train and test with all
datapoints. Cross validation is used internally in the training set, when optimizing learning
algorithms, although the final performance is measured on a single test set, as cross-validation
on the entire project’s experiments was computationally too heavy. In some cases there may
be hyper-parameters which the learning algorithm can not train itself. These parameters are
often tried within some interval, after which a validation set is used to select the best choice
of parameters. Finally the test set is again used for estimating performance. The training set,
validation set and test set are all independent. Another important aspect of splitting data, is
how the classes or target values are distributed in the test and training set. In order to make
both sets representative of the original distribution one makes a stratified split, which splits
data into subsets with similar distributions of the target values or classes. This method is used
for all splits in this project.

3.5.1 Probability Theory and Bayes

As commonly practices in probability theory, in the following ppxq, ppx, yq and ppx|yq will denote
the probability of x, the joint probability of x and y and the conditional probability of x given
y respectively.

An important theorem in machine learning is Bayes theorem which states

ppy | xq “
ppx | yqppyq

ppxq
. (16)

The theorem is commonly used in statistical modelling, where x represents some sampled data
and y represents some hypothesis/model on the original distribution. Here ppy | xq is called the
posterior probability of y given x, ppxq and ppyq are called the prior probabilities of x and y, and
ppx | yq is called the likelihood of y.
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Machine learning is typically about finding the most probable model or prediction for some data.
If x is the data then y would be a model or a prediction, of which we want to select the most
probable given x. As ppxq is independent of the choice of model it can be disregarded when
searching for the most probable model,

ppy | xq 9 ppx | yqppyq. (17)

The maximum a posteriori estimate is the model that maximizes this quantity,

yMAP “ arg max
y

ppx | yqppyq. (18)

A common, simplifying assumption is that the prior of the model is uniform, which further
simplifies the relation,

ppy | xq 9 ppx | yq. (19)

This gives rise to the maximum likelihood solution yML to machine learning problems, which
selects the model that maximizes the likelihood,

yML “ arg max
y

ppx | yq. (20)

Simplifying with Logarithms

The likelihood of model y given dataset S is computed by (assuming independence between
samples)

ppS | yq “
ź

xPS

ppx | yq. (21)

Instead of maximizing the likelihood directly it is often easier to maximize the log-likelihood , as
it maps the product of the probabilities to a sum

ln
`

ppS | yq
˘

“
ÿ

xPS

ln
`

ppx | yq
˘

, (22)

which allows for easier differentiation. As probabilities are in the interval r0, 1s the log-likelihood
will be in the interval r´8, 0s.

Similarly, the maximum a posteriori model can be found by maximizing

ppS | yq “
ź

xPS

ppx | yqppyq (23)

and
ln
`

ppS | yq
˘

“
ÿ

xPS

ln
`

ppx | yqppyq
˘

“
ÿ

xPS

ln
`

ppx | yq
˘

` |S| ln
`

ppyq
˘

. (24)

Like previously the logarithmic sum will be in the interval r´8, 0s.

As many optimization algorithms work by minimizing expressions, the above are typically con-
verted to a loss-function by negating the terms, so that

yMAP “ arg min
y

´

˜

ÿ

xPS

ln
`

ppx | yq
˘

` |S| ln
`

ppyq
˘

¸

(25)

25



Theory Machine Learning

and
yML “ arg min

y
´

ÿ

xPS

ln
`

ppx | yq
˘

, (26)

where the minimization function in the latter is called the negative log-likelihood . Both these
function are in the interval r0,8s. The second term in the minimization function of the maxi-
mum a posteriori loss-function is called a regularization term and constitutes restrictions on the
parameters of the model.

Regularization

The maximum likelihood solution has the advantage that no prior knowledge is needed. This
simplifies modelling and also avoids biased prior-function chosen by the modeller, which may
incorrectly alter the results. Not incorporating a prior can also be a disadvantage. Maximum
likelihood solutions tend to find very extreme solutions, which the inclusion of prior probabili-
ties can avoid. An example is to consider a weather prediction system that starts learning on a
Monday. If it happens to rain Monday, Tuesday and Wednesday, then the maximum likelihood
model will predict rain for the remainder of the week (and all of time). A prior distribution on
the model could avoid this, by including some knowledge about the number of rainy days in a
year.

To avoid this sort of overfitting, the maximum a posteriori solution can be determined by using
regularization. Regularization are the added terms in a loss-function, which puts restrictions
on the model’s ability to form itself after the data. Regularization parameters can be difficult
to optimize: if too much regularisation is used the model will be restricted and unable to fit
the data very, causing an error from bias. If not enough regularization is used the problems of
overfitting enter as mentioned above. It is common to test different levels of regularization and
choose the best one on a validation set.

3.5.2 Regression Problems

In a regression problem, ypx,wq is made to predict the value of an unknown function fpxq, based
on the shared sample-vector x. In many cases fpxq is stochastic, which makes perfect regression
impossible. In these situations a probabilistic view is applied, and the unknown function fpxq is
replaced by a joint probability ppt,xq describing the probability of seeing t and x. ppt,Xq is the
multi-sample case, where X contains a column for each datapoint, and t contains the function’s
evaluation for each datapoint.

L2 Loss Function

A common assumption is that the noise of data is normally distributed and independent between
datapoints. Although this assumption can sometimes be incorrect, it tends to hold in many cases
and give fairly good results. Under this assumption, a probabilistic model would be

ppt |X,w, sq “
N
ź

n“1

N ptn | ypxn,wq, sq. (27)

With the normal distribution defined as

N pt | ypx,wq, sq “ 1

s
?

2π
exp

ˆ

´
1

2s2

`

t´ ypx,wq
˘2
˙

. (28)
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Here a regression model ypx,wq is used to estimate the mean of a normal-distribution, after
which the standard deviation s is determined through simple statistics. Equation 27 is also the
likelihood of the model.

The log-likelihood is:

ln pppt | x,w, sqq “ ´
1

2s2

N
ÿ

n“1

ptn ´ ypxn,wqq
2 `N ln

ˆ

1

s
?

2π

˙

(29)

“ ´
1

2s2

N
ÿ

n“1

ptn ´ ypxn,wqq
2 `N ln

ˆ

1

s

˙

`N ln

ˆ

1
?

2π

˙

(30)

“ ´
1

2s2

N
ÿ

n“1

ptn ´ ypxn,wqq
2 ´N lnpsq ´

N

2
lnp2πq. (31)

Maximizing the log-likelihood amounts to minimizing the sum of squared errors between the
model and the given samples,

wML “ arg min
w

`

L2pwq
˘

“ arg min
w

N
ÿ

n“1

ptn ´ ypxn,wqq
2. (32)

This is the motivation behind the sum-of-squares loss function. It maximizes the likelihood of
the model, given that the noise of the data is normally distributed,

L2pwq “
N
ÿ

n“1

ptn ´ ypxn,wqq
2. (33)

The loss function is called the L2 loss function, because it computes the squared L2 norm of
the difference between the target vector t and the predicted vector ypxn,wq, as in

L2pwq “ ||t´ ypxn,wq||
2
2. (34)

R2-Regularization

A common prior on the parameters of the linear model, is to assume a multivariate Gaussian
distribution on the parameters of the model, with zero means and with covariance matrix being
a diagonal-matrix with identical diagonal-elements β, which is defined by

ppwq “
1

a

p2πqkβk
exp

ˆ

´
β

2
wTw

˙

. (35)

The negative logarithm of this expression becomes:

´ ln
`

ppwq
˘

“ ´ ln

˜

1
a

p2πqkβk
exp

ˆ

´
β

2
wTw

˙

¸

“ ´ ln

˜

1
a

p2πqkβk

¸

`
β

2
wTw, (36)
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which is proportional to

ln
`

ppwq
˘

9
β

2
wTw. (37)

This lead to the regularization of the L2-loss function by adding the term

L2pwq `R2pwq “ L2pwq ` λ
1

2
||w||22 “ L2pwq ` λ

1

2
wTw. (38)

λ is the regularisation parameter, and determines how much the model should be penalised
for large weights. Through regularising, weights related to features, whose relevance are not
supported by data, will be forced to have small values. Furthermore the regularization keeps the
loss-function quadratic in w, which is advantageous for the solver used to optimize the weights.
This type of regularisation (adding a term that penalises size of weights) is called weight decay ,
because it keeps weights small.

L1 Loss Function

The L2 norm is, together with the L1 norm, part of the Lp-space, which defines a set of length
measures of vectors, defined as

||x||p “

˜

M
ÿ

m“1

xpm

¸

1
p

. (39)

More specifically

||x||1 “
M
ÿ

m“1

|xm|, (40)

||x||2 “ ||x|| “

g

f

f

e

M
ÿ

m“1

x2
m, (41)

||x||8 “ max
m
pxmq. (42)

The L1-norm (40) is another typical choice for a loss-function, so that y is selected by minimizing

L1pwq “ ||t´ ypxn,wq||1. (43)

Instead of assumed Gaussian noise, the L1 loss-function comes from assuming a Laplace dis-
tributed noise, so that

pptn |X,w, bq “
1

2b
exp

ˆ

´
|tn ´ ypxn,wq|

b

˙

. (44)

From the negative logarithm of product of pptn |X,w, bq over all tn’s, an expression proportional
to 43 is found.

Regularisation of the L1 loss-function is done with another type of weight decay

L1pwq `R1pwq “ L1pwq ` λ||w||1. (45)

This regularisation keeps the loss function in the same form (linear), with respect to w, and is
motivated by assuming a Laplace-distributed probability on the parameters.
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(a) R1-regularisation. (b) R2-regularisation. (c) L8-regularisation.

Figure 3.1: Three types of regularisations. The figure is extrapolated from figure 3.3 in [14].
Weight decay regularisations restricts the parameter-search to be within a restricted area. All
solutions within the area are ”cheaper” that those outside of the area. A solution outside
of the area thus needs to be considerably better in order for the algorithm to use it. The
R2-regularisation uses a circular (spherical in multi-dimensional cases) search-area, restricting
the total length of the weight vector. The R1-regularisation will often find values of either
1 or 0. This creates a tendency to make the weight vectors sparse, which can be useful for
detecting the most relevant features and making the weight vector easier to understand. The
R8-regularisation typically sets all weights to the same value, and thus simply varies the length
of the weight-vector when learning.

Table 3.2: Explanation of the nature of the regularisations. Assume
a ą b ąą δ ą 0 and a´ b ą δ.

w “

¨

˚

˝

a

b

˛

‹

‚

δ0 “

¨

˚

˝

δ

0

˛

‹

‚

δ1 “

¨

˚

˝

0

δ

˛

‹

‚

R1pwq “ a` b R1 pw ` δ0q “ a` b` δ R1 pw ` δ1q “ a` b` δ

R2pwq “ a2 ` b2 R2 pw ` δ0q “ a2 ` 2aδ ` δ2 ` b2 R2 pw ` δ1q “ a2 ` b2 ` 2bδ ` δ2

R8pwq “ a R8 pw ` δ0q “ a` δ R8 pw ` δ1q “ a

Table 3.2 shows how the regularisations act. Assume a weight vector contains two values where
the first element (a) is larger than the other (b). When using the R1-regularisation adding a
small value to either weight increases the regularisation term equally. If feature a is slightly
more useful than feature b the learner might as well set a to 1 and b to 0, which causes the
sparsity. In the R2-regularisation the term δ2 is practically negligible. Furthermore adding a
term to b is less costly than adding a term to a, since 2aδ ą 2bδ. Therefore having a small values
for b is very cheap, which keeps b larger than 0, even if the feature with weight a is more useful.
In the R8-regularisation it only becomes more costly to increase the value of a. Thus b can be
chose to be anything in the interval r0; as, which causes the algorithm to typically choose the
same value for all weights.
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3.5.3 Classification Problems

In machine learning, a classification problem is the problem of creating a function ypx,wq which
takes a sample’s vector x together with a parameter-vector w as input, and selects one of C
classes related to the sample described by x. ypx,wq can be made to output the actual class,
but it is also common to let the sign of ypx,wq decide the class, so that

Predictionpxq “

#

1 if ypx,wq ą 0

0 otherwise.
(46)

In the classification perspective, one can state the probability of a sample x belonging to a class
Ck, using Bayes theorem (equation 16), as

ppCk | xq “
ppx | CkqppCkq

ppxq
. (47)

The prior probability of x, in the multi-class problem, is given by

ppxq “
C
ÿ

i“1

ppx | CiqppCiq. (48)

Modelling of the density distributions of the classes therefore allows evaluation of the posterior
probabilities ppCi | xq, with

ppCk | xq “
ppx | CkqppCkq

řC
i“1 ppx | CiqppCiq

. (49)

3.5.4 Linear Regression

An often used regression method is linear regression. A linear model has the form

ypx,wq “ w0 `

M
ÿ

m“1

xmwm, (50)

where M is the dimension of the feature-space x. w0 is commonly referred to as the bias, while
the remainder of w is called the weights. The sum can be expressed as a dot-product between
the features and the weights

ypx,wq “ w0 ` x
Tw. (51)

If one includes the bias in the weight-vector and prepends a 1 to all feature-vectors, the linear
model can be expressed as a single dot-product

ypx,wq “ xTw. (52)

If the sum-of-squares loss function is used, linear regression chooses the model ypx,wq with
parameters given by

w “ arg min
w

N
ÿ

n“1

ptn ´ x
T
nwq

2. (53)
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3.5.5 Logistic Regression

As shown earlier, the posterior distribution of a class can be determined by

ppCk | xq “
ppx | CkqppCkq

řC
i“1 ppx | CiqppCiq

. (54)

This can be rewritten as

ppCk | xq “
exppakq

řC
i“1 exppaiq

(55)

ai “ lnpppx | CiqppCiqq. (56)

Equation (55) is called the softmax function or the normalized exponential . The softmax formu-
lation is useful because it will always output a number in the interval r0; 1s, while the classes’
softmax-evaluations will sum to one. Therefore, if one approaches the classification task by
approximating the ai’s, the softmax can ensure that the output can be used as a probability
distribution.

In the two-class case, the normalized exponential is

ppC1 | xq “
exppa1q

exppa1q ` exppa2q
(57)

“
1

1` exppa2q
exppa1q

(58)

“
1

1` exppa2 ´ a1q
(59)

“
1

1` expp´aq
“ σpaq. (60)

Where the difference in the exponential has been replaced by

a “ a1 ´ a2 (61)

“ lnpppx | C1qppC1qq ´ lnpppx | C2qppC2qq (62)

“ ln

ˆ

ppx | C1qppC1q

ppx | C2qppC2q

˙

. (63)

The probability for the other class can be computed by a similar expression or simply with

ppC2 | xq “ 1´ ppC1 | xq. (64)

Equation (60) describes the logistic sigmoid function σ. Estimating a using linear regression
give way to logistic regression, where the posterior distribution is estimated as

ppC1 | xq “ ypxq “ σpxTwq. (65)

This allows linear regression to be used for estimating probabilities in a classification task, even
though the evaluation of the linear expression could be any real number.

For logistic regression, L1 and L2 loss functions are imported from linear regression, together
with their related regularisations R1 and R2. If the noise of the data is Gaussian, one would
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expect L2+R2 to give most accurate results. L1+R1 can be used to create more sparse solutions
and detect i relevant features.

3.5.6 Kernel Methods

The linear models use the x-features directly. A different approach is to first process the features
with a function, and then use the results as new features. This approach can handle non-linearity
in data, as the function can be non-linear. The approach is illustrated as

ypx,wq “ wTx ñ ypx,wq “ wTφpxnq. (66)

Where φ is a non-linear function that produces a new vector from the input vector. With the
L2-loss function and R2-regularisation, a model is chosen to minimize

L2pwq “
1

2

N
ÿ

n“1

pwTφpxnq ´ tnq
2 `

λ

2
wTw. (67)

For finding a minima, the derivative with respect to w is determined as

d

dw
L2pwq “

N
ÿ

n“1

pwTφpxnq ´ tnqφpxnq ` λw. (68)

Setting this to zero a doing bit of rearranging produces

w “ ´
1

λ

N
ÿ

n“1

pwTφpxnq ´ tnqφpxnq “

N
ÿ

n“1

anφpxnq (69)

an “ ´
1

λ
pwTφpxnq ´ tnq. (70)

It appears the weight vector w can be expressed as a linear combination of the φpxnq’s. By
estimating the an’s instead of the weight vector, the fitting problem is changed from having as
many parameters as the dimensionality of the input vector-space, to having as many parameters
as there are datapoints. If one has a very large feature-space, this becomes a very attractive
property as it reduces the curse of dimensionality.

The regression function ypx,wq determines a single evaluation for one sample. A multi-sample
version can be expressed as

ypx,wq “ wTΦT , (71)

where Φ are defined as

Φ “

»

—

—

—

–

φpx1q
T

φpx2q
T

...
φpxnq

T

fi

ffi

ffi

ffi

fl

. (72)
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The sum from (69) can similarly be converted to matrix-vector notation by

w “
N
ÿ

n“1

anφpxnq “ ΦTa a “

¨

˚

˚

˚

˝

a1

a2
...
an

˛

‹

‹

‹

‚

. (73)

By inserting this into 71 we have

ypx,wq “ wTΦT “ pΦTaqTΦT “ aTΦΦT “ aTKT . (74)

The matrix product on the right computes a different matrix called the kernel matrix K, which
is the collection of dot-products between all kernel-vectors

ΦΦT “KT Kn,m “ φpxnq
Tφpxmq. (75)

Given a kernel φ it is thus possible to fit a linear regression using OpMq parameters, by first
computing the dot products between the kernel-vectors.

Another important advantage of using kernels is the ability to use kernel substitutions, which
replaces φ with various interesting functions. This enables user to create many interesting kernel
matrices with different properties. A few common kernels are described in 3.5.7 under SVM
Kernels.

3.5.7 Support Vector Machine

Support Vector Machine (SVM) is a machine learning concept, which approaches classification
problems from a geometric point of view. An SVM attempts to create a decision boundary be-
tween two classes, which maximizes the distance from any point to the boundary. The distance
from the closest point to the boundary is called the margin.

First note the following geometric properties. A hyperplane is defined by a perpendicular vector
v and an offset v0, so that any point x which is on the hyperplane satisfies

vTx´ v0 “ 0. (76)

v0 thus represents the distance from the origin to the hyperplane. The coordinate distance from
x to the hyperplane is given by

d “
vTx´ v0

||v||
. (77)

In case the hyperplane is defined using a unit-vector the distance is simply d “ vTx´ v0.

Now assume a classification problem, in which the features x have been cast by a kernel φ
into a space φpxq where two classes pC1, C2q are linearly separable. In this space, a support
vector machine will find the hyperplane, separating the two classes, with the largest margin.
The hyperplane is defined by w and b, with

hyperplane: ypxq “ wTφpxq ` b “ 0. (78)
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The side of the hyperplane, which a sample resides on, can be determined by the sign of the
hyperplane expression

side: signpwTφpxq ` bq. (79)

Assume a set of training data txn, tnu, n P r1, N s. Where tn is the class of sample described by
xn, with class values being ´1 and 1. If the hyperplane correctly classifies all samples in the
training set, one can assess that

tnypxnq ą 0 n P r0, N s. (80)

The distance to the hyperplane is

distance: d “
|wTφpxq ` b|

||w||
“
|ypxnq|

||w||
“
tnypxnq

||w||
. (81)

The SVM attempts to maximize the minimum distance (81) from any point to the hyperplane.
That is

arg max
w,b

ˆ

1

||w||
min
n
rtnypxnqs

˙

. (82)

The same hyperplane can be described with a vector w times any factor. Using this freedom,
one can condition the problem, so that the datapoint closest to the hyperplane has a distance
of 1 and

@n P r1, N s : tnypxnq ě 1, (83)

Dn P r1, N s : tnypxnq “ 1, (84)

ñ min
n
rtnypxnqs “ 1. (85)

The maximization problem now becomes

arg max
w,b

1

||w||
. (86)

This is equivalent to the minimization problem

arg min
w,b

1

2
||w||2

Subject to: tnypxnq ě 1.

(87)

Where b is implicitly determined as it appears in the constraints.

Before solving this problem, the initial assumption that the classes are linearly separable in the
φpxq space is reconsidered. In many situations this will not be so, and allowing a few samples to
be misclassified is necessary for making the SVM work on the dataset. This is done by softening
the (83)-constraint to

tnypxnq ě 1´ ξn (88)

ξn ě 0. (89)

Datapoints for which the so-called slack variables ξn “ 0, are correctly classified (like previ-
ously), where the equality holds for the points closest to the hyperplane. When 0 ă ξn ď 1
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the datapoint is allowed within the margin (and potentially on the hyperplane) of the SVM.
Finally when ξn ą 1 the datapoints are incorrectly classified and reside on the wrong side of the
hyperplane.

The change in constraints allow the SVM to softly penalize incorrect classifications, by solving

arg min
w,b

˜

C
N
ÿ

n“1

ξn `
1

2
||w||2

¸

. (90)

C controls the penalty for misclassification. As any misclassification has ξn ą 1,
řN

n“1 ξn is an
upper limit of the number of misclassifications. Therefore C can be considered the penalty per
misclassification. A small C will allow many misclassifications and C Ñ 8 creates the SVM
that attempts to perfectly classify the training samples.

The final problem becomes

arg min
w,b

˜

C
N
ÿ

n“1

ξn `
1

2
||w||2

¸

(91)

Subject to: tnypxnq ě 1´ ξn (92)

ξn ě 0. (93)

In order to handle this problem the following Lagrangian with Karush-Kuhn-Tucker (KKT)
terms is created

Lpw, b, ξ,a,µq “ ´
N
ÿ

n“1

an

´

tn
`

wTφpxq ` b
˘

´ 1` ξn

¯

loooooooooooooooooooooomoooooooooooooooooooooon

KKT term for
Condition (92)

´

N
ÿ

n“1

µnξn
loooomoooon

KKT term for
Condition (93)

(94)

`
1

2
||w||2

loomoon

Objective

` C
N
ÿ

n“1

ξn
looomooon

Misclassification
penalty

The KKT conditions are the necessary conditions for a minima

tnypxnq ´ 1` ξn ě 0 (95)

ξn ě 0 (96)

anptnypxnq ´ 1` ξnq “ 0 (97)

an ě 0 (98)

µn ě 0 (99)

µnξn “ 0. (100)

When 94 is minimized, the system will attempt to minimize all ξn’s. The samples that can be
correctly classified will reach ξn “ 0 (condition (96)). Any sample, that cannot be correctly
classified or lies in the margin, will have ξn ą 0 (condition (95)). The an’s will be zero for all
samples that can not be correctly classified and lies outside of the margin (condition (97)). For
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correctly classified samples, an will be positive (condition (98)), as that will add negative terms
to 94 which is to be minimized, and thus create the support vectors.

The derivatives of the Lagrangian (shortened L) is

d

dw
L “ w ´

N
ÿ

n“1

antnφpxnq

d
dw

L“0
ùùùùñ w “

N
ÿ

n“1

antnφpxnq (101)

d

db
L “ ´

N
ÿ

n“1

antn

d
db

L“0
ùùùùñ

N
ÿ

n“1

antn “ 0 (102)

d

dξ
L “ C1´ a´ µ

d
dξ

L“0

ùùùùñ an “ C ´ µn. (103)

By inserting 101, 102 and 103 into the Lagrangian, a different version is obtained as derived on
the next page.
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Lpw, b, ξ,a,µq “ ´

N
ÿ

n“1

an

´

tn
`

wTφpxnq ` b
˘

´ 1` ξn

¯

´

N
ÿ

n“1

µnξn (104)

`
1

2
||w||2 `

N
ÿ

n“1

Cξn

(101) “ ´

N
ÿ

n“1

an

¨

˝tn

¨

˝

˜

N
ÿ

m“1

amtmφpxmq

¸T

φpxnq ` b

˛

‚´ 1` ξn

˛

‚

(105)

(101), (103) ´

N
ÿ

n“1

µnξn `
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

antnφpxnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

`

N
ÿ

n“1

pan ` µnqξn

“ ´

N
ÿ

n“1

an

˜

tn

N
ÿ

m“1

amtmφpxmq
Tφpxnq ` tnb´ 1` ξn

¸

(106)

´

N
ÿ

n“1

µnξn `
1

2

˜

N
ÿ

n“1

antnφpxnq

¸T ˜

N
ÿ

n“1

antnφpxnq

¸

`

N
ÿ

n“1

anξn `
N
ÿ

n“1

µnξn

“ ´

N
ÿ

n“1

N
ÿ

m“1

anamtntmφpxmq
Tφpxnq ´ b

N
ÿ

n“1

antn `
N
ÿ

n“1

an (107)

`
1

2

N
ÿ

n“1

N
ÿ

m“1

anamtntmφpxnq
Tφpxmq

`

N
ÿ

n“1

anξn ´
N
ÿ

n“1

anξn

(102) “ ´
1

2

N
ÿ

n“1

N
ÿ

m“1

anamtntmφpxmq
Tφpxnq `

N
ÿ

n“1

an (108)

Lpaq “ ´
1

2

N
ÿ

n“1

N
ÿ

m“1

anamtntmkpxn,xmq `

N
ÿ

n“1

an (109)

kpxn,xmq “ φpxmq
Tφpxnq. (110)

(109) is a dual representation of the SVM’s Lagrangian which uses an N -long vector of param-
eters a and uses a kernel k.
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SVM Kernels

A few commonly used kernels for SVM are:

Linear

kpxn,xmq “ x
T
nxm (111)

The dot-product between two vectors indicates the similarity between two vectors, which
the linear kernel uses.

Polynomial

kpxn,xmq “ pγx
T
nxm ` rq

d (112)

The polynomial kernel creates all terms of the form

ź

sPS

xnsxms S “ ts | s P r1, N s, s P Zu |S| ď d. (113)

Radial Basis Function

kpxn,xmq “ e
´γ||xm ´ xn||

2
2 (114)

RBF is thus an exponentially decreasing distance measure between datapoints, which is
indifferent about the direction of the displacement between the vectors.

Sigmoid

kpxn,xmq “ tanhpγxT
nxm ` rq (115)

This kernel compresses the linear kernel to produce values between zero and one. This
can be interpreted as selecting a radius for which we consider datapoints within the radius
neighbours and those outside as non-neighbours, and using the neighbours for predicting.

The kernels allow SVM’s and other kernel methods to handle data in a linear description-space,
while the decision surfaces in the actual feature space is very non-linear.

One Class SVM

A specialized version of the SVM is the One-Class SVM, which attempt to train a classifier to
recognize a specific class, without given any information about other possible classes. This is
done by creating a hyperplane with a small margin, which separates the class from the remaining
feature space. It uses a classification function to classify points similar to the previously used
one

class: signpwTφpxnq ´ bq. (116)

This classification expression uses the kernels high value for close datapoints, to make the sum
large for points close to the training data, while datapoints further away creates a small sum
and a negative sign when subtracting b.

Since all samples in the training data is from the same class, there is no need for a target vector
as used when describing the previous SVM. The classification-margin constraint (88) is therefore
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replaced by

wTφpxnq ě b´ ξn (117)

ξn ě 0. (118)

If all classes have large evaluations of the dot-product, then all ξn’s will be zero and all data-
points will be within the positive region. For a datapoint outside of the region ξn will be positive.

To make the margin small, the same minimization of 1
2 ||w||

2 is used (as in (87)). The penalization
with the slack-variables is introduced by solving

arg min
w,b

˜

1

2
||w||2 `

1

νN

N
ÿ

n“1

pξn ´ bq

¸

. (119)

The penalization is on the average difference between ξn and b, where ν controls the size of the
penalty.

The resulting Lagrangian is

Lpw, b, ξ,a,µq “
1

2
||w||2

loomoon

Objective

`
1

νN

N
ÿ

n“1

pξn ´ bq

loooooooomoooooooon

Misclassification
penalty

´

N
ÿ

n“1

an

´

wTφpxq ´ b` ξn

¯

loooooooooooooooomoooooooooooooooon

KKT term for
Condition (117)

´

N
ÿ

n“1

µnξn
loooomoooon

KKT term for
Condition (118)

.

(120)
The derivatives of the Lagrangian is

d

dw
L “ w ´

N
ÿ

n“1

anφpxnq

d
dw

L“0
ùùùùñ w “

N
ÿ

n“1

anφpxnq (121)

d

db
L “ ´

1

ν
`

N
ÿ

n“1

an

d
db

L“0
ùùùùñ

N
ÿ

n“1

an “
1

ν
(122)

d

dξ
L “

1

νN
1´ a´ µ

d
dξ

L“0

ùùùùñ an “
1

νN
´ µn. (123)
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By inserting (121), (122) and (123) into the Lagrangian, the following derivation is made

Lpw, b, ξ,a,µq “ ´

N
ÿ

n“1

an

´

wTφpxq ´ b` ξn

¯

(124)

´

N
ÿ

n“1

µnξn `
1

2
||w||2 `

1

νN

N
ÿ

n“1

pξn ´ bq

(121) “ ´

N
ÿ

n“1

an

˜

N
ÿ

m“1

amφpxmq

¸T

φpxq ` b
N
ÿ

n“1

an ´
N
ÿ

n“1

anξn (125)

´

N
ÿ

n“1

µnξn `
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

anφpxnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

`
1

νN

N
ÿ

n“1

ξn ´
b

ν

(122) (123) “ ´

N
ÿ

n“1

N
ÿ

m“1

anamφpxmq
Tφpxq `

b

ν
´

N
ÿ

n“1

ˆ

1

νN
´ µn

˙

ξn (126)

´

N
ÿ

n“1

µnξn `
1

2

˜

N
ÿ

n“1

anφpxnq

¸T ˜

N
ÿ

m“1

amφpxmq

¸

`
1

νN

N
ÿ

n“1

ξn ´
b

ν

“ ´

N
ÿ

n“1

N
ÿ

m“1

anamφpxmq
Tφpxq ´

1

νN

N
ÿ

n“1

ξn `
N
ÿ

n“1

µnξn (127)

´

N
ÿ

n“1

µnξn `
1

2

N
ÿ

n“1

N
ÿ

m“1

anamφpxnq
Tφpxmq

`
1

νN

N
ÿ

n“1

ξn

Lpaq “ ´
1

2

N
ÿ

n“1

N
ÿ

m“1

anamφpxmq
Tφpxq (128)

kpxn,xmq “ φpxmq
Tφpxnq (129)
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The dual representation problem is therefore

arg min
w,b

1

2

N
ÿ

n“1

N
ÿ

m“1

anamkpxn,xmq (130)

Subject to: 0 ď an ď
1

νN
(131)

N
ÿ

n“1

an “ 1 (132)

By solving for a the SVM can separate a class from datapoints that does not belong. An example
of a usage is to use the method to detect outliers. The datapoints that get moved outside of
the hyperplane can be considered so different from the remaining datapoints, that they may be
outliers with errors in their features or wrong classifications. Again many kernels can be used
to project the hyperplane into different shapes in the original feature-space.

3.5.8 Principal Component Analysis

Principal Component Analysis (PCA) is a common analysis and dimension-reduction tool. It
is motivated by considering the variance of samples in many dimensions. Assume a set of data
points x1..xN . The mean and and covariance matrix are given by

x̄ “
1

N

N
ÿ

n“1

xn S “
1

N

N
ÿ

n“1

pxn ´ x̄qpxn ´ x̄q
T . (133)

Assume a unit-vector u, which has some interesting direction in the hyper-dimensional space.
The projection of a datapoint xn onto this vector is

uTxn. (134)

Similarly the projection of the mean-vector is

uT x̄. (135)

Thus the variance in the direction of u is

σu “
1

N

N
ÿ

n“1

puTxn ´ u
T x̄q2 “ uTSu. (136)

Say the direction in the feature space with the biggest variance is of interest. The following
problem must therefore be solved (where the Lagrange multiplier comes from the constraint
that u is a unit vector)

max
u
uTSu` λp1´ uTuq. (137)

The derivative of the expression with respect to u is set to zero, to find the maxima

Su´ λu “ 0 ñ Su “ λu. (138)

This is the eigenvalue-problem, and u must thus be an eigenvector of S with eigenvalue λ.
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Furthermore we have

Su “ λu ñ uTSu “ uTuλ ñ uTSu “ λ “ σu (139)

The direction with maximum variance can therefore be found by solving the eigenvalue/eigen-
vector problem, and selecting the eigenvector with the highest eigenvalue. By selecting the M
largest eigenvalues and their respective eigenvectors, where M ă N , one can use M dimensions
to describe a part of the variance given by (assuming that the eigenvectors are sorted with the
largest values first)

rM “

řM
i“0 λi

řN
i“0 λi

. (140)

The chosen M vectors are called the M first principal components. If they describe a large part
of the variance (rM is close to one) it is possible to make fair approximations of the samples,
by describing each sample as a linear combination of the principal components, plus some error
vector that is hopefully relatively small, which reduces dimensionality.

3.5.9 Non-Negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is another possible way to reduce dimensionality
[38]. This method assumes that all features are positive (such as they are in bag-of-words
representations). If X is a samples-features matrix with size pN ˆMq, one can approximate
two matrices W and H, so that

WH «X, Xij ě 0, (141)

where the two auxiliary matrices have dimensions pN ˆ kq and pk ˆMq. W and H can be
interpreted in the following manner: W maps the N samples into a k-dimensional space which
describe some underlying structure and H maps the k underlying dimensions to the features of
the original space. If W and H create a good approximation of X, the samples can be mapped
into the k-dimensional space, which is used as a new feature-space for training and prediction
using other machine learning techniques.

The problem of finding W and H are typically solved numerically through an iterative process
that can use various loss-functions and regularizations.
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3.5.10 Word2Vec Features

A popular representation of documents, is to create word-embeddings as described by [42]. They
use a so called skip-gram model where a word is used to predict the next c and previous c words
in a sentence. The scheme is illustrated in figure 3.2.

w(t) Classifier

w(t-1)

w(t-2)

w(t-c)

w(t+c)

w(t+1)

w(t+2)

P

Figure 3.2: The Word2Vec scheme. Each word is projected to a vector of continuous
values, which is used by a classifier to predict the c words before and after.

For a vocabulary V , the model uses a projection matrix P which maps each word to a d-length,
continuous vector

Pei “ vi eij “

#

1 j “ i

0 otherwise
vi P Rd. (142)

The vi-vectors are used as input to a logistic regression classifier, that predict the c previous
and c future words. The classifiers and projection matrix are trained to maximize

1

T

T
ÿ

t“1

ÿ

´cďjďc
j “0

log ppwt`j | wtq, (143)

where T is the number of training examples, and ppwt`j | wtq is the predicted probability of
observing word wt`j given word wt.

When training, the projected representation of the words are fitted to the problem. This in-
ternal representation of the words can then be used as features for other uses, as it converts
words to a continuous-vector format, which most algorithms can easier handle (than for example
bag-of-words). Thus the projection matrix P is often the goal of the training process.

Although a relatively simple model, the training of the Word2Vec-system can be very costly,
as the vocabulary and training data is typically very big. Thus much of the work done related
to this word embedding has been on tuning the algorithms and finding estimation-solutions to
speed up the process. One example is the replacing of the softmax in the logistic regression
classifier with cheaper approximate alternatives (such as hierarchical softmax [43]).

43



Theory Machine Learning

3.5.11 Doc2Vec Features

In [37], the Word2Vec method is modified to create embeddings of paragraphs instead (called
Doc2Vec). Figure 3.3 explains how this concept is able to create vector representations of
variable-length paragraphs.

That's one small step for a man

Average

step
PV-DM

Classifier

PV-DBOW
Classifier

Document

?

Data and Input

PV-DBOW Scheme

PV-DM Scheme

Figure 3.3: Doc2Vec scheme. The vertical middle of the illustration shows the data used
for the scheme. A paragraph (which in this example is ”That’s one small step for a man”) is
split into words. Every word in the vocabulary has its own feature vector and so does every
paragraph.

The first of the Doc2Vec schemes is the Distributed Memory Model for Paragraph Vectors (PV-
DM). A window size n is chosen, which in this case is n “ 4. n null-words are prepended the
paragraph, so the window can end before any word in the paragraph. For each window the
averaged vector of the words is computed and given to a classifier, which attempts to predict
the word immediately following each window. The classifier and the weights of all words and
paragraphs are iteratively updated with gradient descent to train the whole scheme. When
new paragraphs are given, the classifier’s and the word-vectors’ weights are locked and gradient
descent is used to compute the new paragraph’s vector representation.

The second Doc2Vec scheme is the Distributed Bag-Of-Words Paragraph Vector (PV-DBOW).
This scheme only uses the document vector as input, and trains a classifier for predicting the
the words of the paragraph, which are randomly sampled. Again gradient descent is used to up-
date both the classifier and the paragraph vectors. When new samples are given, the classifier’s
weights are locked and the paragraph’s weights are determined.

In the schemes proposed by [37], both methods are used and the paragraph vectors are concate-
nated to create a final vector representation of paragraphs.
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3.5.12 Ensemble Learning

Ensemble learning ([32]) is the usage of multiple learning algorithms for machine learning tasks.
The learners can typically output a prediction (for example the predicted class) or a predictive
value, which corresponds to the confidence in the prediction (for example a value between zero
and one, corresponding to the probability of being in a class). An ensemble can combine the
learning algorithms in various way, some of which are:

Bootstrap Aggregation / Bagging Trains multiple models with randomly sampled subsets
of the training data, and votes equally between the models for prediction.

Bucket of Models Multiple different models are training for different segments of the training
data, and a model selection algorithm is used to select the appropriate algorithm for
prediction. On a single segment of the data, the method can only perform as well as the
best model, but on the average problem the method can perform better than the best
model.

Stacking In stacking a st of models are trained independently and usually on all the training
data. An additional learning algorithm is then trained to use the predictive values of the
models, to come up with a final prediction.

In this project a simple stacking-ensemble is made, where the predictive values of several learners
are combined in a logistic regression algorithm to make the final prediction. In this set-up, the
predictive values of the model are used in a weighted average and then turned into a probability
of the respective classes.
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4.1 Set-up

4.1.1 Experiment Set-Up

For training and testing algorithms, all data was initially split into a training set and a test set,
using stratified sampling to ensure even distribution of the classes. The test set was kept aside
and not used in any training or optimization process, and only used to evaluate the learning
algorithms after optimization and training. Only one test set was used and no cross-validation
made for determining the final performance, as this was task proved very time consuming. Cross
validation was though used internally, when using the training data to optimize learners.

4.1.2 Python

The software of the project was implemented in Python. Python is an outstanding language
for prototyping and has vast open-source libraries available, with state-of-the-art algorithms
and data structures. This project combines many resources and handles large datasets. It was
therefore essential to make use of any relevant, available tools. This made Python a great choice
for this project.
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The following lists some packages for Python, which were essential for the implementation of
the project. Some of them are standard libraries that most Python-programmers know, while
some of them are not as frequently used.

Table 4.1: Essential Python Libraries.

pickle[58] Allows storage of Python-objects.

shelve[60] Builds on pickle and creates a database for Python objects on the disk. This
allows data to be stored in many Python-objects, each one accessible in a
single query, without cluttering the computers directories with thousands of
files. Shelves are not thread-safe, but a simple combination with the
queue-library can solve this problem.

queue[59] +
threading[61]

A classical combination used to make multi-threaded computations. As large
amounts of data needed to be processed, multiple threads were needed to
avoid programs that needed days to finish. The queues are thread-safe and
can therefore be used to pass data to threads and safely retrieve results.

re[55] +
regex[56]

Two different versions of Python’s interface with regular expression, essential
for fast processing of strings. One particularly useful feature from the newer
regex-library, is its ability to perform fuzzy-searches with regular expression.

numpy[52] The fundamental library for efficiently working with matrices. Numpy is
partly implemented in lower-level programming languages, which makes the
matrix operations extremely fast.

scipy[52] ”... a Python-based ecosystem of open-source software for mathematics,
science, and engineering.”[68]. SciPy contains implementations of
sparse-matrices in several formats. These matrices combined with NumPy
makes it possible to work with extremely large, sparse matrices.

sklearn[66] Contains many well-known machine-learning and data processing algorithms.
This allows for fast testing of various methods on ones data.

networkx[47] Implements data structures and common algorithms for graphs. The digraph
implementation is used for representing arguments in this project.

nltk[50] Natural Language ToolKit implements natural language methods as the
name indicates.

bisect[57] Was used for performance reasons. The package implements fast searches,
deletions and insertion in sorted lists.

gensim[63] Implementations of Word2Vec and Doc2Vec.
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4.1.3 Other Resources

Stanford Parser

A useful resource for a natural language processing project, is a parser. The Stanford Parser[34],
by the Stanford Natural Language Processing Group[70], is a well-known parser. The parser
has many useful features, one of them being the ability to make probabilistic parsings, with
multiple possible parsings for a single sentence, together with an approximate probability for
each parsing.

Google News Word2Vec Dataset

With the gensim-library one can train word embeddings and document embeddings. Google
has published a pre-trained word-embedding based on a 100 billion words dataset (Google News
dataset). This word-embedding contains a 300-dimensional vector representation of 3 million
words and phrases. Googles description of word2vec is found in [26], while the pre-trained word-
embedding can be downloaded in [74]. The file takes up 2GB when compressed and 3.4GB when
uncompressed. Using the data can initially be difficult, as it requires a large RAM to load the
model. In this project the model was opened on a server and the vectors for the vocabulary of
the data were extracted and stored in a smaller file, which was much easier to handle.

Rhetorical Relations

A fair hypothesis is that certain words are more likely to be used in argumentation, and can
be used to detect arguments. Using various representations of texts, machine learning systems
should be able to learn and find such words. Some multi-word phrases may also be relevant for ar-
gumentation (for example ”as a consequence” and ”despite that”), but some text-representations
(such as bag-of-words) will throw out information about the sequence of words and neighbour-
hood of words. To counter this problem, one can find the relevant rhetorical relations that are
common in argumentation, and create extra features which counts these relations. Knott[35]
has developed such a list of relations, which have previously been used in argument detection
and will also be used in this project.
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4.2 Preprocessing

4.2.1 Data

The main database used in this project is the Araucaria database, as it has previously been used
for similar investigations and used by articles leading up to this project. The database consists
of a number of text-files and a number of JSON-files, named in the following manner:

nodeset7.json

nodeset8.json

nodeset9.json

nodeset10.json

nodeset11.json

...

nodeset7.txt

nodeset8.txt

nodeset9.txt

nodeset10.txt

nodeset11.txt

...

The text files contains text associated with the database. The JSON-files contains argument
maps and follows the AIF format. Listing 4.1 shows a part of the Araucaria database.

{” nodes ” : [
{”nodeID ”:”255” ,” t ext ” :” Alexander Downer has der ided more” ,

” type ” :” I ” ,” timestamp”:”2012´04´12 18 : 18 : 22”} ,
{”nodeID ”:”256” ,” t ext ” :” I f the con j e c tu r e that members more” ,

” type ” :” I ” ,” timestamp”:”2012´04´12 18 : 18 : 22”} ,
more
] ,

” edges ” : [
{” edgeID ”:”251” ,” fromID ”:”256” ,” toID ”:”258” ,” formEdgeID ” : nu l l } ,
{” edgeID ”:”252” ,” fromID ”:”257” ,” toID ”:”258” ,” formEdgeID ” : nu l l } ,
more
]}

Listing 4.1: Snippet from the Araucaria database. ”more” indicates
a continuation of text/data.

In order to use the database, some essential preprocessing was needed. The following describe
the preprocessing performed before each of the investigated tasks of the project.

4.2.2 Preprocessing for Argument Element Detection

Palau and Moens[53] uses a system to detect elements of a string as being argumentative or
not. For reproducing these results, a dataset with strings labelled as argumentative and strings
labelled as non-argumentative was needed. The JSON-files only contained argumentative ele-
ments, and non-argumentative strings were therefore sought. The JSON-files and text-files came
in pairs, and so initially it was believed that the text-files contained the source for the strings
used in the arguments of the similarly named JSON-file. This was partly true. As an example
nodeset8.json contained eight strings, where two of them was found in nodeset8.txt. This
inspired a preliminary investigation, where all sentences in all elements of the argument maps
found in the JSON-files were mapped to the sentences from the text-files, as explained in the
following section. This would reveal whether some non-argumentative strings were included in
the data, and whether the origins of all arguments were given.

From the Araucaria database, a set of sentences that are argumentative were extracted. A bit
of cleaning was performed on the data. As some of the text-files in the Araucaria database had
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Spanish text a removal of non-English sentences was made, similar to the one of 4.2.3 was used.
The result was 3,773 sentences from Araucaria, all labelled as argumentative.

4.2.3 Database Cleaning and Initial Analysis

A concatenated string of 422,181 characters was created from the database’s text-files, which
was segmented using NLTK’s sentence tokenizer into 3,057 sentences. These sentences were po-
tential candidates for being argumentative, as some of them will appear in the argument maps
of the database. Some sentences contained only a URL-link or were a headline with just a few
words, and no possible argumentative structure. Using NLTK’s word tokenizer, the sentences
were inspected and all sentences with 2 or less non-symbolic tokens (actual words), were re-
moved. 2,994 ”long” sentences remained. Furthermore some sentences were in Spanish, which
would further increase the difficulty of the task. To handle this problem, a collection of all
English words was downloaded from SIL International [69] (there are Python libraries created
for detecting English words, but, at the time of this writing, these had problems on running
with Python 3.5 on a 64-bit system). Any sentence containing 15% or fewer English tokens (of
the non-symbolic tokens) were removed leaving 2,863 candidate English sentences of reasonable
length.

All argument-segments were extracted from the argument maps, after which all sentences con-
taining argument elements as substrings were found. The number of comparisons between
argumentative elements and sentences was

comparisons “
nˆm

2
. (1)

With n being the number of argumentative elements (3,773) and m being the number of
sentences (2,868). This creates about 10,000,000 comparisons, which easily becomes time-
consuming. The exact distance were not needed. Only the detection of very similar sentences
was needed and the methods described in String Searching and Distance Measure were therefore
used.

Of the 3,773 argument elements found in the database, 3,771 of them were mapped to 2,798
of the 2,863 sentences. This leaves very few of the database’s argument elements belonging to
none of the text-files and few sentences being non-argumentative. This concluded that there are
basically no non-argumentative texts to find in the Araucaria-database.

String Searching and Distance Measure

Using regular expression allows for very fast string searches. Furthermore, one can compile a
regular expression object based on a pattern and apply that object for searching for the same
thing many times. This avoids the recreation of a regular expression systems at each search
and improves speed. With the regex-package for Python one can make string searches while
allowing errors. The three errors that the library can handle are:

• Insertions

• Deletions

• Substitutions

The user can specify a roof on each of the three types, or one roof on the sum of the three

50



Methods Preprocessing

error-types. The searches become significantly slower as more errors are allowed, and if too
many errors are accepted a string may be selected in the search with very little similarity to
the search-string. The fuzzy-search can be used as a way of detecting possible candidates for
duplicates or superstrings, after which a (computationally heavier) distance measure can be
used to find the actual similarity. In all searches, the strings were converted to all lower-case,
as capitalization is irrelevant for analysing the semantics of the sentences.

As a distance measure between strings, the Levenshtein distance[39], also called edit-distance,
was used. This distance measures the number of insertions, deletions and substitutions are
needed, for two strings to be identical (and therefore relates to the fuzzy-search). The fuzzy-
search with the regex-library does not compute the Levenshtein distance, but rather approves
or disproves matches based on the specified Levenshtein distance limit. The distance was there-
fore compute with the distance-library instead, when needed. Another important difference
between the fuzzy-search and the Levenstein distance is, that the fuzzy search goes through
substrings in the search and disregards the rest of the superstring. The Levenshtein distance
and implementation uses the entirety of two strings, making it an ill choice for searching for a
substring in a larger string. Figure 4.1 illustrates the difference. Using dynamic programming,
the Levenshtein distance can be computed in time Opmˆnq and space Opn`mq, where m and
n are the lengths of the two strings to be compared.

String 1: a
String 2: abbb

Levenshtein Distance: 3
Fuzzy Search: Exact match (0 errors)

Figure 4.1: Difference between Levenshtein distance and fuzzy search-
ing.

By finding candidates and using the Levenshtein distance as a ranking, the most similar sentences
were mapped together.
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4.2.4 Obtaining Unlabelled Data

As no non-argumentative elements were given, an attempt was made to find some of the origins
of the Araucaria database. By having Google search for long pieces of text from the database,
a few candidates of the original sources were found. The following sites were used:

BBC News
http://news.bbc.co.uk/2/hi/talking_point/2624539.stm

http://news.bbc.co.uk/2/hi/talking_point/2491327.stm

http://news.bbc.co.uk/2/hi/talking_point/3701582.stm

UK Parliament
http://www.publications.parliament.uk/pa/cm200304/cmhansrd/vo040916/debtext/

40916-02.htm

http://www.publications.parliament.uk/pa/cm200304/cmhansrd/vo040916/debtext/

40916-17.htm

CNN
http://edition.cnn.com/2003/WORLD/meast/03/17/sprj.irq.bush.transcript/

http://edition.cnn.com/2004/ALLPOLITICS/09/30/debate.transcript.5/index.html

New York Times
http://www.nytimes.com/2003/03/18/politics/18BTEX.html?pagewanted=all

Cornell University Law School
https://www.law.cornell.edu/supct/html/1-10868.ZA2.html

The Age
http://fddp.theage.com.au/articles/2003/05/26/1053801334519.html?from=storyrhs

From these sites 1,234 unlabelled sentences were extracted.

Unrelated Data

A few more websites was used to extract similar data, which is unrelated to the subjects of the
texts above. The data was extracted from sites that were already used in the above list, but on
other subjects. The three sites are:

BBC News ”Shuttle disaster: You asked the experts”
http://news.bbc.co.uk/2/hi/talking_point/forum/2718811.stm

UK Parliament ”Indebted Prepayment Customers”
http://www.publications.parliament.uk/pa/cm201516/cmhansrd/cm160324/debtext/

160324-0001.htm#16032433000016

CNN ”Why are the French on strike ... again?”
http://edition.cnn.com/2016/06/02/europe/france-strikes-labor-reform-bill/index.

html
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4.2.5 Palau and Moens Features

Palau and Moens[53] uses a set of features for detecting argumentative elements in text. Through-
out this report these will be referred to as the argument-features, as they are the only features
that have been specifically created to detect arguments. Their features are used as a starting
point for the tasks in this project. As will be noted later, the feature-space is very high-
dimensional when using these features. Table 4.2 describes some upper bounds on the dimen-
sionalities of the features-spaces. Some upper bounds have two different variants, based on the
variables used to estimate complexity.

Variables:

L: Concatenated word-length of texts.

T : Highest number of words in a text.

N : Number of texts.

V : Size of vocabulary.

P : Number of different symbols.

TP : Highest number of symbols in a text.

Feature Representation Complexity

Word related

Unigrams Bag-Of-Words OpV q or OpLq

Bigrams Bag-Of-Words OpV 2q or OpLq

Trigrams Bag-Of-Words OpV 3q or OpLq

Co-occurrence of two words in paragraph Bag-Of-Words OpV V q or OpN ˆ T T q

Text statistics

Sentence length Integer Op1q

Average word length Float Op1q

Number of punctuation marks Integer Op1q

POS and parsing features

Number of adverbs Integer Op1q

Number of verbs Integer Op1q

Number of modal auxiliary words Integer Op1q

Depth of parse tree Integer Op1q

Number of subclauses in sentence Integer Op1q

Punctuation sequence One-Hot OpTP
P q

Keys words and phrases developed by [35] Bag-Of-Words Op1q

Largest contributors OpN ˆ T T ` V 3 ` L` TP
P q

Table 4.2: Paragraph-features inspired by [53], shown with upper
bounds on feature-space dimensionality.
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Some of the features used by [53] are very high-dimensional, and scale disproportionally with
the size of the vocabulary and data-set. The table below shows the actual dimensionalities of
the dataset used in this project.

Feature Representation Size

Word related

Unigrams Bag-Of-Words « 7,900

Bigrams Bag-Of-Words « 28,000

Trigrams Bag-Of-Words « 37,000

Co-occurrence of two words in paragraph Bag-Of-Words « 260,000

Text statistics

Sentence length Integer 1

Average word length Float 1

Number of punctuation marks Integer 1

POS and parsing features

Number of adverbs Integer 1

Number of verbs Integer 1

Number of modal auxiliary words Integer 1

Depth of parse tree Integer 1

Number of subclauses in sentence Integer 1

Punctuation sequence One-Hot 100

Keys words and phrases developed by [35] Bag-Of-Words « 110

Total « 340,000

Table 4.3: Paragraph-features inspired by [53] used for detecting
argument elements. Size is the number of dimensions in the respective
feature-space.

The features presented above creates a very large features space with approximately 340,000
dimensions for detecting argument elements. When detecting links between argumentative ele-
ments (textual entailment), both the text and the hypothesis must be represented, together with
possible similarity measures. This creates twice as many features (670,000) for this task. The
features are also very sparse. 6.3% of the sample-vs-feature matrix was non-zero for the training
data, while 4.3% of the sample-vs-feature matrix for the test data was non-zero (attributed to
the difference in vocabulary between the two datasets).
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4.2.6 Preprocessing for Argument Structure Detection

Table 4.4: Information regarding the
bipartite premises-claims graph from
the Araucaria database.

Graph Info

Nodes 4543
Edges 3289
Connected Components 1261
Premises 3185
Claims 1358
Shared Nodes* 770

* Samples that exists both as premises
and claims.

Detecting argument structures is done by identifying
links between texts and hypotheses/claims.
The JSON-files of the Araucaria database contain
argument maps. From this data, a large bipartite
graph was created, with the bisection consisting of
claims vs. supporting texts/premises. As some ar-
gument maps may have subordinatively compound
arguments, a node from the Araucaria database may
appear both on the claim-side and the premise-side,
although no duplicates were allowed on the same side.
Figure 4.2 shows two of the largest connected com-
ponents from the bipartite graph. Most of the com-
ponents were much smaller and many consists of a
claim with only one or two premises. A few statistics
are shown in table 4.4. A notable feature is that more
than half of the claims also exist as premises, which
comes from the sequential argument-structures in the Araucaria dataset.

(a) A large connected component.
Claims are red and premises are blue.

(b) A large connected component
with multiple claims. Claims are red
and premises are blue.

Figure 4.2: Two of the largest connected components created from the
Araucaria dataset.

The bipartite graph describes the true linking between claims and premises. To learn this struc-
ture, we consider the detection of links between nodes to be a classification problem, where
each link is independent of the neighbourhood of the nodes. Note that for using this system,
we assume that a different system has made a perfect segmentation of a text into claims and
premises. Description of the systems used for detecting these links, are described in 4.4.
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4.2.7 Outlier Creation

In some of the following sections it was useful to have some synthetically generated datapoints
for testing the methods ability to separate the real argument data from noise/random data. A
common way to create outliers, is to add noise to sampled data. Three methods of generating
outliers were considered, as illustrated in the following. Ideally the outliers should be similar to
the features that could be found from real texts, although they should not be argumentative.

Sample                       Generated

Figure 4.3: Randomly distributed noise. A sample from
the training data is used and noise is added. The noise can be
positive (green) or negative (red), but since the original data is
all positive this restriction is maintained on the new data. The
sparsity of the data is changed as more features will be in use
after adding noise. As many of the features are counted values,
the noisy data may not truly make sense, as the noisy data could
represent a floating point number of occurrences of a word of
word-combination.

Sample                       Generated

Figure 4.4: Specifically added noise. A sample is again used
from the training data, but noise is only added to the features
that are already in use. This maintains sparsity fo the data as no
features will be solely composed by noise. The original structure
of the sample is maintained though and the new datapoint may
realistically not be an outlier, as the same features in a sparse
situation may represent an almost-identical text-sample. Again
the noisy data may not truly make sense, as the noisy data could
represent a floating point number of occurrences of a word of
word-combination.
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Sample                       Generated

Figure 4.5: Generated sparse points. Random, sparse
points are generated by using statistics from the training data.
the probability for each feature being non-zero are estimated from
their frequency. From these probabilities new datapoints can be
sampled with sparse features. The mean-values for each feature is
used with a Poisson or a Gaussian distribution to sample the ac-
tual values of the features. The argument features are all positive
and discrete and so use the Poisson distribution, while Doc2Vec
and Word2Vec create continuous data and would use a Gaussian.

All of the three methods for creating outliers were used, and the features stacked together to
outlier datasets including all three types. As the outlier datasets were only used to compare
methods for how well they could separate the outliers, it does not matter whether some of the
outliers are potentially undetectable.
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4.3 Argumentative Element Detection

[53] describes the task at hand as:

”The detection of all the arguments presented in a free text is similar to the binary
classification of all the propositions of the text as argumentative or non-argumentative.”

This project attempts to reproduce the system [53] made. The idea is that a text contain a
number of propositions, which can be segmented. Furthermore it assumes that these proposi-
tions are either argumentative or not. The segmentation is not described thoroughly, but could
be performed with a sentence-tokenizer, such as the ones available from NLTK, ([50]) or from a
text’s parsing. This method assumes that propositions are contained within sentences. This is
not always the case, as some sentences uses information from previous sentences. For example
”It is a commonly used algorithm” could be an argument for testing a specific algorithm on a
problem, although information is needed from the previous sentences about what algorithm is
in question. Dependency parsers, such as the one available from the Stanford group ([70]), can
be used to detect such relations. It is thus possible that propositions could be contained within
sentences if some additional information is appended. In this project, the assumption of proposi-
tions being contained in sentences is used as an initial approach to the problem. The segmented
sentences can now be classified as argumentative or not, depending on whether they contain an
argumentative propositions or not. A classifier is thus supposed to classify argumentation by
detecting the features of argumentative propositions within sentences, while disregarding any
irrelevant information that may also be in the sentence.

From section 4.2.4 a set of unlabelled sentences were gathered. Using the methods of 4.2.7,
a set of synthetically generated samples were created as outliers. Using these datasets, some
experiments were run to test how well the unlabelled data could be used to supplement the
original data.

4.3.1 Preliminary Analysis of System

Propositions as Being Argumentative and Non-Argumentative

The definition of a propositions, as given in 3.1, is a statement which is either true or false.
From a completely logical perspective, it is always possible to create a logical rune that includes
a proposition. For example, given some propositions a (which may be a compound of many
propositions), one could claim a new proposition (which may be true or false)

a^ bÑ c, (2)

using arbitrary propositions b and c.

In human argumentation the rules are a little stricter, as picking a completely random proposi-
tions b and c would typically lead to nonsense and inconsistency. Although, in a similar fashion
one could typically come up with some propositions b and c that could be used together with
an initial proposition a. Since a proposition contains some kind of information, it is difficult to
imagine propositions that can not be used in any argument in any context. This questions the
usefulness of a system detecting argumentative and non-argumentative propositions.
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Exceptions would be tautologies and inconsistencies, which are propositions whose truth-values
are the same irrelevantly of other information. These statements do not contain any information
and can thus be irrelevant in argumentation.

Another exception in natural language are sentences that do not contain any propositions. An
example of such a sentence could be a question. The question is a query for information from
another participant in a context, and may thus be without any information.

Overall it seems that the use of a detection-system for detecting argumentative parts would sort
out non-informational sentences, tautologies and inconsistencies, to keep informational proposi-
tions for argumentation.

Relation to Topic Modelling

Topic modelling is the use of statistical and machine learning methods for discovering abstract
”topics” occurring in documents. A topic will contain documents that are more similar to
each other in phrasing and vocabulary, than they are to documents from other topics. Ideally
argument mining should be able to work on any topic, as the semantic structures of arguments
do not need to reside within specific vocabularies. There are though a few similarities to topic
modelling, some of which may be unwanted. When representing documents as bag-of-words,
bigrams, trigrams and co-occurrences, the features become very dependent on the vocabulary of
the respective documents. When detecting arguments in data, the system may actually detect
whether other documents are from the same topic, as only arguments within the training-data’s
topic have ever been encountered and arguments typically contain statements in the same topic.
When considering the textual entailment task (Link Detection in this report 4.4), the topic
modelling aspect may be wanted, as knowing whether the premise and claim are from the
same topic would be a very relevant information. Although it could also make the system less
generalizable to new texts, as large corpora would repeatedly need to be tagged when a new
topic is encountered.
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4.3.2 Separation of Outliers

The synthetically generated outlier-dataset is assumed to be non-argumentative. The argument-
detection system should therefore ideally be able to separate these samples from the argumenta-
tive samples found in the Araucaria database. For testing this hypothesis, a radial-basis function
SVM were tested to separate the two classes, creating the confusion matrix in figure 4.6.

Real Positives
287

Real Negatives
140 Accuracy: 88.52%

Predicted Positives
286

262
61.36%

24
5.62% Precision: 91.61%

Predicted Negatives
141

25
5.85%

116
27.17% NPV: 82.27%

Error rate: 11.48% Recall: 91.29% Specificity: 82.86% F1-score: 91.45%

Test Outlier Separation

Total
427

Figure 4.6: Confusion matrix created from a trained SVM separating
original samples from synthetically generated outliers. The definitions
of the matrix can be seen in appendix A.1. Positives denote the original
distributions, while negatives are outliers.

The fairly high F1-score (and general performance) of the classifier indicates that the outliers
have been generated in such a fashion, that they can be detected as foreign samples by classifiers.
This could suggest that the classifier is capable of detecting arguments, but the synthetically gen-
erated outliers could also have been generated too different from the original data, to represent
features of actual texts.
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4.3.3 Separation of Labelled and Unlabelled Data

For testing whether the labelled data and the unlabelled data comes from similar distributions,
a radial-basis function SVM were optimized for separating the samples of the two datasets.

Real Positives
287

Real Negatives
124 Accuracy: 85.40%

Predicted Positives
297

262
63.75%

35
8.52% Precision: 88.22%

Predicted Negatives
114

25
6.08%

89
21.65% NPV: 78.07%

Error rate: 14.60% Recall: 91.29% Specificity: 71.77% F1-score: 89.73%

Test Separation

Total
411

Figure 4.7: Confusion matrix created from a trained SVM separating
labelled samples from unlabelled samples. The definitions of the matrix
can be seen in appendix A.1. Positives denote the labelled data and the
negatives are the unlabelled.

Figure 4.7 shows how the classifier was quite capable of separating many of the labelled samples
from the unlabelled. This can be caused by the unlabelled data having many non-argumentative
elements, which is the ideal case as it proves the system useful for argument detection. Although
it could also be caused by the new data being too different from the original data, with respect
to topic and vocabulary.

Nonetheless, the elements that were inseparable from the labelled data could very well be argu-
ments, and will later be used as extra labelled samples (4.3.5).
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4.3.4 Separation of Labelled and Unrelated Data

In 4.2.4, a set of unrelated sites were selected. These are from similar sites and should have a
similar distribution of arguments, although they do not use the same

Real Positives
287

Real Negatives
124 Accuracy: 82.73%

Predicted Positives
316

266
65%

50
12% Precision: 84.18%

Predicted Negatives
95

21
5%

74
18% NPV: 77.89%

Error rate: 17.27% Recall: 92.68% Specificity: 59.68% F1-score: 88.23%

Test Separation Unrelated

Total
411

Figure 4.8: Confusion matrix created from a trained SVM separating
original labelled samples from texts extracted from a few sites with unre-
lated topics. The definitions of the matrix can be seen in appendix A.1.
Positives denote the labelled data and the negatives are the unrelated.

The separation of the unrelated data is not considerably better than the separation of unlabelled
data. This indicates that the topic modelling aspect is not the main factor in the argument
detection system.
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4.3.5 Adding Unlabelled Data as Training Data

An additional attempt to separate the data from outliers were made, by adding the inseparable,
unlabelled samples to the training data of an SVM classifier (as in 4.7). The number of labelled
sentences was therefore increased from 2,868 to 2,982.

Real Positives
299

Real Negatives
140 Accuracy: 87.93%

Predicted Positives
286

266
61%

20
5% Precision: 93.01%

Predicted Negatives
153

33
8%

120
27% NPV: 78.43%

Error rate: 12.07% Recall: 88.96% Specificity: 85.71% F1-score: 90.94%

Test Outlier Separation w Unlabelled

Total
439

Figure 4.9: Confusion matrix created from a trained SVM separating
original samples (labelled and unlabelled) from synthetically generated
outliers. The definitions of the matrix can be seen in appendix A.1.
Positives denote the labelled data and the negatives are the unlabelled.

There is no significant increase in performance from using the additional training data, although
the size of the added training set was relatively small. Using more a larger unlabelled dataset
could potentially increase performance.
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4.3.6 Argument Detection

The system used for argument detection seems capable of detecting synthetically generated
outliers with similar feature-statistics. The system should therefore be capable of separat-
ing completely random text-segments from argumentative text-segments, although using actual
text-segments from real texts (random text-segments would be meaningless), could prove more
difficult to separate. The system has similar performance when separating unlabelled data (sim-
ilar topic) from the argumentative elements, as when separating unrelated data (different topic)
from the argumentative elements. This indicates that the system does not rely on topic mod-
elling when detecting arguments. That is, it does not rely on detecting the topics of its training
data, when classifying argumentative elements. Finally the inclusion of unlabelled data to the
classifiers training, did not increase performance for detecting synthetic outliers. The number of
unlabelled samples added was though very small relative to the number original training samples.

Overall the system is difficult to test with the Araucaria database and, due to the reasons
described in 4.3.1, the system may not be the ideal approach on argumentation mining.
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4.4 Link Detection

System used by Palau and Moens

The system created by [53] uses a context free grammar for detecting the structure of arguments.
The grammar analyses the context and sequence of the text-segments in a generative manner to
find probable argument-structures. The grammar knows various argumentative markers, such
as (quoting):

• Conclusive rhetorical marker: therefore, thus, ...

• Support rhetorical marker: moreover, furthermore, also, ...

• Verb related to a premise: note, recall, state, ...

• Verb related to a conclusion: reject, dismiss, declare, ...

amongst others, to identify the relations between segments.

Since the original texts are unavailable, the grammar system was not reproducible, as the orig-
inal text-sequence is necessary for the grammar to detect the structures. For the same reasons
the problem is defined slightly differently in the project. The argument-structure detection is
here defined as detecting links between premises and claims, where the clams and premises have
been pre-separated to the bipartite graph described in 4.2.6. This task is commonly known as
textual entailment.

The data used consists of all edges in the Araucaria database, as well a twice as many samples
from non-adjecent node-pairs (non-arguments). The number of possible edges in the graph is
dependent on the number of premises NP and number of claims CP by

CP ˆNP . (3)

As the number of actual arguments may not increase by this quadratic term, the number of
non-adjacent nodes can increase much faster than the number of adjacent nodes. For example
adding unrelated text to the database would quickly skew the ratio of argument- and non-
argument-relationships between nodes. This creates a highly unbalanced dataset, where the
ratio between argument-edges and non-argument edges can basically become infinitesimal. It is
thus possible that the following methods may only work for relatively small text-passages with
many arguments. This problem is not handled in this project, which focus on the detection task
in the created dataset with approximately two non-argument relationship for every argument
edge.
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System of Project

In the following we attempt to detect the argumentation-structures of the bipartite graph from
4.2.6, by creating features from the nodes’ texts and using various machine learning classifiers
for detecting links between premises and claims. In order to best utilize the algorithms and data
a few approaches were investigated:

4.4.1 Outlier Detection:
Investigates whether some datapoints may be misclassifications and should be disregarded.

4.4.2 Normalization:
Attempts to improve performance by normalizing either the data-matrix’s rows or columns.

4.4.3 Feature Reduction:
Tests how well classification is done when the feature-space dimensionality is reduced.

4.4.4 Data Choice:
Compares the different data-sources’ use for link detection.

4.4.5 Error Comparison + 4.4.6 Ensemble:
Compares previous results and combines these in a simple ensemble.

These approaches were all tested on three classifiers:

1. Logistic Regression

2. Linear SVM

3. Radial Basis Function SVM

Where a one-class radial basis function SVM was used for outlier detection.

4.4.1 Outlier Detection

Meaning of ν in One-Class SVM

For outlier detection, a radial-basis function, one-class SVM was used and trained on the
argument-feature dataset. As explained by [64], this learning algorithm can be used to cre-
ate a hyper-dimensional surface, which separates a region with most of the datapoints, from the
rest of the feature-space. The OneClassSVM from Sklearn was trained using the data created
from the links of the argument maps in the database. According to Sklearn’s website, the SVM
was implemented so that the hyperparameter ν is: ”An upper bound on the fraction of training
errors and a lower bound of the fraction of support vectors”[67]. Thus different outlier-detectors
could be created with different ν’s, which would be more or less prone to classify samples as
outliers. ν could then be selected for a reasonable ratio of outliers.

To test the effect of ν, an initial experiment was made where the SVM was training on the
training data of the project, and ν varied while the number of training-set outliers was observed.
Figure 4.10 shows the outcome of this experiment. Unfortunately the wanted effect of ν was
not found, as far more outliers were assigned in the training data that ν indicated. Thus ν did
not work as an upper bound on training outliers. This makes the performance of the outlier
detector more difficult to define, as one has to weight the importance of outliers and training
data samples. The SVM tended to classify way too many samples as outliers, which would
reduce the training data to a impractically small fraction.
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Figure 4.10: The plot shows the relative number of outliers detection
in the training data, when using various values for ν and γ, with a
radial-basis-function SVM.

To test whether this was a general property of the implementation, a simulated experiment
was created on a simple distribution (Gaussian) with some generated noisy outliers (uniformly
generated). The outcome of this example is illustrated in appendix A.4. This experiment showed
that ν was capable of acting as the wanted ratio of outliers for simpler data. It was therefore
concluded that the reason for the inconsistency between the outlier-ratio and ν is caused by
properties of the data used in this project (the argument features). It is likely that the extreme
sparsity, high-dimensionality relative to samples and discrete values of all features makes the
data difficult for the radial basis function SVM to handle. From the experiments in appendix
A.4 it is made clear, that distributions that are close to residing within a subspace of the feature-
space (such as the stretched distribution of figure A.3c) were difficult to handle. The data of
this project reside in a subspace that is much lower dimensional that the feature-space, because
there are so many more features than samples. This could thus be the cause of the problem.

Alternative Outlier Detection

Instead of using the direct classifications from the SVM as outlier-detection and using ν for
controlling the ratio of outliers, a different approach was used. Three different ratios of outliers
were chosen: 1%, 5% and 10%, so that

r “

¨

˝

0.01
0.05
0.10

˛

‚ (4)

For each outlier-ratio rn, a one-class, radial-basis function SVM was trained on the argument-
feature dataset, with ν “ rn. γ was determined by a simple search, with the goal of separating
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as many of the synthetically generated outliers as possible. The SVM computes the product

ypxnq “ w
Tφpxnq (5)

for all xn’s. The value of ypxnq is negative if the classifier marks it as an outlier (which occurs
with too many samples). The value of ypxnq can be seen as a confidence in sample n being from
the true distribution. A high value means the classifier is very confident that the sample is not
an outlier. This ranking was normalized into a measure, which in the following will be denoted
as the distrust in a sample

distrustpxmq “
´ypxmq ` `

`´ k
(6)

where
k “ min

xPTraining
Data

ypxq ` “ max
xPTraining

Data

ypxq. (7)

The distrust in a sample is a positive value, which for the training set will be distrustpxmq P r0, 1s
and for the test data will be distrustpxmq P r0,8s, although values much higher than one are
unlikely.

From rn a suitable threshold on the distrust-measure was found for the training data. This
threshold was used to remove outliers from the test data. Figure 4.11 shows how the ratios of
outliers between the training data and the test data compare, based on threshold. Ideally the
graphs should follow the diagonal of the graph, so that a similar proportion of outliers is chosen
in the two data sets, which is almost the case. This indicates that the SVM’s predictions are
distributed similarly across the training data and test data, and removing outliers does not have
a significantly higher impact on one data set than the other.
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Figure 4.11: Comparison between outlier-removal from the training
data and the test data. For each outlier-ratio, a threshold was chosen
based on the training data. This threshold was used to remove outliers
from the test data, after which the outlier-ratio in the test data was
noted and plotted above.

69



Methods Link Detection

Performance Without Outliers

By thresholding the distrust measures, three dataset were created (subsets of the original data),
named by:

No Outliers 1 Dataset with 1% outliers removed.

No Outliers 2 Dataset with 5% outliers removed.

No Outliers 3 Dataset with 10% outliers removed.

The training performance using these datasets can be seen in appendix A.2, where it can be
compared to the performance of other methods. When using logistic regression and radial basis
function SVM the removal of the outliers significantly increased training performance and for
the linear SVM the performance were more or less stable. This suggests that the outliers are
samples too difficult for the algorithms to handle. When looking at the test-performance there
is no improvement from removing outliers. It is therefore unlikely that the outliers disrupts the
ability for the algorithms to learn the underlying structure, but are simply difficult for the model
to understand.
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4.4.2 Normalization

In some situations, the features of samples can be scaled and normalized to ease the work of a
machine learning algorithm. As data is typically represented as a matrix with samples along the
rows and features along the columns, the normalization/scaling is here referred to as either row or
column normalization/scaling. All results from training of the different scalings/normalizations
of the data can be seen in A.2.

Row Normalization

The argument features are mostly bag-of-word representations with a few other features. Thus
most of the features are zero and a few will have a small, positive, integral value, generated from
bag-of-word representations of the original texts. The lengths of the texts may vary considerably,
which causes the vector-lengths to vary considerably as well (as long sentences have more words
and word combinations). This can be difficult for machine learning algorithms to handle. An
example of how this can happen, is to consider two sentences where one is much longer than the
other and contains the other as a substring. The distance between the vectors of two sentences
can be very big because the long sentence has a long feature-vector, but the machine learning
algorithms should rather notice their similarity. A common preprocessing of data is thus to
normalize the feature-space, so that all sample-vectors have length 1. This arranges the samples
on a hyperdimensional sphere, so that difference between the samples relate to the angle on the
feature-sphere.

Row-normalization greatly increased training performance. Unfortunately this improvement
does not generalize to the test data, where the performance is more or less the same. The
incapability of generalizing to the test data can be caused by the low amount of data relative to
features, and since the increase in training performance is so significant, the sample-normalized
data still seems better for describing the data. Sample normalization should therefore be tested
in future work if using similar features.

Column Scaling

A different common problem is when the range of the dimensions differ dramatically. In the
argument features used, most of the features are bag-of-word representations and will generally
take on small, integral values. The remaining features can take higher values, and can therefore
have a larger influence on the learning algorithm used. To handle this problem it is common
to standardize the features, so that they all have a standard deviation of 1. This was done by
multiplying all features by a positive factor. This keeps all zeros and thus maintains the sparsity
of the data. The transformation also moves the mean by multiplication of the same factor.

The column scaling provides similar results as the row-normalization when it comes to the
training performance, but the test performance drop dramatically. Column scaling therefore
reduced the model’s ability to generalize to new data and is not recommended.
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4.4.3 Feature Reduction

The argument-features are highly multi-dimensional. This can create over-fitting when learning
from data, as well as being computationally difficult to handle. An interesting investigation is
thus how the classification performance changes when the number of features is reduced. There
are many ways of doing this, and two of them are tested in the following.

Principal Component Analysis

Dimensionality reduction using PCA choose linear-combinations of features based on their ability
to describe the variance of the data. In this project, the top 300 principal components were
selected and trained on to test whether such a feature reduction can assist the classification task.
The number of features is similar to that of the Word2Vec scheme allowing fair comparison. The
PCA dataset had much lower overfitting tendencies as the previously used features, with a very
small performance decrease between training set and test set. The test performance increased
slightly with the logistic regression and the RBF SVM, although the linear SVM had a small
performance decrease.

Non-Negative Matrix Factorization

Non-negative matrix factorization attempts to determine some inner structure of data, which
describes the data to a fair extend with fewer features. For this project the data was mapped
into a 100-dimensional feature space using NMF decomposition. The choice of dimensions was
caused by the complexity of the task, as estimating the two matrices of NMF was very time-
consuming for larger feature spaces. The training performance dropped significantly when using
this dataset, indicating either that the number of internal features was too small or that the
method is not useful. The training performance generalized to the test set without a significant
drop.
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4.4.4 Data Choice

Word2Vec

Using the Word2Vec scheme, an additional dataset was created by using the average, 300-
dimensional word-embedding of the text-segments as features. The performance of using these
features were generally very low compared to the argument features. This may be expected
as all sequential information, which should be important for argument detection, is removed.
Precisely this limitation was inspiration for the development of the Doc2Vec scheme[37], which
is therefore also tested.

Doc2Vec

The Doc2Vec features are claimed to be able to capture sequences of words, and could therefore
potentially be useful for detecting arguments, although this capability did not prove useful here.
The logistic regression used the Doc2Vec features to fit onto the training data with quite a good
training performance, but the test performance was worse than with any other data-set. Both
the linear and radial basis function SVMs had bad training performance (very bad for the linear
one) and similarly bad test performance. One limitation of the Doc2Vec scheme, relative to the
Word2Vec scheme, is that it used a much smaller corpora for training. The Doc2Vec features
are trained from the training data derived from the Araucaria database, which is limited to a
few thousand sentences, whereas the Word2Vec scheme is pretrained by Google on a 100 billion
words dataset (see 4.1.3). The bad performance could therefore be credited to the small amount
of training data.
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4.4.5 Error Comparison

After tuning the classifiers with various methods, a comparison was made concerning the sim-
ilarity in errors of the classifiers. The error similarities are visualized from a matrix illustrated
by figure 4.12. The diagonal element shows the error rate for each classifier (0% is perfect clas-
sification). Off-diagonal elements shows the percentage of samples that both classifiers classified
incorrectly.

a

b

c

d

e

f

d

e f

Classifier A

Classifier B

Classifier C

Figure 4.12: An example of a matrix comparing three classifiers (the
letters inside the matrix represent rates expressed in percentage). The
gray-scaled colouring indicates the error-rate, where darker indicates a
higher rate. Elements a, b and c will show the error-rates of classifiers
A, B and C respectively. d will show the rate of samples what both
classifiers A and B classify incorrectly. Likewise e and f show the rate
of samples incorrectly classified by A and C, and B and C respectively.
Therefore we have d ď minpa, bq, e ď minpa, cq and f ď minpb, cq. The
off-diagonal elements indicates a lower bound on the possible error rate
made from combining two classifiers (assuming knowledge about what
classifier to believe at each sample).

The following abbreviations are used in the visualizations:

LogReg Logistic Regression

LinSVM Linear Support Vector Machine

RBFSVM Radial Basis Function Support Vector Machine

Palau The argument-features inspired by Palau and Moens[53]

RowNorm Row normalized (unit length samples)

ColScal Column scaled (unit variance features)

PCA Principal Component Analysis

NMF Non-negative Matrix Factorisation

74



Methods Link Detection

Figure A.1 in appendix A.3 shows the error-similarity across all learners for all datasets but is
quite cluttered. Figure 4.13 has therefore been made for selected learners and datasets.

1 2 3 4 5 6 7 8 9 10
Learner/Data

1. LogReg: Palau

2. LogReg: Palau RowNorm

3. LogReg: PCA

4. LogReg: NMF

5. LinSVM: PCA

6. RBFSVM: Palau

7. RBFSVM: Palau RowNorm

8. RBFSVM: Word2Vec

9. RBFSVM: PCA

10. RBFSVM: NMF

Le
a
rn

e
r/

D
a
ta

Error-Correlation on Test Data

Figure 4.13

There are several combinations that have small error-similarity, especially concerning the linear
SVM’s usage of the PCA-reduced dataset and the radial basis function SVM’s usage of the
Word2Vec dataset. The lower bounds for some of the combined classifiers are below 10%. This
motivates the next section, which combines some fo the classifiers in a simple ensemble.
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4.4.6 Ensemble

A few simple ensembles were constructed by using the predictive values of a set of learners
as input to a logistic regression, which produced a final prediction. The ensembles used the
following classifiers and data:

Table 4.5: Data and classifiers used in ensembles.

Ens. 0 Ens. 1 Ens. 2

Logistic: Palau X X X
Logistic: Palau Row Normalized X X X
Logistic: Word2Vec X
Logistic: Palau PCA X X X
Logistic: Palau NMF X
Linear SVM: Palau X X
Linear SVM: Palau Row Normalized X X
Linear SVM: Word2Vec X
Linear SVM: Palau PCA X X X
Linear SVM: Palau NMF X
RBF SVM: Palau X X X
RBF SVM: Palau Row Normalized X X X
RBF SVM: Word2Vec X X X
RBF SVM: Palau PCA X X X
RBF SVM: Palau NMF X X

All of the ensemble learners are capable of perfectly fitting to the training data, and so overfitting
is expected. The first ensemble use all of the above datasets. Its performance drops quite a bit
on the test set attributed to its overfitting. Its performance is lower than some of the learning
algorithms it uses. Thus some reduction of the number of learning algorithms should increase
performance. The second ensemble has an increased performance which is higher than that of
any of the previous single classifiers. The overfitting is thus reduced from the first ensemble to
improve performance, motivating the third ensemble, which has further reduced the number of
classifiers, but also decreases performance. Its evident that a large number of possible ensembles
could be created, but this project limited the number of tests to the above three.
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4.4.7 Overall

All three classifier algorithms shows a tendency to overfitting, especially when using the argument-
features. This could be caused by the large number of features, which allows for many degrees of
freedom in the classifiers and increased flexibility. The overfitting tendency is not seen with the
feature reduced PCA and NMF datasets, and is reduced when using Word2Vec and Doc2Vec.
The test performance is highest when using logistic regression with the PCA-dataset or RBF
SVM with the PCA-dataset or the row-normalized dataset, although the performance boost
from using these datasets are not much higher than using the original argument-features. Re-
moving outliers generally did not increase performance.

By combining multiple learners, an ensemble was able to further increase performance by a
few percent. The final F1-performance from this system is at 68% and an accuracy of 73%.
Comparably the performance reported in [53] was:

Using the context-free grammar for parsing the texts we obtain around 60% accuracy
in detecting the argumentation structures, while maintaining around 70% F1-measure
for recognizing premises and conclusions.

As mentioned, the task is slightly differently defined in this project, as the premises and claims
were already separated in the database and the origins of the data were not known. Furthermore
the definition of a correctly detected argumentation structure may be different, as the grammar
defined by [53] can detect complex structures, and not just premise-claims pairs. These struc-
tures could potentially be created similarly by connected the premise-nodes and claims-nodes
that come from the same text-segments in the dataset of this project.
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Chapter 5

Conclusion
A survey of argumentation mining has been made, which summarizes both the philosophical
theories used, as well as the machine learning techniques and datasets available.

For detecting argumentative elements, a system was created and tested by separating synthet-
ically generated datapoints from the data. Three different methods were used to generate the
outlying datapoints, which were all used for challenging the system. The generated samples
corresponds to randomly created text, which does not realistically resemble real text, although
it allows some initial testing. The system was quite capable of separating the generated outliers,
with an F1-score of 91%. A system was also created for separating the labelled argumentative
data from a set of unlabelled data, extracted from similar sites as the Araucaria data. The
system was able to separate most of the unlabelled data, which either indicates low amount of
argumentative elements in the unlabelled data or a large difference in the texts (vocabulary,
structures, sentence lengths etc.). The method was used to label some of the unlabelled data,
and add this to the training data. The amount of added data was very small (as fairly few of
the unlabelled data were inseparable from the argumentative data), which may be the reason
for there being no detectable performance increase from adding the training data. The method
could though be used in future project for increasing the size of the database. Finally the
method of argumentative element detection was questioned, as it may not be the most useful
way of handling the task of argumentative mining. The reasoning behind this conclusion largely
relies on the hypothesis that most sentences can be used argumentatively in some context (with
a few exceptions such as questions, tautologies and inconsistent statements).

The task of detecting argumentative structures were in this project defined as detecting links
in a bipartite graph, with premises in one section and claims in the other. The same features
were used as in the previous task, together with Word2Vec and Doc2Vec schemes which created
alternative datasets. Different ways were tested for making the most use of the argument
features, such as sample-normalization, feature-scaling, outlier removal and features reduction
(using PCA or NMF). The tested machine learning methods were logistic regression, linear SVM
and radial basis function SVM, as well as a simple ensemble combining these methods with a
stacking approach. The best performance was create with an ensemble using multiple datasets
and all three models, whose outputs were fed to an additional logistic regression. This system
was able to detect argumentation links with an F1-performance of 68% and and accuracy of
73%. This performance is similar to the performance quoted in [53], although the comparison
is difficult as the problems are defined slightly differently.
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Chapter 6

Future Work
6.1 Data

The Araucaria database is mostly useful for detecting argument structured between already-
segmented elements, as all data needed for this task exists. Unfortunately the origins of the
text-segments do not exist, which creates problems when attempting to use the methods on real
data (that is not pre-segmented).

Alternatives to the Araucaria data exists, four of which were briefly looked at in this project
(see appendix A.5). The ComArg dataset (A.5.2) was briefly analysed as well and, although
no thorough testing was made, this data seems quite useful. The database only has a total
of 13 claims, but has many arguments for these claims and is more focussed on the textual
entailment task, where the conclusion is known and premises are searched for. The database
contains comments from online forums and is therefore inherently different from the law-focussed
Araucaria database language-wise. One interesting aspect of the ComArg database is that it is
directly extracted from an online forum and methods applied to the database should therefore
be applicable on the online site straight away, while more data may be available if needed.

6.2 Argument Detection

The method of detecting argumentative propositions is not considered ideal for argumentation
mining. A few alternatives is therefore mentioned here, which could be relevant for future work.

One alternative to detecting all arguments in a text is knowing a given proposition and finding
all arguments using that proposition. If the proposition is a claim then this task resembles
textual entailment. This problem is the motivation for much of the argumentation mining field;
juries often want to search in legal material for proving or disproving a specific claim and on-
line debates often concentrate on specific problems within a domain. Restricting argumentation
detection to only search for arguments with specific claims is therefore a very natural approach
and could considerably simplify the task.

If all arguments within a text is needed one could modify use a textual entailment system
to detect entailment between all sentences. This would scale by N2 (where N is the num-
ber of sentences) and could become intractable. If intractable, topic modelling could be used
to encapsulate sentences in related groups an perform entailment detection within the groups.
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Similarly distance measures could be used to only compare sentences that already seems related.

Textual entailment detects an entailment relationship between two texts. These texts can be
composed by multiple sentences. If one splits the textual data into sentences, then these en-
tailment relationships may be difficult to detect. Dependency parsers and named entity parsers
can be used to detect such situations. A logically motivated way te segment texts is relation
extraction, which attempts to detect logical relationships within texts. These relationships can
then be combined to compose th arguments of the text. A survey on relation extraction can be
found in [8].

6.3 Link Detection (Argument Structure)

Outliers

4.4.1 concerned the detection of links in a bipartite graph between premises and conclusions,
in order to find argument structures. The section detected outliers in the dataset and tested
the possible performance improvement from removing these. The performance did not improve
on a test-set which suggest that the outliers did not distort the classification task by making
the classifier focus on incorrect/noisy data. The training performance did increase a bit though
which could indicate that the outliers are samples that are very difficult for the classifier to
understand. It could therefore be interesting to see what properties the outliers have in common,
and whether these properties can be handled somehow (examples of shared properties could be
long sentences, words that only occur in that sentence etc.).

Features

The Word2Vec scheme has gotten a lot of attention and success within the natural language
community. The usage in this project is very naive, as it only uses the mean word-embedding of
text-segments and thus throws away any sequence knowledge. An interesting experiment would
be to combine Word2Vec with a parser in order to make more useful features. Examples of
features that seem relevant to argumentation are the word embeddings of the subjects, objects
and verbs of each sentence. Another interesting feature would be the mean word-embedding
of the delimiters between each sentence or sub-sentence, as these can describe the relationship
betweens statements, possibly in the same was that the phrases of [35] can.

A further experiment would be to allow a classifier access to all the generated features: argument-
features, PCA-reduced or NMF-reduced dataset, Word2Vec and Doc2Vec. The dimensionality
of the new problem will only be slightly increased, as the argument features already has such a
high-dimensional feature-space.

Improved Performance Estimate

In order to better determine the performance of the final ensemble system (or one of the individ-
ual systems), it would be interesting to make a cross-validation test. The cross-validation would
require the training and optimizing of the learning algorithms and dataset listed under ”Ens.
1” in table 4.5 multiple times. As one optimization typically required multiple hours, the total
processing time for a cross-validation can be very long and has thus not been run yet. From
the multiple test results gathered, the variance of the performance can be determined indicating
how certain the performance is.
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Appendix
A.1 Confusion Table Declaration

Real Positives
P

Real Negatives
N

Accuracy
(TN + TP) / n

Predicted Positives
P_pred

TP
TP / n

FP
FP / n

Precision
TP / P_pred

Predicted Negatives
N_pred

FN
FN / n

TN
TN / n

NPV
TN / N_pred

Error rate
(FN + FP) / n

Recall
TP / P

Specificity
TN / N

F1-score
2*TP/(2*TP+FP+FN)

Table Definitions

Total
n

Abbreviations:

n Total Samples
P Positives in Dataset
N Negatives in Dataset
P pred Positives Predicted by Classifier
N pred Negatives Predicted by Classifier
TP True Positives
FP False Positives
FN False Negatives
TN True Negatives
NPV Negative Prediction Value
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A.2 Comparison Between Link Detection Learners

The following two pages lists the performances of various classifiers and data-types on a training
set and a test set.
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Logistic: Palau 2,513 227 5,763 482 0.88 0.84 0.92 0.92 0.08

Logistic: Palau Row Normalized 2,787 113 5,877 208 0.95 0.93 0.96 0.96 0.04

Logistic: Palau Column Scaled 2,906 83 5,907 89 0.97 0.97 0.97 0.98 0.02

Logistic: Word2Vec 473 388 5,602 2,522 0.25 0.16 0.55 0.68 0.32

Logistic: Doc2Vec 868 588 5,402 2,127 0.39 0.29 0.60 0.70 0.30

Logistic: Palau PCA 1,422 377 5,613 1,573 0.59 0.47 0.79 0.78 0.22

Logistic: Palau NMF 957 295 5,695 2,038 0.45 0.32 0.76 0.74 0.26

Logistic: Palau No Outliers 1 2,671 159 5,779 285 0.92 0.90 0.94 0.95 0.05

Logistic: Palau No Outliers 2 2,574 151 5,585 224 0.93 0.92 0.94 0.96 0.04

Logistic: Palau No Outliers 3 1,839 154 5,304 788 0.80 0.70 0.92 0.88 0.12

Linear SVM: Palau 2,741 372 5,618 254 0.90 0.92 0.88 0.93 0.07

Linear SVM: Palau Row Normalized 2,798 333 5,657 197 0.91 0.93 0.89 0.94 0.06

Linear SVM: Palau Column Scaled 2,745 259 5,731 250 0.92 0.92 0.91 0.94 0.06

Linear SVM: Word2Vec 1,524 2,530 3,460 1,471 0.43 0.51 0.38 0.55 0.45

Linear SVM: Doc2Vec 134 81 5,909 2,861 0.08 0.04 0.62 0.67 0.33

Linear SVM: Palau PCA 2,332 3,288 2,702 663 0.54 0.78 0.41 0.56 0.44

Linear SVM: Palau NMF 367 31 5,959 2,628 0.22 0.12 0.92 0.70 0.30

Linear SVM: Palau No Outliers 1 2,681 396 5,542 275 0.89 0.91 0.87 0.92 0.07

Linear SVM: Palau No Outliers 2 2,600 309 5,427 198 0.91 0.93 0.89 0.94 0.06

Linear SVM: Palau No Outliers 3 2,325 189 5,269 302 0.90 0.89 0.92 0.94 0.06

RBF SVM: Palau 2,040 151 5,839 955 0.79 0.68 0.93 0.88 0.12

RBF SVM: Palau Row Normalized 2,995 1 5,989 0 1.00 1.00 1.00 1.00 0.00

RBF SVM: Palau Column Scaled 2,992 5 5,985 3 1.00 1.00 1.00 1.00 0.00

RBF SVM: Word2Vec 2,994 1 5,989 1 1.00 1.00 1.00 1.00 0.00

RBF SVM: Doc2Vec 2,995 5,990 0 0 0.50 1.00 0.33 0.33 0.67

RBF SVM: Palau PCA 1,594 516 5,474 1,401 0.62 0.53 0.76 0.79 0.21

RBF SVM: Palau NMF 1,434 491 5,499 1,561 0.58 0.48 0.74 0.77 0.23

RBF SVM: Palau No Outliers 1 2,407 550 5,388 549 0.81 0.81 0.81 0.88 0.12

RBF SVM: Palau No Outliers 2 2,191 649 5,087 607 0.78 0.78 0.77 0.85 0.15

RBF SVM: Palau No Outliers 3 2,627 1 5,457 0 1.00 1.00 1.00 1.00 0.00

Logistic: Ensemble 1 2,994 1 5,989 1 1.00 1.00 1.00 1.00 0.00

Logistic: Ensemble 2 2,994 1 5,989 1 1.00 1.00 1.00 1.00 0.00

Logistic: Ensemble 3 2,994 1 5,989 1 1.00 1.00 1.00 1.00 0.00

Logistic: Ensemble 4 2,995 1 5,989 0 1.00 1.00 1.00 1.00 0.00

Table A.1: Training Performance Comparison Table of Link Detection Systems
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Logistic: Palau 151 68 520 143 0.59 0.51 0.69 0.76 0.24

Logistic: Palau Row Normalized 150 75 513 144 0.58 0.51 0.67 0.75 0.25

Logistic: Palau Column Scaled 48 68 520 246 0.23 0.16 0.41 0.64 0.36

Logistic: Word2Vec 40 66 522 254 0.20 0.14 0.38 0.64 0.36

Logistic: Doc2Vec 53 108 480 241 0.23 0.18 0.33 0.60 0.40

Logistic: Palau PCA 145 34 554 149 0.61 0.49 0.81 0.79 0.21

Logistic: Palau NMF 91 22 566 203 0.45 0.31 0.81 0.74 0.26

Logistic: Palau No Outliers 1 153 76 512 141 0.59 0.52 0.67 0.75 0.25

Logistic: Palau No Outliers 2 147 69 489 135 0.59 0.52 0.68 0.76 0.24

Logistic: Palau No Outliers 3 127 47 486 138 0.58 0.48 0.73 0.77 0.23

Linear SVM: Palau 173 148 440 121 0.56 0.59 0.54 0.70 0.30

Linear SVM: Palau Row Normalized 172 122 466 122 0.59 0.59 0.59 0.72 0.28

Linear SVM: Palau Column Scaled 50 82 506 244 0.23 0.17 0.38 0.63 0.37

Linear SVM: Word2Vec 130 261 327 164 0.38 0.44 0.33 0.52 0.48

Linear SVM: Doc2Vec 14 27 561 280 0.08 0.05 0.34 0.65 0.35

Linear SVM: Palau PCA 243 345 243 51 0.55 0.83 0.41 0.55 0.45

Linear SVM: Palau NMF 38 0 588 256 0.23 0.13 1.00 0.71 0.29

Linear SVM: Palau No Outliers 1 164 144 444 130 0.54 0.56 0.53 0.69 0.31

Linear SVM: Palau No Outliers 2 159 120 438 123 0.57 0.56 0.57 0.71 0.29

Linear SVM: Palau No Outliers 3 142 98 435 123 0.56 0.54 0.59 0.72 0.28

RBF SVM: Palau 152 57 531 142 0.60 0.52 0.73 0.77 0.23

RBF SVM: Palau Row Normalized 171 96 492 123 0.61 0.58 0.64 0.75 0.25

RBF SVM: Palau Column Scaled 52 104 484 242 0.23 0.18 0.33 0.61 0.39

RBF SVM: Word2Vec 184 91 497 110 0.65 0.63 0.67 0.77 0.23

RBF SVM: Doc2Vec 294 588 0 0 0.50 1.00 0.33 0.33 0.67

RBF SVM: Palau PCA 165 78 510 129 0.61 0.56 0.68 0.77 0.23

RBF SVM: Palau NMF 146 62 526 148 0.58 0.50 0.70 0.76 0.24

RBF SVM: Palau No Outliers 1 170 113 475 124 0.59 0.58 0.60 0.73 0.27

RBF SVM: Palau No Outliers 2 167 121 437 115 0.59 0.59 0.58 0.72 0.28

RBF SVM: Palau No Outliers 3 132 85 448 133 0.55 0.50 0.61 0.73 0.27

Logistic: Ensemble 1 276 351 237 18 0.60 0.94 0.44 0.58 0.42

Logistic: Ensemble 2 248 192 396 46 0.68 0.84 0.56 0.73 0.27

Logistic: Ensemble 3 188 87 501 106 0.66 0.64 0.68 0.78 0.22

Logistic: Ensemble 4 274 449 139 20 0.54 0.93 0.38 0.47 0.53

Table A.2: Test Performance Comparison Table of Link Detection Systems
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A.3 Complete Error Similarity
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Figure A.1: This figure show the error similarity between all learners and datasets (except
the ensembles). The diagonal elements show the error rate of the related classifier, while the
off-diagonal elements show the rate of errors made by both classifiers.
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A.4 Outlier Detection on Simulated Data

(a) ν “ 1.80ˆ10´2, γ “ 3.70ˆ10´7

17/ 60 of the uniform samples clas-
sified as outliers. 600 / 600 of the
Gaussian samples classified as nor-
mal samples.

(b) ν “ 9.10ˆ 10´2, γ “ 1.20ˆ 10´3

49 / 60 of the uniform samples classified as
outliers. 590 / 600 of the Gaussian samples
classified as normal samples.

(c) ν “ 3.60ˆ 10´1, γ “ 9.50ˆ 10´3

59 / 60 of the uniform samples classified as
outliers. 420 / 600 of the Gaussian samples
classified as normal samples.

Figure A.2: Decision functions for outlier detection, using one-class SVM with radial basis
functions, drawing samples from the same distributions. 600 samples were drawn from a
Gaussian distribution and 60 samples were drawn from a uniform distribution as outliers (true
ν is 9.10 ˆ 10´2 ). The Gaussian points are round, while the uniformly distributed points are
squares. The Gaussian datapoints are blue in classified as inliers and red if classified as outliers.
The uniformly distribution samples are green if classified as outliers, and red otherwise. The
”confidence” in classifying as outliers increases for samples distance to the black line, as marked
by the coloured contour lines. Parameter ν have been varied in the plots and γ optimized with
a simple search.

Using the true value of ν (the ratio of outliers) provides a classifier which encapsulates the data
in a very appropriate region with few errors.

86



Appendix Outlier Detection on Simulated Data

(a) ν “ 9.10ˆ10´2, γ “ 1.20ˆ10´3

49/ 60 of the uniform samples clas-
sified as outliers. 590 / 600 of the
Gaussian samples classified as nor-
mal samples.

(b) ν “ 9.10ˆ 10´2, γ “ 3.90ˆ 10´5

54 / 60 of the uniform samples classified as
outliers. 595 / 600 of the Gaussian samples
classified as normal samples.

(c) ν “ 9.10ˆ 10´2, γ “ 1.20ˆ 10´3

54 / 60 of the uniform samples classified as
outliers. 592 / 600 of the Gaussian samples
classified as normal samples.

Figure A.3: These illustrations are similar to those of figure A.2. The true value for ν have
been selected, γ optimized with a simple search and the underlying distributions varied.

Some distributions are clearly easier for the SVM to model than others. The radial basis function
SVM uses the Euclidean distance from datapoints as part of its kernel, which in indifferent of
direction. The round distribution of figure A.3a is easily captured by the distance measure, as
datapoints in the main distributions will have many more neighbours than those outside. The
more stretched distributions have a different scenario, as datapoints at the edges of the original
distribution is only close to part of the original samples. This makes the threshold for neighbours
smaller, causing the SVM to detect non-outliers at locations where multiple outliers happen to
be close.
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A.5 Data Survey

A.5.1 Araucaria

Source [65]

Purpose Detect argument structures in set of pre-segmented propositions.

Contains Argument maps.

Data Size 661 argument maps.

File type JSON

Format Description AIF

Format Example {” nodes ” : [
{”nodeID ”:”255” ,” t ext ” :” Alexander Downer has der ided

[ . . . ] ” , ” type ” :” I ” ,” timestamp”:”2012´04´12
18 : 18 : 22”} ,

{”nodeID ”:”256” ,” t ext ” :” I f the con j e c tu r e that
members [ . . . ] ” , ” type ” :” I ” ,” timestamp”:”2012´04´12
18 : 18 : 22”} ,

. . . ] ,
” edges ” : [

{” edgeID ”:”251” ,” fromID ”:”256” ,” toID ”:”258” ,”
formEdgeID ” : nu l l } ,

{” edgeID ”:”252” ,” fromID ”:”257” ,” toID ”:”258” ,”
formEdgeID ” : nu l l } ,

. . . ] }
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A.5.2 ComArg

Source [16] and [15]

Purpose Textual entailment and opinion mining.

Contains Data from two debates: ”Gay Marriage” and ”Under God in
Pledge”. Each unit is an comment-argument pair, indicating how
the comment relate to the argument. Each argument appears in
many comments and each comment can have multiple arguments.
No segmentation is labelled.

File type XML

Data Size Two datasets:

UGIP 175 comments and 6 arguments

GM 198 comments and 7 arguments

Format Description A unit contains:

Comment The original statement together with the stance of the
statement (Pro/Con)

Argument The argument made (different statements use same
arguments) specified by the annotators together with the
stance of the argument (Pro/Con)

Label from 1-5, indicating whether the comment attack, supports
or have a neutral stance towards the argument.

Labels: 1 Explicitly attack argument (A)

2 Implicitly attack argument (a)

3 Neutral position (N)

s Implicitly support argument (s)

S Explicitly support argument (S)

Format Example <uni t id =”414721685 arg1”>
<comment>

<text>Simple , maybe I b e l i e v e in Allah , or the f l y i n g
spaghe t t i monster , or no god at a l l . Why won ’ t they
put and to the repub l i c , f o r which i t stands , one

nat ion under the f l y i n g spaghe t t i monster . . . ? </ text
>

<stance>Con</stance>
</comment>
<argument>

<text>Separat ion o f s t a t e and r e l i g i o n </text>
<stance>Con</stance>

</argument>
<l abe l >3</l abe l>
</unit>

89



Appendix Data Survey

A.5.3 NoDE

Source [20] and [21]

Purpose Textual entailment.

Contains Pairs of texts and hypotheses.

Data Size Three datasets:

Debatepedia / Procon 260 pairs: 140 supports and 120
attacks in 24 argumentation graphs

Twelve Angry Men 80 pairs: 25 supports and 55 attacks in 3
argumentation graphs

Wikipedia 452 pairs: 215 supports and 237 attacks in 416
argumentation graphs

File type XML

Format Description Each datapoint is a pair between two texts, indicating whether
one text entails the other. They contain:

task Identical throughout database. Indicates that it is from the
argumentation database.

id ID of pair. Unique within topic only.

topic The topic for the pair. The individual text-ids are unique
within each topic. Thus to identify one specific text one
needs both the topic and the text-id.

entailment Whether the text entails the hypothesis or not.

t Text together with id.

h Hypothesis together with id.

Labels: Entailment: YES/NO

Format Example <pa i r task=”ARG” id=”1” top i c=”Violentgames ” enta i lment=”
NO”>
<t id=”2”>Vio l ent v ideo games do not i n c r e a s e

agg r e s s i on .</t>
<h id=”1”>Vio l ent games make youth more a gg r e s s i v e /

v i o l e n t .</h>
</pair>
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A.5.4 Habernal 2015

Source [31] and [30]

Purpose Argumentation mining.

Contains Three datasets:

gold.data.persuasive 990 comments and forum posts labeled as
persuasive or non-persuasive

gold.data.toulmin 340 documents annotated with extended
Toulming model

unlabeled.raw.corpus Remaining 4334 documents from the raw
corpus that have not been annotated in either of the studies

File type XML

Format Description Complicated for showing in single example.

A.5.5 RTE-7

From TAC 2011 RTE Track (RTE-7). Must be requested from tac-admin@nist.gov.

Source [72]

Purpose Recognizing Textual Entailment.

Contains A set of hypotheses and a set of texts. One file contains all texts
with could potentially entail each of the hypotheses (only consider
these texts).

Data Size Between 25 and 45 hypotheses, each with up to 100 candidate
texts.

File type XML

Format Description Several files with several formats.
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