
Development and Verification of a
Proof Assistant

Alexander Birch Jensen

Kongens Lyngby 2016

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Abstract

The thesis describes the development of a formalization in Isabelle of a first-
order logic proof system, which serves as the inference kernel of a proof assistant
developed by John Harrison. By verifying the soundness of the kernel, we verify
the soundness of Harrison’s proof assistant as all of its functionalities are derived
from the kernel. From the verified formalization of the kernel, we generate
executable code to obtain a verified implementation of Harrison’s proof assistant.
We test the implementation by replacing the existing kernel by generated kernel
to gain confidence in the correctness of the formalization.

ii

Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements
for acquiring an MSc in Computer Science and Engineering. The thesis deals
with formalization and verification in the proof assistant Isabelle of a first-order
logic inference kernel.

The thesis is for 30 ECTS in the period from 18th of March 2016 to 18th of
August 2016. I was supervised by Jørgen Villadsen, and co-supervised by Anders
Schlichtkrull.

Prior to the start of my work on this thesis, I had only basic knowledge of
Isabelle. I have had courses on many different topics in logic, including artifi-
cial intelligence, multi-agent systems and logic programming. Also during my
semester abroad at TU Wien, I worked on developing a tactic language for the
proof theory framework GAPT (General Architecture for Proof Theory), where
I was supervised by Stefan Hetzl and Alexander Leitsch.

Prior to submission of this thesis, I did collaborative work with Jørgen Villad-
sen and Anders Schlichtkrull on the paper Verification of an LCF-Style First-
Order Prover with Equality, which describes the verification presented in my
thesis. The formalization has since then received numerous minor improve-
ments. The paper can be found at the web page http://www21.in.tum.de/
~nipkow/Isabelle2016/.

http://www21.in.tum.de/~nipkow/Isabelle2016/
http://www21.in.tum.de/~nipkow/Isabelle2016/

iv

I worked on a project called NaDeA (Natural Deduction Assistant) in collab-
oration with Jørgen Villadsen and Anders Schlichtkrull, where I was mainly
responsible for the implementation of the tool. NaDeA is a simple proof assis-
tant in which first-order formulas can be proved in a verified natural deduction
proof system by manually single-stepping through the rules. The tool can be
found at the web page https://nadea.compute.dtu.dk.

I would like to thank my supervisor Jørgen Villadsen for his tireless efforts to
provide help and feedback in all aspects of my work on this thesis.

I would also like to thank my co-supervisor Anders Schlichtkrull; especially for
helping me to overcome hurdles during the development of the formalization,
and for comments on my work.

Finally, I would also like to Jasmin Christian Blanchette for providing remark-
ably helpful and honest comments on my work during the critical final stages.

Lyngby, 18-08-2016

Alexander Birch Jensen

https://nadea.compute.dtu.dk

Contents

Abstract i

Preface iii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Structure of the Thesis . 4

2 First-Order Logic 5
2.1 Syntax . 7
2.2 Semantics . 8
2.3 Equality . 11

3 Proof Systems 13
3.1 Harrison’s Axiomatic Proof System 14
3.2 Soundness and Completeness . 16

4 Isabelle 17
4.1 LCF-Style Provers and Proof Assistants 17
4.2 Isabelle/HOL . 18

4.2.1 Theories . 19
4.2.2 Data Types . 19
4.2.3 Plain Definitions and Abbreviations 20
4.2.4 Primitive Recursive Functions 21
4.2.5 Proofs . 21

4.3 Isar . 23
4.3.1 Inductive Reasoning . 24
4.3.2 Calculational Reasoning 25

vi CONTENTS

5 Formalization: Syntax, Semantics and Proof System 27
5.1 Syntax . 28
5.2 Semantics . 29
5.3 Rules and Inductive Definition 30

5.3.1 Auxiliary Functions . 31
5.3.2 Rules and Axioms . 33
5.3.3 Inductive Predicate . 34

6 Formalization: Proof of Soundness 37
6.1 Useful Built-in Theorems . 38
6.2 Preliminary Lemmas . 39
6.3 The Soundness Proof . 46

7 Code Generation 49
7.1 Target Language Setup . 49
7.2 The Generated SML File . 51
7.3 Embedding into Existing Code 55
7.4 Tests . 56

8 Experiments 59

9 Conclusion 65

A Isabelle Theory File 67
A.1 Syntax of First-Order Logic . 67
A.2 Definition of Rules and Axioms 67
A.3 Code Generation for Rules and Axioms 70
A.4 Semantics of First-Order Logic 71
A.5 Definition of Proof System . 72
A.6 Soundness of Proof System . 73
A.7 Appendix: Mentioned Built-in Facts 81

Bibliography 83

Chapter 1

Introduction

The reader is expected to have at least a basic background in logic, including
proof systems. It is beneficial, although not strictly required, to have experience
with functional programming.

1.1 Motivation

Proof assistants are computer programs that provide interactive guidance for
constructing proofs. In proof assistants, we can formalize and verify mathe-
matical theorems, algorithms and computer systems. Proof assistants usually
take advantage of built-in ATPs (automated theorem provers) to assist in find-
ing proofs. Recent developments include the verification of the seL4 Microkernel
[KEH+09]. The functional correctness of the microkernel has been verified. This
means that the microkernel has been proved to function correctly in regard to
its abstract specification. The seL4 microkernel runs on various current pro-
cessors, some of which control critical parts of smartphones today, i.e. sending
and receiving antenna signals. Verification of critical hardware and software
components are prime examples of the usefulness of proof assistants.

2 Introduction

Proof systems define how to construct a proof for a given logic, most commonly
by rules and axioms. Proof systems are used as the underlying machinery of
proof checking in proof assistants. Certain proof assistants, like Isabelle, require
that all proofs are built up from a small inference kernel. An inference kernel
is in essence an implementation of a proof system. The most commonly used
instance of Isabelle is based on higher-order logic (HOL).

1. Proofs in Isabelle, even those generated from automated tactics,
are justified by a minimal inference kernel. In contrast to ATPs,
which are complex pieces of software, it is far less likely that a kernel-
certified proof is unsound. 2. Isabelle’s premier logic, HOL, has seen
decades of development of rich mathematical libraries and formal-
izations such as Archive of Formal Proofs. Proofs carried out in
Isabelle have access to this knowledge, which means that there is a
greater potential for reuse of existing developments. [HK16, p. 2]

Examples of proof assistants that have a verified kernel are Harrison’s verifica-
tion of HOL Light [Har06] and its extension by Kumar, Arthan, Myreen and
Owens [KAMO16].

We will use the proof assistant Isabelle. Isabelle features a declarative language
that is inspired by mathematical practice. The language is composed of logic
formulas and structured proofs. Consider the classical first-order logic (FOL)
theorem known as the drinker paradox:

∃x. D(x) −→ (∀x. D(x))

The formula looks slightly different in HOL, which is used in Isabelle, as we
write D(x) as D x. Here is a rather detailed proof in Isabelle:

theorem ∃ x. D x −→ (∀ x. D x)
proof (cases ∀ x. D x)
case True
then have P −→ (∀ x. D x) for P ..
then show ?thesis ..

next
case False
then have ∃ x. ¬ D x unfolding not-all .
then obtain a where ¬ D a ..
then have ¬ D a ∨ (∀ x. D x) ..
then have D a −→ (∀ x. D x) unfolding disj-not1 .
then show ?thesis ..

qed

1.2 Problem Statement 3

We consider the cases for the universally quantified formula; either it is true or
false. If ∀x. D x is true, then the implication is true regardless of the left-hand
side, which makes the whole formula true. In the case where ∀x. D x is false,
there must exist an individual a such that ¬D a. Choosing this a as witness to
the existential quantification makes the left-hand side of the implication false,
which makes the whole formula true. We can save the labor of writing out the
proof structure by using the automated simplification method:

theorem ∃ x. D x −→ (∀ x. D x)
by simp

Following formalization in Isabelle, it is possible to generate executable code
for the defined data types and functions in different programming languages,
including Standard ML (SML). If the data types and functions we generate
code for has been verified, we know that the verified properties also hold for the
generated code.

1.2 Problem Statement

In John Harrison’s Handbook of Practical Logic and Automated Reasoning, an
axiomatic proof system based on FOL is the kernel of a proof assistant that is
implemented in OCaml [Har09, p. 477].

The aim of this thesis is to:

(1) based on Harrison’s code, develop in Isabelle a formalization of the kernel
of a proof assistant based on FOL,

(2) verify the formalization in Isabelle, and

(3) from the formalization generate SML code. To gain confidence that the
formalization is correct, we match the results of the generated code against
the existing code using a test suite.

The implementation also has an SML version developed by Schlichtkrull and
Villadsen [SV] .We will replace the code for the kernel of the SML version with
generated code.

4 Introduction

1.3 Structure of the Thesis

The contents of the remaining chapters are summarized below:

• Chapter 2 defines the syntax and semantics of FOL. The addition of equal-
ity to our logic is described and discussed.

• Chapter 3 discusses proof systems. We define Harrison’s axiomatic proof
system. The soundness and completeness of such an axiomatic proof sys-
tem is defined and discussed.

• Chapter 4 serves as a brief introduction to the proof assistant Isabelle.
In particular, the programming language of Isabelle/HOL and the proof
language Isar (Intelligible Semi-Automated Reasoning).

• Chapter 5 formalizes FOL and the proof system in Isabelle in relation to
the OCaml code in Harrison’s handbook.

• Chapter 6 presents a formalized soundness proof in Isabelle.

• Chapter 7 shows how to generate executable code for the formalized proof
system. Tests of the generated code are compared to the SML version of
Harrison’s proof assistant.

• Chapter 8 presents and discusses experiments with the declarative proof
language in Harrison’s proof assistant.

• Chapter 9 concludes on the final results and reflects on further work.

Chapter 2

First-Order Logic

This chapter briefly discusses first-order logic from a historical perspective, and
then proceeds to define the syntax and semantics of first-order logic in a format
that can serve as the starting point for our formalization.

Initially, the study of logic was the study of valid reasoning.

Logic formalizes valid methods of reasoning. The study of logic
was begun by the ancient Greeks whose educational system stressed
competence in reasoning and in the use of language. [BA12, p. 1]

In particular, the logical nature of arguments in natural languages were studied.
Consider as an example the following two statements that give rise to intuitive
logical reasoning:

(1) If it rains the sewers will flood.

(2) It rains.

6 First-Order Logic

If we accept those statements, it must follow that the sewers will flood. We
can formalize the example statements in propositional logic. However, for more
complex statements atomic propositions are insufficient:

(1) All movies produced by Michael Bay has explosions.

(2) The movie Transformers is produced by Michael Bay.

We cannot formalize the statements in propositional logic as the statement (1)
requires the use of variables and quantifiers, as it holds for all movies, and (2)
states a fact about one movie in particular.

Propositional logic is not sufficiently expressive for formalizing math-
ematical theories such as arithmetic. An arithmetic expression such
as x + 2 > y – 1 is neither true nor false: (a) its truth depends
on the values of the variables x and y; (b) we need to formalize the
meaning of the operators + and – as functions that map a pair of
numbers to a number; (c) relational operators like > must be for-
malized as mapping pairs of numbers into truth values. The system
of logic that can be interpreted by values, functions and relations
is called first-order logic (also called predicate logic or the predicate
calculus). [BA12, p. 3]

Today first-order logic is in many ways the standard for teaching in mathematics
and computer science, but it was not before Hilbert and Skolem that first-order
logic came into existence.

Interestingly, first-order logic did not receive appreciation from mathematicians
and computer scientists about a hundred years ago when it was first introduced.
Before the rise of first-order logic, higher-order logic was the most widely used.
Higher-order logic can not only quantify over individuals, but sets of individuals,
sets of sets of individuals, and so on. Higher-order logic has later also proved
itself useful in applications of computer science, in particular for proof assistants.

Experience with HOL over decades has demonstrated that higher-
order logic is widely applicable in many areas of mathematics and
computer science. In a sense, Higher-Order Logic is simpler than
First-Order Logic, because there are fewer restrictions and special
cases. Note that HOL is weaker than FOL with axioms for ZF set
theory, which is traditionally considered the standard foundation of
regular mathematics, but for most applications this does not matter.
[W+16]

2.1 Syntax 7

In 1986, Pelletier gave seventy-five problems to test the capabilities of an auto-
mated theorem prover. Problem 43 is to define set equality as having exactly
the same members, and prove that set equality is symmetric. [Pel86, p. 201]:

(∀x. ∀y. Q(x, y)←→ ∀z. P (z, x)←→ P (z, y)) −→ ∀x.∀y. Q(x, y)←→ Q(x, y)

P (x, y) is set membership (x ∈ y) and Q(x, y) is set equality (x = y). The
formula may look deceptively simple, but automatic proof procedures often run
into problems. For a proof assistant like Isabelle the formula is easily proved by
full automation.

lemma (∀ x. ∀ y. (Q x y) ←→ (∀ z. (P z x) ←→ (P z y)))
−→ (∀ x. ∀ y. (Q x y) ←→ (Q y x))

by auto

We will try to prove the symmetry of set equality using Harrison’s proof assistant
in Chapter 8.

2.1 Syntax

In first-order logic, the syntax describes how to properly build formulas. For-
mulas may contain terms, namely variables and functions. Therefore, we first
define the terms of first-order logic.

Definition 2.1 A term is defined as either:

• A variable x, where x is the variable symbol.

• A function f(t1, t2, . . . , tn), n ≥ 0, where f is the function symbol, and
the terms t1, t2, . . . , tn are the arguments to the function. Constants are
functions with n = 0. �

8 First-Order Logic

We then define the formulas of first-order logic.

Definition 2.2 We use the letters A and B to denote arbitrary formulas.

A formula is defined as either:

• Truth >.

• Falsity ⊥.

• A predicate P (t1, t2, . . . , tn), n ≥ 0, where P is the predicate symbol, and
the terms t1, t2, . . . , tn are the arguments to the predicate. Propositional
symbols are predicates with n = 0.

• An implication A −→ B.

• A bi-implication A←→ B .

• A conjunction A ∧B.

• A disjunction A ∨B.

• A negation ¬A.

• An existentially quantification ∃x. A.

• A universal quantification ∀x. A. �

Our syntax is similar to Ben-Ari’s in [BA12], but we leave out a few uncommon
logical operators that are expressible by other operators. Furthermore, we also
allow the constants truth and falsity. It should be noted that right-associativity
is used for implication, i.e. p −→ (q −→ r) can be written p −→ q −→ r.

2.2 Semantics

The semantics of first-order logic is the assignment of truth values to formu-
las. The meaning of a formula depends on the meaning of the used variables,
predicates and functions.

A variable denotation assigns values to variables. As known from mathematics,
a variable is a placeholder for some element. The universe defines the type of
the elements that the variables point to. As an example, the variables could
range over natural numbers.

2.2 Semantics 9

We define our semantics similarly to [BA12], but we explicitly introduce the
variable denotation, function denotation and predicate denotation.

Definition 2.3 A variable denotation E, also called environment, maps each
variable symbol to an element of the universe. �

Just as variables are interpreted as elements of the universe, so are function
symbols (with arguments).

Definition 2.4 A function denotation F maps a function symbol with argu-
ments to an element of the universe. �

Lastly, we consider the interpretation of predicates. The predicates are the
atomic propositions of FOL and can be assigned a truth value.

Definition 2.5 A predicate denotation G maps a predicate symbol with argu-
ments to a boolean value. �

We are now ready to define the semantics of terms and formulas. When referring
to the semantics of a given expression, we enclose it in double brackets J and K.
The semantics of terms is defined recursively with regard to their structure.

Definition 2.6 Given a variable denotation E and a function denotation F ,
the semantics of a term is defined as follows:

• JxKE
F = E(x), if x is a variable symbol.

• Jf(t1, t2, . . . , tn)KE
F = F (f, Jt1K

E
F , Jt2K

E
F , . . . , JtnKE

F), if f is a function sym-
bol, and tk for k = 1, 2, . . . , n is a term. �

10 First-Order Logic

The semantics of formulas is defined in a similar way.

Definition 2.7 We use the letters A and B to denote arbitrary formulas.

Given a variable denotation E, a function denotation F , and a predicate deno-
tation G, the semantics of a formula is defined as follows:

• J>KE
(F,G) = true

• J⊥KE
(F,G) = false

• JP (t1, t2, . . . , tn)KE
(F,G) = G

(
P, Jt1K

E
F , Jt2K

E
F , . . . , JtnKE

F

)
, if P is a predi-

cate symbol, and tk for k = 1, 2, . . . , n is a term

• JA −→ BKE
(F,G) =

{
JBKE

(F,G) , if JAKE
(F,G) is true

true, otherwise

• JA←→ BKE
(F,G) =

{
true, if JAKE

(F,G) and JBKE
(F,G) are equal

false, otherwise

• JA ∧BKE
(F,G) =

{
JBKE

(F,G) , if JAKE
(F,G) is true

false, otherwise

• JA ∨BKE
(F,G) =

{
true, if JAKE

(F,G) is true, or if JBKE
(F,G) is true

false, otherwise

• J¬AKE
(F,G) =

{
true, if JAKE

(F,G) is false

false, otherwise

• J∃x. AKE
(F,G) =

{
true, if for some e ∈ U : JAKE[x← [e]

(F,G) is true

false, otherwise

• J∀x. AKE
(F,G) =

{
true, if for all e ∈ U : JAKE[x← [e]

(F,G) is true

false, otherwise
�

Some formulas are true for some variable denotations, function denotations and
predicate denotations, but not in all. Those are the satisfiable formulas. How-
ever, we are mostly interested in formulas that are true for all possible denota-
tions.

Definition 2.8 If JAKE
(F,G) = true for all E, F and G then A is valid. �

2.3 Equality 11

A valid formula is thus also satisfiable. The valid formulas can tell us about
truths that hold regardless of the context. In particular those formulas con-
taining implications are of interest, as an implication can be understood as a
rule.

2.3 Equality

So far we have considered first-order logic without equality where the binary
predicate = does not have a predefined semantics. Having equality available in
the logic is desirable from a mathematical point of view. For the remainder of
this thesis we will be considering first-order logic with equality. We can introduce
equality either as a binary predicate with predefined semantics, or as an atomic
logical operator. To follow the approach by Harrison, we introduce equality as
a binary predicate, but where the usual infix syntax from mathematics s = t
can be used instead of = (s, t).

We want equality to have the properties of reflexivity, symmetry and transitivity:

∀x. x = x

∀x. ∀y. x = y ←→ y = x

∀x. ∀y.∀z. x = y ∧ y = z −→ x = z

We achieve these properties by axioms for reflexivity and congruence for func-
tions and predicates. We present the equality axioms in Chapter 3.

12 First-Order Logic

Chapter 3

Proof Systems

We introduce the proof system HAPS (Harrison’s Axiomatic Proof System) that
is the kernel of the proof assistant implemented in Harrison’s handbook. Fur-
thermore, we discuss its soundness and completeness.

A proof system defines how to construct proofs in the logic, usually by means of
rules and axioms. In particular, we will consider an axiomatic proof system that
combines a large number of axioms and just two rules of inference to construct
proofs.

Given an arbitrary first-order logic formula it is either provable or not in the
proof system. It is provable if we can derive the formula by use of the available
axioms and rules.

Definition 3.1 5 If a formula A is provable in a proof system P , we denote
it `P A. The subscript may be dropped when the proof system in question is
clear. �

14 Proof Systems

3.1 Harrison’s Axiomatic Proof System

We now present HAPS (Harrison’s Axiomatic Proof System) of first-order logic
[Har09, p. 477] in formal notation.

Rules of inference

modus ponens
p −→ q p

q

generalization
p

∀x. p

Logical axioms

axiom_addimp

p −→ q −→ p

axiom_distribimp

(p −→ q −→ r) −→ (p −→ q) −→ p −→ r

axiom_doubleneg

((p −→ ⊥) −→ ⊥) −→ p

axiom_allimp

(∀x. p −→ q) −→ (∀x. p) −→ (∀x. q)

axiom_impall
¬ free_in x p

p −→ (∀x. p)

axiom_existseq

¬ occurs_in x t
∃x. x = t

3.1 Harrison’s Axiomatic Proof System 15

axiom_eqrefl

t = t

axiom_funcong

s1 = t1 −→ · · · −→ sn = tn −→ f(s1, . . . , sn) = f(t1, . . . , tn)

axiom_predcong

s1 = t1 −→ · · · −→ sn = tn −→ P (s1, . . . , sn) −→ P (t1, . . . , tn)

axiom_iffimp1

(p←→ q) −→ p −→ q

axiom_iffimp2

(p←→ q) −→ q −→ p

axiom_impiff

(p −→ q) −→ (q −→ p) −→ (p←→ q)

axiom_true

> ←→ (⊥ −→ ⊥)

axiom_not

¬p←→ (p −→ ⊥)

axiom_and

(p ∧ q)←→ ((p −→ q −→ ⊥) −→ ⊥)

axiom_or

(p ∨ q)←→ ¬(¬p ∧ ¬q)

axiom_exists

(∃x. p)←→ ¬(∀x.¬p)

Table 3.1: Harrison’s Axiomatic Proof System (HAPS)

16 Proof Systems

Consider below a proof of the formula p −→ p:

Example 3.1 Proof of p −→ p in HAPS.

1 p −→ p −→ p addimp

2 (p −→ (p −→ p) −→ p) −→ (p −→ p −→ p) −→ (p −→ p) distribimp

3 p −→ (p −→ p) −→ p addimp

4 (p −→ p −→ p) −→ (p −→ p) MP 2, 3

5 p −→ p MP 4, 1

3.2 Soundness and Completeness

We consider here the soundness and completeness of HAPS.

An unsound proof system may derive invalid formulas, whereas a sound proof
system does not.

Definition 3.2 A proof system is sound if it derives only valid formulas. �

We will prove the soundness of HAPS in Chapter 6.

Lastly, we consider completeness.

Definition 3.3 A proof system is complete if it derives all valid formulas. �

Completeness is desirable, but is a practically useless result without soundness.
In Chapter 7 and in Chapter 8 we provide ample practical evidence for the
completeness of HAPS despite not providing a mathematical proof.

Chapter 4

Isabelle

This chapter introduces the proof assistant Isabelle. Furthermore, it discusses
the LCF-style approach for proof assistants. This chapter also serves as a brief
introduction to programming in Isabelle, where we cover the relevant technical
aspects of our formalization.

Mathematical proofs may contain mistakes, and software may have hidden bugs.
In proof assistants we can computer-check the correctness of mathematical the-
orems and software. The proof assistant assists by offering guidance in the de-
velopment formalization and verification. Even proof assistants are themselves
subject to verification as they are also just pieces of software.

4.1 LCF-Style Provers and Proof Assistants

In the proof assistants Isabelle and Coq, the user gives input to the proof as-
sistant by specifying a proof document. The proof document is developed and
maintained through an IDE (interactive development environment) much like
Eclipse. For regular users of Eclipse the user interface will seem fairly famil-
iar. Coq combines higher-order logic and a richly-typed functional programming
language. Isabelle is generic, but classical higher-order logic is most commonly

18 Isabelle

used. A unique feature of the Isabelle Prover IDE is that it offers the possi-
bility to continuously run and check the proof document. Coq and Isabelle are
arguably the most used proof assistants today.

In the proof document, we define what is to be proved. How we find the proofs
is a different problem altogether. Even more so because we cannot know if a
proof even exists. Isabelle features automated proof search by having access to
a number of provers. In theory, one could construct a simple prover by brute
forcing through all formulas using a proof system. The provers in Isabelle of
course use much more sophisticated algorithms to find the proofs. In some cases,
it will require a combination of different provers to provide a complete proof, or
they may need to be combined with manually defined proof steps. Noteworthy
provers used for automation are the SMT solvers CVC4 and Z3, and the first-
order resolution provers E, SPASS and Vampire [BP16]. Vampire has long
been considered the most successful first-order theorem prover, and has won
the world cup in first-order theorem proving CADE ATP System Competition
(CASC) twenty-seven times [KV13]. However, recent research by Blanchette
et al. suggests that the CVC4 is prover significantly ahead of its competitors
[BGK+16].

The key concept of LCF-style (Logic of Computable Functions) is to have an
abstract type for theorems (the formulas derived by the proof system) in the im-
plementation. Formulas of this abstract type must not be able to be instantiated
outside of the proof system implementation. This requires the implementation
language to be strongly typed such that we can guarantee that this property
holds. Isabelle is implemented purely in LCF-style, and Coq is to some extent
as well.

It is worth mentioning that Coq received the ACM Software System Award
in 2013. Other relevant systems that received the award are the Boyer-Moore
Theorem Prover, the precursor to ACL2, in 2005, Java in 2002, Apache in 1999,
TeX back in 1986, and Unix as the first ever to win the award in 1983. The
awards are given to software systems based on the long-term impact of their
contributions.

4.2 Isabelle/HOL

Isabelle/HOL is the most commonly used instance of Isabelle, and we will also
be using it for our formalization. Isabelle/HOL features higher-order logic and
provides tools ideal for formal specification [NPW02]. We will introduce the
relevant concepts of Isabelle/HOL by means of examples. It should be noted that

4.2 Isabelle/HOL 19

in statements in Isabelle all free variables are implicitly universally quantified,
which generally helps to make the expressions more readable. Also, when we
refer to Isabelle, we always refer to the Isabelle/HOL instance of Isabelle, and
we do not distinguish these two notions.

4.2.1 Theories

Proof developments in Isabelle consist of one or several source files called theory
files. At the start of the file, we specify the theory name, which must always
match the file name. Also, we state what other theory files should be imported.
We generally always import the Main theory.

theory MyTheory
imports Main
begin

end

The data types, definitions, abbreviations, functions and proofs go between the
begin and end commands.

4.2.2 Data Types

The datatype command is used to create inductive data types.

Example 4.1 The following command introduces a data type for representa-
tion of FOL terms:

datatype tm = Var id | Fn id (tm list)

�

The tm type has a constructor Var for variables which takes as argument a
string (variable symbol). The constructor Fn is for function, and is inductively
defined, as it takes as arguments a string (function symbol) and a list of terms.
The different cases are split by the | operator.

20 Isabelle

4.2.3 Plain Definitions and Abbreviations

Plain definitions are non-recursive expressions that make it possible to reason
about "definitions as names" on a higher level, as they are not unfolded by
default. The command definition is for plain definitions.

Example 4.2 The following command introduces a plain definition for checking
if a list has exactly two elements:

definition length2 :: tm list ⇒ bool
where
length2 l ≡ case l of [-,-] ⇒ True | - ⇒ False

�

Similar to definitions, we also have abbreviations, which can be understood as
shorthands for more complex expressions. Unlike definitions they are always
unfolded, and can be useful in cases where we want to have a shorthand for a
complex expression, but we do not need to reason about it on a higher level.

Example 4.3 The following command introduces an abbreviation for checking
if a list consists of exactly two elements:

abbreviation (input) length2 l ≡ case l of [-,-] ⇒ True | - ⇒ False

�

Finally, we will also be using inductive definitions. The command inductive
defines an inductive predicate from the stated introduction rules. Inductive
definitions generate only positive information which make them superior to re-
cursive definitions for purposes such as proof systems.

Example 4.4 The following command defines even natural numbers induc-
tively by the constant zero and successor function:

inductive even :: nat ⇒ bool
where
Zero:
even 0 |

Next:
even n =⇒ even (Suc (Suc n))

�

4.2 Isabelle/HOL 21

4.2.4 Primitive Recursive Functions

There are different ways to define functions in Isabelle. We will be constraining
ourselves to a particular kind of primitive recursive functions, which can be
defined by the primrec command. This kind of primitive recursion requires
us to define an equation for each possible constructor of the data type. Each
equation must specify at most one reduction rule for each constructor. For
instance, for lists we match head and tail on the left-hand side, and use the tail
in the recursive call. Restraining ourselves to such equations ensures that the
function is total, which guarantees termination.

Example 4.5 The following command defines the sum of a list of natural num-
bers by primitive recursion:

primrec list-sum :: nat list ⇒ nat
where
list-sum (h # t) = h + (list-sum t) |
list-sum [] = 0

�

4.2.5 Proofs

Any of the commands theorem, proposition, lemma and corollary can be used to
define proofs. The only difference is the name of the command, which indicates
to the reader the importance of the proof. Proofs can optionally be named, and
thus referenced later. Furthermore, we have to state a HOL formula in Isabelle
that is to be proved.

Example 4.6 The following lemma states that the result of list-sum is equal
to the sum of all elements for a simple list:

lemma list-sum [0 , Suc(0), Suc(Suc(0))] = Suc(Suc(Suc(0)))
apply simp
done

The proof uses apply-style, where we subsequently apply proof methods until
there are no more subgoals left. In this case, the simplifier simp is sufficient. �

Isabelle comes with various proof methods. A full understanding of all the
built-in proof methods is beyond what we can hope to achieve in this thesis.

22 Isabelle

Instead, we will briefly and informally describe each of the proof methods we
will need for the formalization. For more in-depth explanations, please refer to
The Isabelle/Isar Reference Manual [W+16].

• simp performs simplification on the first subgoal. The simplifier performs
rewritings based on information from the theory and proof context, but
in some cases extra rules are needed. Simplification does not necessarily
solve the subgoal.

• simp-all is similar to simp, but performs simplification on all subgoals.

• standard performs a single refinement step, such as an introduction/elim-
ination rule.

• fastforce uses a form of sequent calculus for logic reasoning. This is com-
bined with simplification, and the proof search is conducted using a heuris-
tic depth-first approach.

• metis is a purely logical prover that uses resolution to solve the subgoal.

• iprover is an intuitionistic prover, which means that it searches for a direct
proof using rules taken from the theory or given as arguments.

Even from the descriptions, it is often not clear which proof method can succeed.
We can in many cases ask for assistance by using the automated proof search
feature. There are different tools for automated proof search available, and they
may suggest different solutions. They will not only suggest a proof method to
use, but can also use theorems from the theory. The following commands can be
invoked at any given proof state, and the response will be printed in the output
panel.

• sledgehammer uses external provers, namely resolution and SMT solvers.
On success, the proof method to be used is given in the output panel.

• try0 uses standard proof methods, for instance simp, and does not use any
external provers. It is suitable for sufficiently simple subgoals.

• try uses a combination of provers (and disprovers for a classical contradic-
tion proof or counterexample). It uses both try0 and sledgehammer and
is the preferred command in most cases.

4.3 Isar 23

Example 4.7 The following command invokes the try method on the lemma
from Example 4.6:

lemma list-sum [0 , Suc(0), Suc(Suc(0))] = Suc(Suc(Suc(0)))
try

Running the command gives the output Try0 found a proof: by simp (3 ms). �

4.3 Isar

Isar is a structured language for proof development in Isabelle. The main idea is
that the language is readable by both humans and computers, and it is preferred
over apply-style proofs in Isabelle. We will introduce the relevant aspects of the
Isar language by means of examples. While it may not serve as a complete guide
to learning Isar, the goal is to provide knowledge sufficient to understand the
idea and structure of the proofs in our formalization.

Isar proofs are wrapped by the commands proof and qed with the content in
between. By default the proof commands uses the standard method on subgoals.
To provide a proof of the original statement without alterations, the command
proof - can be used.

Example 4.8 The lemma from Example 4.6 in Isar:

lemma list-sum [0 , Suc(0), Suc(Suc(0))] = Suc(Suc(Suc(0)))
proof simp qed

�

Example 4.9 The lemma from Example 4.6 using the command by:

lemma list-sum [0 , Suc(0), Suc(Suc(0))] = Suc(Suc(Suc(0)))
by simp

�

24 Isabelle

Isar also features forward-chaining proofs where subproofs are combined to prove
the theorem. Local goals are stated using the have command. This is useful
when an intermediate result leads to the final result. The command show states
and solves an existing subgoal. Writing then show carries over the result of the
just previously stated local goal. The top level goal can easily be referenced by
?thesis.

Example 4.10 The following Isar proof uses forward-chaining to prove the
theorem:

lemma even a =⇒ even (a + a)
proof −
assume even a
then have even (a + a) sorry
then show ?thesis .

qed

The command sorry can be used when there is no proof yet. �

4.3.1 Inductive Reasoning

We consider here a relatively simple example of an induction proof:

Example 4.11 The following Isar proof shows that the sum of two even natural
numbers is also even:

lemma even a =⇒ even (a + a)
proof −
assume even a
then have even (a + a)
proof (induct rule: even.induct)
qed (simp add: Zero, simp add: Next)
then show ?thesis .

qed

The proof is by induction on the structure of the inductive definition for even
shown in Example 4.4. The subgoal produced by the induction are solved by
simplification using the rules of even. �

It is possible to use induct also for case proofs, i.e. considering the constructor
cases of a data type, when we do not need the induction hypothesis. The
command next is used to separate the cases, and the command fix makes the
fixed variables universally quantified in entire proof block:

4.3 Isar 25

Example 4.12 The following proof is by cases analysis of the structure of nat-
ural numbers:

lemma even a =⇒ even (a + a)
proof (induct a)
assume even 0
then show even (0 + 0) by simp

next
fix a
assume even (Suc a)
then show even (Suc a + Suc a) sorry

qed

�

4.3.2 Calculational Reasoning

Isabelle features two types of reasoning where we maintain a set of background
facts, called the calculation, leading up to a combined result. Firstly, we can use
the calculation to perform the proof in a transitive chain. Informally speaking,
it is useful when we can prove the goal in a number of smaller steps, but not
everything at once. For instance, assume we want to show a = c, but we can
only show it by first proving a = b followed by b = c. In Isar, we achieve this
by using the commands also and finally.

Example 4.13 The following Isar proof uses calculational reasoning to show
a = c from a = b and b = c:

lemma a = c
proof −
have a = b sorry
also have ... = c sorry
finally show ?thesis .

qed

The dots ... refer to the right-hand side of the previous equation and is useful for
longer expressions. The intermediate equations are proved in a transitive chain
using also, and the chain is ended by finally. Since we end up with a calculation
that exactly shows a = c, the final goal is solved using simply the dot . which
is a shorthand for by standard. �

26 Isabelle

We can also choose to simply name all assumptions and subproofs and reference
them as needed:

Example 4.14 The following Isar proof uses naming and referencing of sub-
proofs to prove the conjunction from Example 4.13:

lemma a = b ∧ c = d ∧ e = f
proof −
have 1 : a = b sorry
have 2 : c = d sorry
have 3 : e = f sorry
show ?thesis
using 1 2 3
by simp

qed

�

By using moreover to state additional facts for the calculation, and using the
facts together by use of the command ultimately, we avoid naming the local
facts and referencing them.

Example 4.15 The following Isar proof uses calculational reasoning to prove
the conjunction from Example 4.13:

lemma a = b ∧ c = d ∧ e = f
proof −
have a = b sorry
moreover have c = d sorry
moreover have e = f sorry
ultimately show ?thesis
by simp

qed

�

Chapter 5
Formalization: Syntax,

Semantics and Proof System

This chapter formalizes the syntax and semantics of first-order logic in Isabelle.
Furthermore, it formalizes the proof system HAPS and shows how to apply the
rules and axioms manually in proofs in Isabelle.

The entire formalization is contained in the Isabelle theory Proven which can
be found in Appendix A. The content is split into separate sections:

1) Syntax of first-order logic

2) Definition of rules and axioms

3) Code generation for rules and axioms

4) Semantics of first-order logic

5) Definition of proof system

6) Soundness of proof systems

7) Appendix: Mentioned built-in facts

28 Formalization: Syntax, Semantics and Proof System

5.1 Syntax

The systematic approach to building terms and formulas is straightforwardly
defined in Isabelle by the datatype command.

We first start by defining a data type for terms:

datatype tm = Var id | Fn id (tm list)

Next, we turn to define the data type for formulas. When possible, we try to
follow the style of the code in Harrison’s handbook. Therefore, the formulas
data type is not defined specifically for first-order logic, but with the possibility
of using the same data type for other logics, such as propositional logic. This is
achieved by means of an arbitrary type constant ′a that determines the type of
atoms:

datatype ′a fm = T | F | Atom ′a |
Imp (′a fm) (′a fm) | Iff (′a fm) (′a fm) |
And (′a fm) (′a fm) | Or (′a fm) (′a fm) | Not (′a fm) |
Exists id (′a fm) | Forall id (′a fm)

In first-order logic the atoms are predicates, and in propositional logic the atoms
are propositional symbols. The constants T and F are for truth and falsity,
respectively. The single-letter names are used to avoid confusion with the built-
in boolean types of Isabelle.

The data type fol is defined to obtain FOL formulas with the derived type fol fm:

datatype fol = R id (tm list)

It specifies the syntax for the atomic parts of our formulas. An alternative data
type for propositional symbols as atoms could easily be implemented to obtain
a derived data type for formulas of propositional logic.

The constructor R must be used when defining FOL atoms. Consider as an
example how we express an equality:

Atom (R (STR ′′= ′′) [x, y])

The string ′′=′′ must be wrapped in the STR constructor for the code generator
to export it correctly.

5.2 Semantics 29

5.2 Semantics

The semantics of first-order logic with equality can be defined as functions in
Isabelle. Given the variable denotation, function denotation and predicate deno-
tation, we define the semantics recursively following the structure of terms and
formulas. Note that we use the letters e, f and g in Isabelle for the denotations.

Following Berghofer [Ber07], we use the type variable ′a. It reflects the arbitrary
type of elements in the universe.

We first define the semantics of terms. We also define the semantics for lists
of terms. Such lists occur in functions and predicates. The semantics of a list
of terms is simply the list of the semantics of each term. Since the functions
are mutually recursive, we must define them simultaneously. The first two
arguments of both functions are the variable denotation and function denotation.
The predicate denotation is not used for terms:

primrec — Semantics of terms
semantics-term :: (id ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm ⇒ ′a and
semantics-list :: (id ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm list ⇒ ′a list

where
semantics-term e - (Var x) = e x |
semantics-term e f (Fn i l) = f i (semantics-list e f l) |
semantics-list - - [] = [] |
semantics-list e f (t # l) = semantics-term e f t # semantics-list e f l

For the case of variables, the usual f has been replaced by - since it is not used.
Likewise for the case of the empty list, neither e nor f is used. We see that e
and f are considered maps pointing to elements of an arbitrary type ′a.

We can now define the semantics of first-order formulas. The semantics of
formulas also depends on the predicate denotation which is passed as an extra
argument:

primrec — Semantics of formulas
semantics :: (id ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ bool)
⇒ fol fm ⇒ bool

where
semantics - - - T = True |
semantics - - - F = False |
semantics e f g (Atom a) = (case a of R i l ⇒ if i = STR ′′= ′′ ∧ length2 l

then (semantics-term e f (hd l) = semantics-term e f (hd (tl l)))
else g i (semantics-list e f l)) |

semantics e f g (Imp p q) = (semantics e f g p −→ semantics e f g q) |

30 Formalization: Syntax, Semantics and Proof System

semantics e f g (Iff p q) = (semantics e f g p ←→ semantics e f g q) |
semantics e f g (And p q) = (semantics e f g p ∧ semantics e f g q) |
semantics e f g (Or p q) = (semantics e f g p ∨ semantics e f g q) |
semantics e f g (Not p) = (¬ semantics e f g p) |
semantics e f g (Exists x p) = (∃ v. semantics (e(x := v)) f g p) |
semantics e f g (Forall x p) = (∀ v. semantics (e(x := v)) f g p)

The semantics of implication, bi-implication, conjunction, disjunction and nega-
tion is defined using Isabelle’s higher-order logic operators. By doing so, we are
confident that the operators are implemented correctly. The semantics of the
existential quantifier is true if there is a value of the quantified variable such
that the formula is true. For universal quantifiers the formula must be true for
all possible values of the quantified variable. Lastly, the semantics of predicates
deserve a special mention, as we hard code equality into the semantics. If we
encounter an equality predicate R ′′=′′ [s, t], we evaluate to true if the seman-
tic value of s is equal to t, and false otherwise. For any other predicate, the
semantic value is determined similarly to functions by lookup in the predicate
denotation.

5.3 Rules and Inductive Definition

We now cover the formalization of the HAPS proof system. We will first be
defining each rule and axiom independently. We then use these rules and axioms
as our introduction rules in the inductive predicate that can derive formulas
based on HAPS.

We introduce a new type fol-thm for first-order formulas derived in our proof
system:

datatype fol-thm = Thm (concl: fol fm)

We instantiate formulas of this type by the Thm constructor, and we can extract
the formula with concl. Following the style of Harrison’s implementation, we
would simply introduce the type as a type-synonym and avoid the Thm con-
structor. The type-synonym command creates an alias for a type, but Isabelle
does not generate code for it. We need a data type with a constructor that is
hidden outside of the implementation, such that the kernel cannot be bypassed.

5.3 Rules and Inductive Definition 31

5.3.1 Auxiliary Functions

Before we are ready to define our rules and axioms, we need to cover a number
of auxiliary functions and definitions that we will be using. While we seek a
close resemblance to Harrison’s implementation in [Har09], we have reformulated
certain parts of the implementation to more easily construct the proofs.

The definition fol-equal is used for equality of first-order formulas:

definition fol-equal :: fol fm ⇒ fol fm ⇒ bool
where
fol-equal p q ≡ p = q

For the proofs, the Isabelle built-in equality could be used instead. However,
when generating code Isabelle will define its own equality functions in the ex-
ported file. Therefore, we use a wrapper to map equality in Isabelle to the
built-in equality in SML.

We will later need a function that produces a chain of implications of equalities
given two term lists as input. More specifically, given two lists [u1, u2, . . . , un]
and [w1, w2, . . . , wn], and a formula p, we want to produce the formula

u1 = w1 −→ u2 = w2 −→ . . . −→ un = wn −→ p

The equality predicate = (x, y) is simply written as x = y for the sake of
simplicity. In Harrison’s implementation, this is achieved through a more general
function itlist2. To more easily carry through our proofs, we will instead use
two functions tailored for this exact functionality:

definition zip-eq :: tm list ⇒ tm list ⇒ fol fm list
where
zip-eq l l ′ ≡ map (λ(t, t ′). Atom (R (STR ′′= ′′) [t, t ′])) (zip l l ′)

primrec imp-chain :: fol fm list ⇒ fol fm ⇒ fol fm
where
imp-chain [] q = q |
imp-chain (p # l) q = Imp p (imp-chain l q)

The definition zip-eq utilizes zip and map available in Isabelle to return the just
mentioned equalities in a list given two lists of terms. The function imp-chain
then returns the chain of implications given a list of equalities and a formula.

The functions occurs-in and occurs-in-list checks if a variable symbol occurs in
a term and a list of terms, respectively:

32 Formalization: Syntax, Semantics and Proof System

primrec
occurs-in :: id ⇒ tm ⇒ bool and
occurs-in-list :: id ⇒ tm list ⇒ bool

where
occurs-in i (Var x) = (i = x) |
occurs-in i (Fn - l) = occurs-in-list i l |
occurs-in-list - [] = False |
occurs-in-list i (h # t) = (occurs-in i h ∨ occurs-in-list i t)

The function free-in checks if a variable symbol is free in a given formula. If a
variable symbol is free, it occurs in a predicate and is not bound by a quantifier:

primrec free-in :: id ⇒ fol fm ⇒ bool
where
free-in - T = False |
free-in - F = False |
free-in i (Atom a) = (case a of R - l ⇒ occurs-in-list i l) |
free-in i (Imp p q) = (free-in i p ∨ free-in i q) |
free-in i (Iff p q) = (free-in i p ∨ free-in i q) |
free-in i (And p q) = (free-in i p ∨ free-in i q) |
free-in i (Or p q) = (free-in i p ∨ free-in i q) |
free-in i (Not p) = free-in i p |
free-in i (Exists x p) = (i 6= x ∧ free-in i p) |
free-in i (Forall x p) = (i 6= x ∧ free-in i p)

The function equal-length checks if two lists of terms have equal length:

primrec equal-length :: tm list ⇒ tm list ⇒ bool
where
equal-length l [] = (case l of [] ⇒ True | - # - ⇒ False) |
equal-length l (- # r ′) = (case l of [] ⇒ False | - # l ′ ⇒ equal-length l ′ r ′)

For the soundness proof, equal-length l r could be replaced by length l = length r,
using Isabelle’s built-in length function for lists. However, this causes Isabelle to
generate a data type for natural numbers. Furthermore, since the length func-
tion in SML uses integers in contrast to Isabelle which uses natural numbers,
the simple solution is to avoid the length function in Isabelle.

Finally, we have also the abbreviation fail-thm which is used instead of excep-
tions in places where a rule or axiom is used incorrectly:

abbreviation (input) fail-thm ≡ Thm T

We need to use a workaround as Isabelle does not feature throwing of exceptions.
Since fail-thm is used as a return value, it must have the type fol-thm. At first
glance, it will seem disturbing that the formula > is returned. However, misuse

5.3 Rules and Inductive Definition 33

of axioms or rules is not particularly interesting from a theoretical perspective.
Furthermore, it does not affect which formulas can be proved. The formula >
is itself clearly valid and can be assumed to be provable in HAPS.

Alternatives solutions have also been considered. By defining fail-thm as undefined,
the code generator can be instructed to generate exceptions for those cases. The
value undefined has an arbitrary type in Isabelle, and can be used anywhere,
but makes is harder to state the soundness theorem. Alternatively, the option
data type is also available with constructors Some x or None. Ultimately, all
alternatives were rejected to avoid introducing further levels of abstraction into
the proofs and the generated code.

5.3.2 Rules and Axioms

The formulas derivable by the rules and axioms of HAPS are theorems of FOL
given that soundness holds for HAPS. We define the first of our two rules,
namely modus ponens:

definition modusponens :: fol-thm ⇒ fol-thm ⇒ fol-thm
where
modusponens s s ′ ≡ case concl s of Imp p q ⇒

let p ′ = concl s ′ in if fol-equal p p ′ then Thm q else fail-thm | - ⇒ fail-thm

Given premises p −→ q and p, we derive q. If the first premise is not an
implication, or if the second premise is a formula different from p, fail-thm is
returned. Notice that the type of the premises must be fol-thm. This means that
we can only use modus ponens for derived theorems and not arbitrary formulas.

Furthermore, we define the generalization rule:

definition gen :: id ⇒ fol-thm ⇒ fol-thm
where
gen x s ≡ Thm (Forall x (concl s))

The rule states that we can always enclose a derived theorem in a universal
quantifier.

As a result of having only two rules, we have a large number of axioms. We
cover here only some of the most interesting axioms. The code for all of the
axioms can be found in Appendix A.

34 Formalization: Syntax, Semantics and Proof System

We start by defining axiom-impall:

definition axiom-impall :: id ⇒ fol fm ⇒ fol-thm
where
axiom-impall x p ≡ if ¬ free-in x p then Thm (Imp p (Forall x p)) else fail-thm

The axiom states that if variable x is not free in p then the truth of p implies
the truth of ∀x. p. That x is not free in p means that it only occurs as a bound
by a quantifier, or that it does not occur in the formula at all.

Furthermore, we define axiom-funcong:

definition axiom-funcong :: id ⇒ tm list ⇒ tm list ⇒ fol-thm
where
axiom-funcong i l l ′ ≡ if equal-length l l ′

then Thm (imp-chain (zip-eq l l ′) (Atom (R (STR ′′= ′′) [Fn i l, Fn i l ′])))
else fail-thm

The axiom states that if two lists are equal, then applying the first list as argu-
ments to a function is equal to applying the second list. We have instantiated
the axiom with two lists that have the same number of elements, as the whole
formula becomes true if the lists are not equal.

The definition of axiom-predcong is analogous to axiom-funcong and the differ-
ences should be self-explanatory:

definition axiom-predcong :: id ⇒ tm list ⇒ tm list ⇒ fol-thm
where
axiom-predcong i l l ′ ≡ if equal-length l l ′

then Thm (imp-chain (zip-eq l l ′) (Imp (Atom (R i l)) (Atom (R i l ′))))
else fail-thm

5.3.3 Inductive Predicate

After defining the rules and axioms of HAPS, we collect them as introduction
rules in an inductive predicate OK:

5.3 Rules and Inductive Definition 35

inductive OK :: fol fm ⇒ bool (` - 0)
where
modusponens:

` concl s =⇒ ` concl s ′ =⇒ ` concl (modusponens s s ′) |
gen:

` concl s =⇒ ` concl (gen - s) |
axiom-addimp:

` concl (axiom-addimp - -) |
axiom-distribimp:

` concl (axiom-distribimp - - -) |
axiom-doubleneg:

` concl (axiom-doubleneg -) |
axiom-allimp:

` concl (axiom-allimp - - -) |
axiom-impall:

` concl (axiom-impall - -) |
axiom-existseq:

` concl (axiom-existseq - -) |
axiom-eqrefl:

` concl (axiom-eqrefl -) |
axiom-funcong:

` concl (axiom-funcong - - -) |
axiom-predcong:

` concl (axiom-predcong - - -) |
axiom-iffimp1 :

` concl (axiom-iffimp1 - -) |
axiom-iffimp2 :

` concl (axiom-iffimp2 - -) |
axiom-impiff :

` concl (axiom-impiff - -) |
axiom-true:

` concl axiom-true |
axiom-not:

` concl (axiom-not -) |
axiom-and:

` concl (axiom-and - -) |
axiom-or :

` concl (axiom-or - -) |
axiom-exists:

` concl (axiom-exists - -)

The symbol ` can be used instead of OK and the outermost parentheses can
be omitted, i.e. OK (Imp p q) can be written as ` Imp p q. The value of a
statement ` p is true if p can be proved, and false otherwise. The premises of
gen and modusponens are stated explicitly by use of the meta-implication =⇒.
The preconditions of the axioms are not stated explicitly, as the formula > is
returned in case of an exception.

36 Formalization: Syntax, Semantics and Proof System

The following example shows a proof with ` by use of the rules and axioms.

Example 5.1 The following is a proof in Isabelle of Example 3.1:

corollary ` Imp p p
proof −
have 1 : ` concl (Thm (Imp (Imp p (Imp (Imp p p) p))

(Imp (Imp p (Imp p p)) (Imp p p))))
using axiom-distribimp
unfolding axiom-distribimp-def
by simp

have 2 : ` concl (Thm (Imp p (Imp (Imp p p) p)))
using axiom-addimp
unfolding axiom-addimp-def
by simp

have 3 : ` concl (Thm (Imp (Imp p (Imp p p)) (Imp p p)))
using 1 2 modusponens
unfolding modusponens-def fol-equal-def
by fastforce

have 4 : ` concl (Thm (Imp p (Imp p p)))
using axiom-addimp
unfolding axiom-addimp-def
by simp

have 5 : ` concl (Thm (Imp p p))
using 3 4 modusponens
unfolding modusponens-def fol-equal-def
by fastforce

show ?thesis
using 5
by simp

qed

�

Chapter 6
Formalization: Proof of

Soundness

This chapter presents a formalization of a proof of soundness for HAPS in Isa-
belle. We present all parts of the proof including some helpful lemmas from
Isabelle.

By proving the soundness of our inductive predicate `, we also prove the sound-
ness of HAPS. This is of course assuming that we translated the logic correctly
into Isabelle. Recall soundness formulated as:

` p implies p true in variable, function and predicate denotations

We only consider valid formulas. That is, formulas that can be derived from no
assumptions. Assumptions can still be introduced by means of implications in
the formula p. This is also reflected in the type of ` as the only argument is the
formula in consideration. In Isabelle, we formulate the soundness property as:

theorem soundness:
` p =⇒ semantics e f g p

Here, the free variables e, f and g are the variable, function and predicate deno-
tations, respectively.

38 Formalization: Proof of Soundness

6.1 Useful Built-in Theorems

Isabelle has numerous built-in theorems, readily available for us to use in our
proofs which we listhere. Please note that the simp also has access to a number
theorems as rewrite rules, even without explicitly adding then to the command.

• fun-upd-twist shows that the order of two map updates is interchangeable
when the keys updated are different.

x 6= x ′ =⇒ e(x := v, x ′ := v ′) = e(x ′ := v ′, x := v)

• fun-upd-upd shows that two consecutive assignments to the same key ren-
ders the first assignment irrelevant.

e(x := v, x := v ′) = e(x := v ′)

• iff shows that bi-implication can be expressed by means of a conjunction
of implications (one for each direction).

(P −→ Q) −→ (Q −→ P) −→ P ←→ Q

• imp-conjL shows the equivalence of two nested implications and conjunc-
tion on the left-hand side of an implication.

(P ∧ P ′ −→ Q) ←→ (P −→ P ′ −→ Q)

• list.case(1) shows that only the empty list case is used when the list is
empty.

(case [] of [] ⇒ P | h ′ # t ′ ⇒ P ′ h ′ t ′) = P

• list.case(2) shows that only the head/tail case is used when the list is not
empty.

(case h # t of [] ⇒ P | h ′ # t ′ ⇒ P ′ h ′ t ′) = P ′ h t

• list.case-eq-if shows that case split on lists can be achieved by means of
if-then-else combined with head and tail functions.

(case l of [] ⇒ P
| h # t ⇒ P ′ h t) = (if l = [] then P else P ′ (hd l) (tl l))

• list.collapse shows that head and tail always exist for a non-empty list.
l 6= [] =⇒ hd l # tl l = l

• list.exhaust-sel shows that if both cases of a list case split has the same
result, then the case split can be omitted.

(l = [] =⇒ P) =⇒ (l = hd l # tl l =⇒ P) =⇒ P

• list.inject shows that if two lists are equal, then so are the head and tail
or each list.

h # t = h ′ # t ′ ←→ h = h ′ ∧ t = t ′

6.2 Preliminary Lemmas 39

6.2 Preliminary Lemmas

We introduce here some preliminary lemmas that lead up to the soundness proof.
For many of the lemmas, we realized that they were necessary during the proof
construction process.

The following lemma shows that if a variable does not occur in a term, updating
the variable denotation for that variable does not change the semantics of the
term:

lemma map ′:
¬ occurs-in x t =⇒ semantics-term e f t = semantics-term (e(x := v)) f t
¬ occurs-in-list x l =⇒ semantics-list e f l = semantics-list (e(x := v)) f l

by (induct t and l rule: semantics-term.induct semantics-list.induct) simp-all

This also holds for lists of terms. Since the semantics of terms and lists are
mutually dependent, the proof is carried out by simultaneous inductions.

The next lemma generalizes map′ to formulas. Therefore, we now consider if a
variable is free in a formula. If it is not, then updating the variable denotation
for that variable does not change the semantics of the formula. The proof is by
induction on formulas. The entire proof code can be seen in Appendix A.

lemma map:
¬ free-in x p =⇒ semantics e f g p ←→ semantics (e(x := v)) f g p

proof (induct p arbitrary: e)

The cases for truth and falsity are trivially proved by simplification:

fix e
show ¬ free-in x T =⇒ semantics e f g T ←→ semantics (e(x := v)) f g T
by simp

next
fix e
show ¬ free-in x F =⇒ semantics e f g F ←→ semantics (e(x := v)) f g F
by simp

40 Formalization: Proof of Soundness

For predicates the proof is split into two cases, one for the equality predicate
and one for other predicates. The lemma map′ is used for arguments (terms) of
the predicate:

fix a e
show ¬ free-in x (Atom a) =⇒

semantics e f g (Atom a) ←→
semantics (e(x := v)) f g (Atom a)

proof (induct a)
fix i l
assume ¬ free-in x (Atom (R i l))
then have fresh: ¬ occurs-in-list x l
by simp
show semantics e f g (Atom (R i l)) ←→

semantics (e(x := v)) f g (Atom (R i l))
proof cases
assume eq: i = STR ′′= ′′ ∧ length2 l
then have semantics e f g (Atom (R i l)) ←→

semantics-term e f (hd l) =
semantics-term e f (hd (tl l))

by simp
also have ... ←→

semantics-term (e(x := v)) f (hd l) =
semantics-term (e(x := v)) f (hd (tl l))

using map ′(1) fresh occurs-in-list.simps eq list.case-eq-if list.collapse
unfolding length2-def
by metis
finally show ?thesis
using eq
by simp

next
assume not-eq: ¬ (i = STR ′′= ′′ ∧ length2 l)
then have semantics e f g (Atom (R i l)) ←→ g i (semantics-list e f l)
by simp iprover
also have ... ←→ g i (semantics-list (e(x := v)) f l)
using map ′(2) fresh
by metis
finally show ?thesis
using not-eq
by simp iprover

qed
qed

The cases for the propositional logical connectives are analogous. The connec-
tives Or and Not are shown here:

6.2 Preliminary Lemmas 41

fix p1 p2 e
assume assm1 : ¬ free-in x p1 =⇒

semantics e f g p1 ←→
semantics (e(x := v)) f g p1 for e

assume assm2 : ¬ free-in x p2 =⇒
semantics e f g p2 ←→
semantics (e(x := v)) f g p2 for e

show ¬ free-in x (Or p1 p2) =⇒
semantics e f g (Or p1 p2) ←→
semantics (e(x := v)) f g (Or p1 p2)

using assm1 assm2
by simp

next
fix p e
assume ¬ free-in x p =⇒

semantics e f g p ←→ semantics (e(x := v)) f g p for e
then show ¬ free-in x (Not p) =⇒

semantics e f g (Not p) ←→ semantics (e(x := v)) f g (Not p)
by simp

The cases for quantifiers are proved by metis with the lemmas fun-upd-twist and
fun-upd-upd following simplification:

fix x1 p e
assume ¬ free-in x p =⇒

semantics e f g p ←→
semantics (e(x := v)) f g p for e

then show ¬ free-in x (Exists x1 p) =⇒
semantics e f g (Exists x1 p) ←→
semantics (e(x := v)) f g (Exists x1 p)

by simp (metis fun-upd-twist fun-upd-upd)
next
fix x1 p e
assume ¬ free-in x p =⇒

semantics e f g p ←→
semantics (e(x := v)) f g p for e

then show ¬ free-in x (Forall x1 p) =⇒
semantics e f g (Forall x1 p) ←→
semantics (e(x := v)) f g (Forall x1 p)

by simp (metis fun-upd-twist fun-upd-upd)

For our next lemma, we want to show that a list of length two has exactly two
elements, namely the head of the list followed by the head of the tail:

42 Formalization: Proof of Soundness

lemma length2-equiv:
length2 l ←→ [hd l, hd (tl l)] = l

proof −
have length2 l =⇒ [hd l, hd (tl l)] = l
unfolding length2-def
using list.case-eq-if list.exhaust-sel
by metis
then show ?thesis
unfolding length2-def
using list.case list.case-eq-if
by metis

qed

Next, we show the symmetry of the definition for equal-length. That is, the order
of the arguments is interchangeable. Induction on lists is required to prove the
lemma:

lemma equal-length-sym:
equal-length l l ′ =⇒ equal-length l ′ l

proof (induct l ′ arbitrary: l)
fix l
assume equal-length l []
then show equal-length [] l
using equal-length.simps list.case-eq-if
by metis

next
fix l l ′ a
assume sym: equal-length l l ′ =⇒ equal-length l ′ l for l
assume equal-length l (a # l ′)
then show equal-length (a # l ′) l
using equal-length.simps list.case-eq-if list.collapse list.inject sym
by metis

qed

The following lemma shows that if two lists have equal length, then if one has
length two then so does the other. The result seems simple, but it is not obvious
for Isabelle without an explicit proof:

lemma equal-length2 :
equal-length l l ′ =⇒ length2 l ←→ length2 l ′

proof −
assume assm: equal-length l l ′
have equal-length l [t, t ′] =⇒ length2 l for t t ′
unfolding length2-def
using equal-length.simps list.case-eq-if
by metis
moreover have equal-length [t, t ′] l ′ =⇒ length2 l ′ for t t ′

6.2 Preliminary Lemmas 43

unfolding length2-def
using equal-length.simps list.case-eq-if equal-length-sym
by metis
ultimately show ?thesis
using assm length2-equiv
by metis

qed

We now show a property about implication chains (nested implications q1 −→
q2 −→ . . . −→ p). The implication chain is true unless q1, q2, . . . are all true
while p is false. By induction, simplification solves all subgoals with the use of
the lemma imp-conjL:

lemma imp-chain-equiv:
semantics e f g (imp-chain l p) ←→

(∀ q ∈ set l. semantics e f g q) −→ semantics e f g p
using imp-conjL
by (induct l) simp-all

Next, we show this for an implication chain of equalities (s1 = t1 −→ s2 =
t2 −→ . . . −→ p). This proof is by simultaneous induction on two lists, and is
finalized by the intuitionistic prover:

lemma imp-chain-zip-eq:
equal-length l l ′ =⇒

semantics e f g (imp-chain (zip-eq l l ′) p) ←→
semantics-list e f l = semantics-list e f l ′ −→ semantics e f g p

proof −
assume equal-length l l ′
then have (∀ q ∈ set (zip-eq l l ′). semantics e f g q) ←→

semantics-list e f l = semantics-list e f l ′
unfolding zip-eq-def
using length2-def
by (induct l l ′ rule: list-induct2 ′) simp-all
then show ?thesis
using imp-chain-equiv
by iprover

qed

The lemma funcong uses the lemmas about implication chains to the prove the
axiom axiom-funcong, for the case where the two lists are of equal length:

44 Formalization: Proof of Soundness

lemma funcong:
equal-length l l ′ =⇒

semantics e f g (imp-chain (zip-eq l l ′)
(Atom (R (STR ′′= ′′) [Fn i l, Fn i l ′])))

proof −
assume assm: equal-length l l ′
show ?thesis
proof cases
assume semantics-list e f l = semantics-list e f l ′
then have semantics e f g (Atom (R (STR ′′= ′′) [Fn i l, Fn i l ′]))
using length2-def
by simp
then show ?thesis
using imp-chain-equiv
by iprover

next
assume semantics-list e f l 6= semantics-list e f l ′
then show ?thesis
using assm imp-chain-zip-eq
by iprover

qed
qed

The proof is by case analysis. If one of the equalities does not hold, it is trivially
shown by use of imp-chain-zip-eq. However, if they all hold, we show that
the equality of the functions must hold since their arguments have the same
semantics.

The lemma predcong is similar to funcong, but for predicates. Again, we consider
the two cases of predicates, namely equalities and all other predicates:

lemma predcong:
equal-length l l ′ =⇒

semantics e f g (imp-chain (zip-eq l l ′) (Imp (Atom (R i l)) (Atom (R i l ′))))
proof −
assume assm: equal-length l l ′
show ?thesis
proof cases

The case for the equality predicate requires us to provide Isabelle more assistance
by proving some intermediate results:

6.2 Preliminary Lemmas 45

assume eq: i = STR ′′= ′′ ∧ length2 l ∧ length2 l ′
show ?thesis
proof cases
assume semantics-list e f l = semantics-list e f l ′
then have semantics-list e f [hd l, hd (tl l)] =

semantics-list e f [hd l ′, hd (tl l ′)]
using eq length2-equiv
by simp
then have semantics e f g (Imp (Atom (R (STR ′′= ′′) l))

(Atom (R (STR ′′= ′′) l ′)))
using eq
by simp
then show ?thesis
using eq imp-chain-equiv
by iprover

next
assume semantics-list e f l 6= semantics-list e f l ′
then show ?thesis
using assm imp-chain-zip-eq
by iprover

qed

The case for non-equality predicates is easily solved as the complex semantics
of equality predicates can be ignored:

assume not-eq: ¬ (i = STR ′′= ′′ ∧ length2 l ∧ length2 l ′)
show ?thesis
proof cases
assume semantics-list e f l = semantics-list e f l ′
then have semantics e f g (Imp (Atom (R i l)) (Atom (R i l ′)))
using assm not-eq equal-length2
by simp iprover
then show ?thesis
using imp-chain-equiv
by iprover

next
assume semantics-list e f l 6= semantics-list e f l ′
then show ?thesis
using assm imp-chain-zip-eq
by iprover

qed
qed

The case where the equalities does not hold is analogous for both cases of pred-
icates and rather trivial.

46 Formalization: Proof of Soundness

6.3 The Soundness Proof

We are now ready to prove the soundness of the inductive predicate `. The
proof is by induction on `, which means that we prove the soundness for each
rule and axiom of HAPS. The full proof can be found in Appendix A.

theorem soundness:
` p =⇒ semantics e f g p

proof (induct arbitrary: e rule: OK .induct)

Proving the modus ponens rules requires two case proofs, and invoking the
simplifier on all subgoals, while the generalization rule is proved merely by
simplifications:

fix e s s ′
assume semantics e f g (concl s) semantics e f g (concl s ′) for e
then show semantics e f g (concl (modusponens s s ′))
unfolding modusponens-def
proof (induct s)
fix r
assume semantics e f g r semantics e f g (concl s ′) for e
then show semantics e f g (concl (case r of Imp p q ⇒

let p ′ = concl s ′ in if fol-equal p p ′ then Thm q else fail-thm | - ⇒ fail-thm))
unfolding fol-equal-def
by (induct r) simp-all

qed
next
fix e x s
assume semantics e f g (concl s) for e
then show semantics e f g (concl (gen x s))
unfolding gen-def
by simp

In the proof for the modus ponens rule, both s and s′ are of the type fol-thm
which has just a single constructor Thm. After unfolding s the proof is conducted
by structural induction on formulas.

Most of the of the axioms are trivial and can be proved sound by the simplifier.
We show here only the case for axiom-addimp:

fix e p q
show semantics e f g (concl (axiom-addimp p q))
unfolding axiom-addimp-def
by simp

6.3 The Soundness Proof 47

The axiom axiom-impall uses map and axiom-existseq uses map′ due to their
preconditions. Also here, invoking the simplifier followed by the intuitionistic
prover is sufficient:

fix e x p
show semantics e f g (concl (axiom-impall x p))
unfolding axiom-impall-def
using map
by simp iprover

next
fix e x t
show semantics e f g (concl (axiom-existseq x t))
unfolding axiom-existseq-def
using map ′(1) length2-def
by simp iprover

The cases for axiom-funcong and axiom-predcong are almost solved entirely by
the lemmas funcong and predcong, respectively. This is evident as the proofs
are completed by standard which is very basic:

fix e i l l ′
show semantics e f g (concl (axiom-funcong i l l ′))
unfolding axiom-funcong-def
using funcong
by simp standard

next
fix e i l l ′
show semantics e f g (concl (axiom-predcong i l l ′))
unfolding axiom-predcong-def
using predcong
by simp standard

The axiom axiom-impiff also deserves a special mention as it can be proved
sound by the simplifier by providing only the lemma iff. This is due to the close
relation between bi-implication, implication and equality in Isabelle:

fix e p q
show semantics e f g (concl (axiom-impiff p q))
unfolding axiom-impiff-def
by simp (rule iff)

48 Formalization: Proof of Soundness

Chapter 7

Code Generation

This chapter covers the SML code generation from the Isabelle formalization,
including target language modifications and result comparisons using a test suite.

There are a number of target language modifications required to use the gener-
ated code with the existing SML version. Also, the generated file itself deserves
some explanation. To gain confidence in our formalization, we compare the re-
sults between running the test suite in the OCaml version, the SML version and
the SML version with the generated kernel.

7.1 Target Language Setup

In principle, code generation from Isabelle does not require any setup, as code
is generated for all needed data types and functions. However, in this particular
setup, we want to generated code to hook into the existing SML code base by
Schlichtkrull and Villadsen [SV]. There already exist data types for terms, for-
mulas, etc., that we want to use. We utilize the code-printing command to spec-
ify how certain data types, their constructors and constants should be printed in
the target language. We note that it is possible to use code-printing to generate

50 Code Generation

code that functions differently from that of the formalization. Therefore, it is
essential to show caution when using this command.

We want our data type tm to be printed as the existing data type in SML term.
The constructors are similar:

code-printing type-constructor tm ⇀ (SML) term |
constant Var ⇀ (SML) Var - |
constant Fn ⇀ (SML) Fn (-, -)

The data type fm is printed as formula. Note that the constants for truth and
falsity are different:

code-printing type-constructor fm ⇀ (SML) - formula |
constant T ⇀ (SML) True |
constant F ⇀ (SML) False |
constant Atom ⇀ (SML) Atom - |
constant Imp ⇀ (SML) Imp (-, -) |
constant Iff ⇀ (SML) Iff (-, -) |
constant And ⇀ (SML) And (-, -) |
constant Or ⇀ (SML) Or (-, -) |
constant Not ⇀ (SML) Not - |
constant Exists ⇀ (SML) Exists (-, -) |
constant Forall ⇀ (SML) Forall (-, -)

The data type for fol, which specify the atoms in formulas:

code-printing type-constructor fol ⇀ (SML) fol |
constant R ⇀ (SML) R (-, -)

By default Isabelle generates abstract code for the equality operator, and im-
plements it for each data type it is used on. In our case, we need to check the
equality of two formulas for the modus ponens rule. We map this equality check
to the built-in equality of SML:

code-printing — More efficient
constant fol-equal ⇀ (SML) - = -

In Section 7.4 we compare the efficiency of the built-in equality in SML to the
otherwise generated equality function.

7.2 The Generated SML File 51

7.2 The Generated SML File

We generate the SML code with the export-code command. We provide the
names of the definitions for all rules and axioms, and combine these into a
module Proven:

export-code
modusponens gen axiom-addimp axiom-distribimp axiom-doubleneg
axiom-allimp axiom-impall axiom-existseq axiom-eqrefl
axiom-funcong axiom-predcong axiom-iffimp1 axiom-iffimp2 axiom-impiff
axiom-true axiom-not axiom-and axiom-or axiom-exists concl

in SML module-name Proven file Proven.sml

The generated code is exported to the file Proven.sml.

The following signature is generated for the module which is comparable to the
signature of the original version:

structure Proven : sig
type nibble
type fol_thm
val concl : fol_thm −> fol formula
val gen : string −> fol_thm −> fol_thm
val axiom_or : fol formula −> fol formula −> fol_thm
val axiom_and : fol formula −> fol formula −> fol_thm
val axiom_not : fol formula −> fol_thm
val axiom_true : fol_thm
val modusponens : fol_thm −> fol_thm −> fol_thm
val axiom_addimp : fol formula −> fol formula −> fol_thm
val axiom_allimp : string −> fol formula −> fol formula −> fol_thm
val axiom_eqrefl : term −> fol_thm
val axiom_exists : string −> fol formula −> fol_thm
val axiom_impall : string −> fol formula −> fol_thm
val axiom_impiff : fol formula −> fol formula −> fol_thm
val axiom_funcong : string −> term list −> term list −> fol_thm
val axiom_iffimp1 : fol formula −> fol formula −> fol_thm
val axiom_iffimp2 : fol formula −> fol formula −> fol_thm
val axiom_existseq : string −> term −> fol_thm
val axiom_predcong : string −> term list −> term list −> fol_thm
val axiom_doubleneg : fol formula −> fol_thm
val axiom_distribimp : fol formula −> fol formula

−> fol formula −> fol_thm
end = struct

The code generator exports a data type nibble which is not used. This is due
to fact that we instantiate the string "=" for the equality predicate. Despite

52 Code Generation

importing Code-Char to properly export strings in the target language, this
leftover from the code generator cannot be removed:

datatype nibble = Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 |
Nibble5 | Nibble6 | Nibble7 | Nibble8 | Nibble9 |
NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF;

The auxiliary function zip-eq utilizes the built-in map and zip function in Isa-
belle. The code for these auxiliary functions is automatically generated:

fun zip (x :: xs) (y :: ys) = (x, y) :: zip xs ys
| zip xs [] = []
| zip [] ys = [];

fun map f [] = []
| map f (x21 :: x22) = f x21 :: map f x22;

fun zip_eq la l = map (fn (t, ta) => Atom (R ("=", [t, ta]))) (zip la l);

Following LCF-style, the module has its own data type for derived formulas.
We also get code for the function that extracts the formula:

datatype fol_thm = Thm of fol formula;

fun concl (Thm x) = x;

There is also generated code for the remaining auxiliary functions:

fun occurs_in_list uv [] = false
| occurs_in_list i (h :: t) = occurs_in i h orelse occurs_in_list i t

and occurs_in i (Var x) = ((i : string) = x)
| occurs_in i (Fn (uu, l)) = occurs_in_list i l;

fun free_in uu True = false
| free_in uv False = false
| free_in i (Atom a) = let

val R (_, aa) = a;
in
occurs_in_list i aa

end
| free_in i (Imp (p, q)) = free_in i p orelse free_in i q
| free_in i (Iff (p, q)) = free_in i p orelse free_in i q
| free_in i (And (p, q)) = free_in i p orelse free_in i q
| free_in i (Or (p, q)) = free_in i p orelse free_in i q
| free_in i (Not p) = free_in i p
| free_in i (Exists (x, p)) = not ((i : string) = x) andalso free_in i p
| free_in i (Forall (x, p)) = not ((i : string) = x) andalso free_in i p;

7.2 The Generated SML File 53

fun equal_length l [] = (case l of [] => true | _ :: _ => false)
| equal_length l (uu :: r) =
(case l of [] => false | _ :: la => equal_length la r);

fun imp_chain [] q = q
| imp_chain (p :: l) q = Imp (p, (imp_chain l q));

The generated code for generalization is comparable to the original version. The
exceptions from the original version of the modus ponens rule has been replaced
by Thm True for the cases where concl sa is not an implication:

fun gen x s = Thm (Forall (x, (concl s)));

fun modusponens sa s =
(case concl sa of True => Thm True | False => Thm True
| Atom _ => Thm True
| Imp (p, q) => let

val pa = concl s;
in
(if p = pa then Thm q else Thm True)

end
| Iff (_, _) => Thm True | And (_, _) => Thm True
| Or (_, _) => Thm True | Not _ => Thm True
| Exists (_, _) => Thm True | Forall (_, _) => Thm True);

We are now only missing the axioms which are all comparable, except in axiom_funcong
and axiom_predcong where the function itlist2 from the original version has been
replaced by imp_chain and zip_eq:

fun axiom_addimp p q = Thm (Imp (p, (Imp (q, p))));

fun axiom_distribimp p q r =
Thm (Imp ((Imp (p, (Imp (q, r)))), (Imp ((Imp (p, q)), (Imp (p, r))))));

fun axiom_doubleneg p = Thm (Imp ((Imp ((Imp (p, False)), False)), p));

fun axiom_allimp x p q =
Thm (Imp ((Forall (x, (Imp (p, q)))),

(Imp ((Forall (x, p)), (Forall (x, q))))));

fun axiom_impall x p =
(if not (free_in x p) then Thm (Imp (p, (Forall (x, p)))) else Thm True);

54 Code Generation

fun axiom_existseq x t =
(if not (occurs_in x t)

then Thm (Exists (x, (Atom (R ("=", [Var x, t])))))
else Thm True);

fun axiom_eqrefl t = Thm (Atom (R ("=", [t, t])));

fun axiom_funcong i la l =
(if equal_length la l

then Thm (imp_chain (zip_eq la l)
(Atom (R ("=", [Fn (i, la), Fn (i, l)]))))

else Thm True);

fun axiom_predcong i la l =
(if equal_length la l

then Thm (imp_chain (zip_eq la l)
(Imp ((Atom (R (i, la))), (Atom (R (i, l))))))

else Thm True);

fun axiom_iffimp1 p q = Thm (Imp ((Iff (p, q)), (Imp (p, q))));

fun axiom_iffimp2 p q = Thm (Imp ((Iff (p, q)), (Imp (q, p))));

fun axiom_impiff p q =
Thm (Imp ((Imp (p, q)), (Imp ((Imp (q, p)), (Iff (p, q))))));

val axiom_true : fol_thm = Thm (Iff (True, (Imp (False, False))));

fun axiom_not p = Thm (Iff ((Not p), (Imp (p, False))));

fun axiom_or p q =
Thm (Iff ((Or (p, q)), (Not (And ((Not p), (Not q))))));

fun axiom_and p q =
Thm (Iff ((And (p, q)),

(Imp ((Imp (p, (Imp (q, False)))), False))));

fun axiom_exists x p = Thm (Iff ((Exists (x, p)),
(Not (Forall (x, (Not p))))));

end; (∗struct Proven∗)

7.3 Embedding into Existing Code 55

7.3 Embedding into Existing Code

There are a few number of modifications necessary to be able to run the gen-
erated kernel with the existing SML version. Firstly, we note that the gener-
ated file Proven.sml uses transparent ascription in the signature. This means
that objects of the type fol_thm introduced in the module can be instantiated
even outside of the module. To comply with LCF-style such objects can only
be instantiated inside the module. This ensures that only formulas derived
by the proof system are of this type. Therefore, we change the transparent
ascription to an opaque ascription which guarantees this property. The line
structure Proven : sig is modified to structure Proven :> sig.

In the original SML version, the prover is initialized by init.sml or init_nj.sml
for compiling on Moscow ML and SML/NJ, respectively. The file init_nj.sml
is just a wrapper that uses init.sml. Therefore, we only modify the version of
init.sml such that it uses the generated kernel. The line use "lcf.sml" is replaced
by:

use "Proven−lcf.sml";

open Proven;

fun print_thm_aux th = (
open_box 0;
print_string "|−"; print_space();
open_box 0; print_formula_aux print_atom_aux (concl th); close_box();
close_box()

);

fun print_thm th = (print_thm_aux th; print_flush ());

The original contents of lcf.sml also contains code for opening the module along
with two auxiliary function definitions. As these are not part of the generated
code, we include these lines directly in the modified version.

We define a new type thm as an alias for the type fol_thm from Proven. The
original version uses the type name thm which we avoided in Isabelle due to it
being a reserved keyword.

type thm = fol_thm;

The SML/NJ version init_nj.sml is modified to use the generated file instead
of init.sml.

56 Code Generation

7.4 Tests

Now that we have successfully embedded the generated file into the existing
code, we want to test if the modified version of the prover produces the same
results. The original SML version comes with a test suite in the file full_test.sml.
The file also has an OCaml version that was used to compare the results of
the SML version to Harrison’s OCaml version. The file collects the tests that
Harrison included in the OCaml code, as well as adding some new ones, and is
rather exhaustive. Therefore, if the results of the generated version are the same
as the results of SML and OCaml versions, we are confident that the generated
kernel can be safely substituted to obtain a verified kernel.

The full test suite can also be run in Isabelle in the built-in SML environment.
Opening the file Init.thy in Isabelle loads the prover and runs the full test for
the original version. The following line loads the kernels:

SML_file "lcf.sml"

We replace it by the generated kernel (we give the modified files the prefix
Proven):

SML_file "Proven−lcf.sml"
SML_file "Proven−init.sml"

For technical reasons, we must load Proven-init.sml after loading the generated
kernel.

All tests are performed on Windows 10 with an Intel i7-4790k 4.0GHz CPU and
16 GB DDR3 ram. All the executions were also timed. There are two timing for
each run, one where we time entire execution and one where we time only the
test suite. The code also contain examples scattered across the source files which
makes it relevant to disregard the initialization of source files for comparisons.

We compared the output of running the test suite on Harrison’s OCaml version,
Schlichtkrull’s and Villadsen’s SML version, and the generated version. We
found that the results of all three versions were identical.

7.4 Tests 57

Original Generated Generated (built-in equality)

Moscow ML 13.7s (6.7s) 49.4s (24.6s) 13.7s (6.7s)

SML/NJ 6.2s (2.4s) 15.1s (6.9s) 6.1s (2.4s)

Isabelle 1.5s (0.5s) 6.4s (2.9s) 1.5s (0.5s)

Table 7.1: Efficiency of SML code.

Table 7.1 shows that the generated kernel in SML, using built-in equality, per-
forms just as efficiently as the original version. Using the generated equality
function slows the execution down substantially on all compilers. Especially on
Moscow ML we experience a huge drop in efficiency.

58 Code Generation

Chapter 8

Experiments

In this chapter we experiment with the declarative proof language in the proof
assistant implemented in Harrison’s handbook using the generated kernel.

In Chapter 2 we discussed the set of problems for automated theorem provers
(ATP) by Pelletier. In particular, we highlighted problem 43. The majority of
the problems are included in the test suite in full_test.sml, but some of them are
not solved by full automation in Harrison’s proof assistant, at least in reasonable
time, including problem 43. The proof assistant also comes with a declarative
proof language that is somewhat similar to the Isar language in Isabelle, but
obviously much simpler.

We present here three proofs of the problem following experiments with the
proof language. We highlight key concepts of the language and compare the
three proofs.

In the proof below we show each direction of ∀x. ∀y. Q(x, y) ←→ Q(x, y) to be
a consequence of (∀x. (∀y. Q(x, y)←→ ∀z. P (z, x)←→ P (z, y))):

60 Experiments

prove
(<<"(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)) \

==> forall x y. Q(x,y) <=> Q(y,x)">>)
[
assume [("A", <<"forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)">>)],
conclude (<<"forall x y. Q(x,y) <=> Q(y,x)">>) proof
[
fix "x", fix "y",
note ("R", <<"Q(x,y) ==> Q(y,x)">>) proof
[
assume [("", <<"Q(x,y)">>)],
so have (<<"forall z. P(z,x) <=> P(z,y)">>) by ["A"],
so have (<<"forall z. P(z,y) <=> P(z,x)">>) at once,
so conclude (<<"Q(y,x)">>) by ["A"],
qed

],
note ("L", <<"Q(y,x) ==> Q(x,y)">>) proof
[
assume [("", <<"Q(y,x)">>)],
so have (<<"forall z. P(z,y) <=> P(z,x)">>) by ["A"],
so have (<<"forall z. P(z,x) <=> P(z,y)">>) at once,
so conclude (<<"Q(x,y)">>) by ["A"],
qed

],
conclude (<<"Q(x,y) <=> Q(y,x)">>) by ["R", "L"],
qed

],
qed

]

We assume the left-hand side of the implication with the assume command and
give it the name "A". The command is in many ways similar to the Isabelle
counterpart.

The lines below introduce new variables by reducing the quantifiers, and then
directly solve the subgoal (the right-hand side of the implication) following a
proof:

fix "x", fix "y",
conclude (<<"forall x y. Q(x,y) <=> Q(y,x)">>) proof

The command have is similar to its Isabelle counterpart and so have is similar
to then have in Isabelle. The command have (...) is really just a sugared alias
for a note without a name: note("", ...). Each direction of the bi-implication is
proved and used together to complete the proof.

61

The next proof we consider is quite explicit and avoids the use note by clever
use of the built-in capabilities of the language:

prove
(<<"(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)) \

==> forall x y. Q(x,y) <=> Q(y,x)">>)
[
assume [("A", <<"forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)">>)],
conclude (<<"forall x y. Q(x,y) <=> Q(y,x)">>) proof
[
fix "x", fix "y",
conclude (<<"Q(x,y) <=> Q(y,x)">>) proof
[
have (<<"(Q(x,y) ==> Q(y,x)) /\\ (Q(y,x) ==> Q(x,y))">>) proof
[
conclude (<<"Q(x,y) ==> Q(y,x)">>) proof
[
assume [("", <<"Q(x,y)">>)],
so have (<<"forall z. P(z,x) <=> P(z,y)">>) by ["A"],
so have (<<"forall z. P(z,y) <=> P(z,x)">>) at once,
so conclude (<<"Q(y,x)">>) by ["A"],
qed

],
conclude (<<"Q(y,x) ==> Q(x,y)">>) proof
[
assume [("", <<"Q(y,x)">>)],
so have (<<"forall z. P(z,y) <=> P(z,x)">>) by ["A"],
so have (<<"forall z. P(z,x) <=> P(z,y)">>) at once,
so conclude (<<"Q(x,y)">>) by ["A"],
qed

],
qed

],
so our thesis at once,
qed

],
qed

],
qed

]

We see that each direction of the bi-implication is shown as a conjunction:

have (<<"(Q(x,y) ==> Q(y,x)) /\\ (Q(y,x) ==> Q(x,y))">>) proof

When this is the case, we can use the conclude command to solve each part of
the conjunction independently (the proofs have been left out):

62 Experiments

have (<<"(Q(x,y) ==> Q(y,x)) /\\ (Q(y,x) ==> Q(x,y))">>) proof
conclude (<<"Q(x,y) ==> Q(y,x)">>) proof ...,
conclude (<<"Q(y,x) ==> Q(x,y)">>) proof ...,
qed

]

From the proved conjunction we can show the main formula by equivalence of
bi-implication and a conjunction of implications for both directions:

have (<<"(Q(x,y) ==> Q(y,x)) /\\ (Q(y,x) ==> Q(x,y))">>) proof
conclude (<<"Q(x,y) ==> Q(y,x)">>) proof ...,
conclude (<<"Q(y,x) ==> Q(x,y)">>) proof ...,
qed

],
so our thesis at once,
qed

The command at once can be used when the goal can be solved by pure first-
order reasoning from the previous fact.

The last proof we present is less explicit than the previous two, but as a result
it is rather short:

prove
(<<"(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)) \

==> forall x y. Q(x,y) <=> Q(y,x)">>)
[
assume [("A", <<"forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)">>)],
fix "x", fix "y",
note ("R", <<"Q(x,y) ==> Q(y,x)">>) proof
[
assume [("", <<"Q(x,y)">>)],
so have (<<"forall z. P(z,x) <=> P(z,y)">>) by ["A"],
so our thesis by ["A"],
qed

],
have (<<"Q(y,x) ==> Q(x,y)">>) proof
[
assume [("", <<"Q(y,x)">>)],
so have (<<"forall z. P(z,y) <=> P(z,x)">>) by ["A"],
so our thesis by ["A"],
qed

],
so our thesis by ["R"],
qed

]

63

Each direction is shown without directly solving any subgoal before combin-
ing them in the end. Also the step where the symmetry of the bi-implication
P (z, x)←→ P (z, y) is shown is left out and used implicitly.

Despite limitations in the ATPs of the proof assistant, we see that more complex
problems can be solved when we combine the automated procedures with a
structured proof language.

64 Experiments

Chapter 9

Conclusion

We here conclude on the results of the work of this thesis in regard to the goals
we set out to achieve. The main goal of this thesis is to successfully

(1) formalize in Isabelle Harrison’s axiomatic proof system,

(2) prove the soundness of the proof system, and

(3) generate executable code from the formalization and compare the results
to the original code using a test suite.

The thesis formalizes the proof system by defining the syntax of first-order logic,
and axioms and rules of the proof system. A small example using the proof
system is given. This suggests that goal (1) is fulfilled, unless the formalization
is not a correct implementation of the definitions in the proof system.

The thesis proves the proof system sound by first introducing the semantics of
first-order logic, and then showing that the soundness property holds for the
proof system with the defined syntax and semantics. Thus, goal (2) is also
fulfilled given the success of goal (1).

The thesis shows how to generate code from the formalization, and how it can
be hooked into the existing code base. The results of a test suite across different
versions show no differences, which lead us to conclude that the formalization

66 Conclusion

and generated code is in fact correct. Thus, goal (3) is also fulfilled. This further
implies that goals (1) and (2) also must have been fulfilled.

The distinction between syntax and semantics became clear in the period from
the 1840s with the work of Boole, and up to the 1930s where this led Gödel to
his Incompleteness Theorem.

Likewise, it only became clear over an extended period that in logic
it is important to distinguish between syntax (including such notions
as formal language, formula, proof, and consistency) and semantics
(including such notions as truth, model, and satisfiability). [Moo88,
p. 96]

One of the results of our formalization is to make this distinction between the
level of syntax and semantics very clear.

In Section 3.2 we described the soundness and completeness of our proof system.
Harrison argues that completeness of the proof system holds, but verification
of a formalized completeness proof exceeded our time frame. The approach
to the soundness proof was to show each axiom sound, and to show that each
rule preserved this property. For completeness, we need to show to that all
valid formulas can be derived. Consequently, the nature of such a proof takes a
different approach and is more difficult. Given the opportunity, we would like
to prove the completeness of HAPS in Isabelle.

We mentioned that the setup of the code generator is rather lengthy, as we
have to hook the generated code into an existing code base. We would like to
better streamline this setup, such that no modification to the code generator is
necessary.

The declarative language of the proof assistant that we experimented with in
Chapter 8 could be improved in terms of better formatting of the proofs. Fur-
thermore, we could add more features to the language. Since the kernel is
implemented in LCF-style and has been verified, any new feature we add to the
proof assistant will also be verified.

Appendix A

Isabelle Theory File

theory Proven
imports
Main ∼∼/src/HOL/Library/Code-Char

begin

A.1 Syntax of First-Order Logic
type-synonym id = String.literal

datatype tm = Var id | Fn id (tm list)

datatype ′a fm = T | F | Atom ′a | Imp (′a fm) (′a fm) | Iff (′a fm) (′a fm) |
And (′a fm) (′a fm) | Or (′a fm) (′a fm) | Not (′a fm) |
Exists id (′a fm) | Forall id (′a fm)

datatype fol = R id tm list

datatype fol-thm = Thm (concl: fol fm)

A.2 Definition of Rules and Axioms
abbreviation (input) fail-thm ≡ Thm T

68 Isabelle Theory File

definition fol-equal :: fol fm ⇒ fol fm ⇒ bool
where
fol-equal p q ≡ p = q

definition zip-eq :: tm list ⇒ tm list ⇒ fol fm list
where
zip-eq l l ′ ≡ map (λ(t, t ′). Atom (R (STR ′′= ′′) [t, t ′])) (zip l l ′)

primrec imp-chain :: fol fm list ⇒ fol fm ⇒ fol fm
where
imp-chain [] q = q |
imp-chain (p # l) q = Imp p (imp-chain l q)

primrec occurs-in :: id ⇒ tm ⇒ bool and occurs-in-list :: id ⇒ tm list ⇒ bool
where
occurs-in i (Var x) = (i = x) |
occurs-in i (Fn - l) = occurs-in-list i l |
occurs-in-list - [] = False |
occurs-in-list i (h # t) = (occurs-in i h ∨ occurs-in-list i t)

primrec free-in :: id ⇒ fol fm ⇒ bool
where
free-in - T = False |
free-in - F = False |
free-in i (Atom a) = (case a of R - l ⇒ occurs-in-list i l) |
free-in i (Imp p q) = (free-in i p ∨ free-in i q) |
free-in i (Iff p q) = (free-in i p ∨ free-in i q) |
free-in i (And p q) = (free-in i p ∨ free-in i q) |
free-in i (Or p q) = (free-in i p ∨ free-in i q) |
free-in i (Not p) = free-in i p |
free-in i (Exists x p) = (i 6= x ∧ free-in i p) |
free-in i (Forall x p) = (i 6= x ∧ free-in i p)

primrec equal-length :: tm list ⇒ tm list ⇒ bool
where
equal-length l [] = (case l of [] ⇒ True | - # - ⇒ False) |
equal-length l (- # r ′) = (case l of [] ⇒ False | - # l ′ ⇒ equal-length l ′ r ′)

definition modusponens :: fol-thm ⇒ fol-thm ⇒ fol-thm
where
modusponens s s ′ ≡ case concl s of Imp p q ⇒

let p ′ = concl s ′ in if fol-equal p p ′ then Thm q else fail-thm | - ⇒ fail-thm

definition gen :: id ⇒ fol-thm ⇒ fol-thm
where
gen x s ≡ Thm (Forall x (concl s))

A.2 Definition of Rules and Axioms 69

definition axiom-addimp :: fol fm ⇒ fol fm ⇒ fol-thm
where
axiom-addimp p q ≡ Thm (Imp p (Imp q p))

definition axiom-distribimp :: fol fm ⇒ fol fm ⇒ fol fm ⇒ fol-thm
where
axiom-distribimp p q r ≡ Thm (Imp (Imp p (Imp q r))

(Imp (Imp p q) (Imp p r)))

definition axiom-doubleneg :: fol fm ⇒ fol-thm
where
axiom-doubleneg p ≡ Thm (Imp (Imp (Imp p F) F) p)

definition axiom-allimp :: id ⇒ fol fm ⇒ fol fm ⇒ fol-thm
where
axiom-allimp x p q ≡ Thm (Imp (Forall x (Imp p q))

(Imp (Forall x p) (Forall x q)))

definition axiom-impall :: id ⇒ fol fm ⇒ fol-thm
where
axiom-impall x p ≡ if ¬ free-in x p then Thm (Imp p (Forall x p)) else fail-thm

definition axiom-existseq :: id ⇒ tm ⇒ fol-thm
where
axiom-existseq x t ≡ if ¬ occurs-in x t

then Thm (Exists x (Atom (R (STR ′′= ′′) [Var x, t]))) else fail-thm

definition axiom-eqrefl :: tm ⇒ fol-thm
where
axiom-eqrefl t ≡ Thm (Atom (R (STR ′′= ′′) [t, t]))

definition axiom-funcong :: id ⇒ tm list ⇒ tm list ⇒ fol-thm
where
axiom-funcong i l l ′ ≡ if equal-length l l ′

then Thm (imp-chain (zip-eq l l ′) (Atom (R (STR ′′= ′′) [Fn i l, Fn i l ′])))
else fail-thm

definition axiom-predcong :: id ⇒ tm list ⇒ tm list ⇒ fol-thm
where
axiom-predcong i l l ′ ≡ if equal-length l l ′

then Thm (imp-chain (zip-eq l l ′) (Imp (Atom (R i l)) (Atom (R i l ′))))
else fail-thm

definition axiom-iffimp1 :: fol fm ⇒ fol fm ⇒ fol-thm
where
axiom-iffimp1 p q ≡ Thm (Imp (Iff p q) (Imp p q))

70 Isabelle Theory File

definition axiom-iffimp2 :: fol fm ⇒ fol fm ⇒ fol-thm
where
axiom-iffimp2 p q ≡ Thm (Imp (Iff p q) (Imp q p))

definition axiom-impiff :: fol fm ⇒ fol fm ⇒ fol-thm
where
axiom-impiff p q ≡ Thm (Imp (Imp p q) (Imp (Imp q p) (Iff p q)))

definition axiom-true :: fol-thm
where
axiom-true ≡ Thm (Iff T (Imp F F))

definition axiom-not :: fol fm ⇒ fol-thm
where
axiom-not p ≡ Thm (Iff (Not p) (Imp p F))

definition axiom-and :: fol fm ⇒ fol fm ⇒ fol-thm
where
axiom-and p q ≡ Thm (Iff (And p q) (Imp (Imp p (Imp q F)) F))

definition axiom-or :: fol fm ⇒ fol fm ⇒ fol-thm
where
axiom-or p q ≡ Thm (Iff (Or p q) (Not (And (Not p) (Not q))))

definition axiom-exists :: id ⇒ fol fm ⇒ fol-thm
where
axiom-exists x p ≡ Thm (Iff (Exists x p) (Not (Forall x (Not p))))

A.3 Code Generation for Rules and Axioms
code-printing type-constructor tm ⇀ (SML) term |

constant Var ⇀ (SML) Var - |
constant Fn ⇀ (SML) Fn (-, -)

code-printing type-constructor fm ⇀ (SML) - formula |
constant T ⇀ (SML) True |
constant F ⇀ (SML) False |
constant Atom ⇀ (SML) Atom - |
constant Imp ⇀ (SML) Imp (-, -) |
constant Iff ⇀ (SML) Iff (-, -) |
constant And ⇀ (SML) And (-, -) |
constant Or ⇀ (SML) Or (-, -) |
constant Not ⇀ (SML) Not - |
constant Exists ⇀ (SML) Exists (-, -) |
constant Forall ⇀ (SML) Forall (-, -)

code-printing type-constructor fol ⇀ (SML) fol |

A.4 Semantics of First-Order Logic 71

constant R ⇀ (SML) R (-, -)

code-printing — More efficient
constant fol-equal ⇀ (SML) - = -

export-code
modusponens gen axiom-addimp axiom-distribimp axiom-doubleneg axiom-allimp

axiom-impall axiom-existseq axiom-eqrefl axiom-funcong axiom-predcong
axiom-iffimp1 axiom-iffimp2 axiom-impiff axiom-true axiom-not axiom-and
axiom-or axiom-exists concl

in SML module-name Proven file Proven.sml

A.4 Semantics of First-Order Logic

definition length2 :: tm list ⇒ bool
where
length2 l ≡ case l of [-,-] ⇒ True | - ⇒ False

primrec — Semantics of terms
semantics-term :: (id ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm ⇒ ′a and
semantics-list :: (id ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm list ⇒ ′a list

where
semantics-term e - (Var x) = e x |
semantics-term e f (Fn i l) = f i (semantics-list e f l) |
semantics-list - - [] = [] |
semantics-list e f (t # l) = semantics-term e f t # semantics-list e f l

primrec — Semantics of formulas
semantics :: (id ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ bool)
⇒ fol fm ⇒ bool

where
semantics - - - T = True |
semantics - - - F = False |
semantics e f g (Atom a) = (case a of R i l ⇒ if i = STR ′′= ′′ ∧ length2 l

then (semantics-term e f (hd l) = semantics-term e f (hd (tl l)))
else g i (semantics-list e f l)) |

semantics e f g (Imp p q) = (semantics e f g p −→ semantics e f g q) |
semantics e f g (Iff p q) = (semantics e f g p ←→ semantics e f g q) |
semantics e f g (And p q) = (semantics e f g p ∧ semantics e f g q) |
semantics e f g (Or p q) = (semantics e f g p ∨ semantics e f g q) |
semantics e f g (Not p) = (¬ semantics e f g p) |
semantics e f g (Exists x p) = (∃ v. semantics (e(x := v)) f g p) |
semantics e f g (Forall x p) = (∀ v. semantics (e(x := v)) f g p)

72 Isabelle Theory File

A.5 Definition of Proof System
inductive OK :: fol fm ⇒ bool (` - 0)
where
modusponens:

` concl s =⇒ ` concl s ′ =⇒ ` concl (modusponens s s ′) |
gen:

` concl s =⇒ ` concl (gen - s) |
axiom-addimp:

` concl (axiom-addimp - -) |
axiom-distribimp:

` concl (axiom-distribimp - - -) |
axiom-doubleneg:

` concl (axiom-doubleneg -) |
axiom-allimp:

` concl (axiom-allimp - - -) |
axiom-impall:

` concl (axiom-impall - -) |
axiom-existseq:

` concl (axiom-existseq - -) |
axiom-eqrefl:

` concl (axiom-eqrefl -) |
axiom-funcong:

` concl (axiom-funcong - - -) |
axiom-predcong:

` concl (axiom-predcong - - -) |
axiom-iffimp1 :

` concl (axiom-iffimp1 - -) |
axiom-iffimp2 :

` concl (axiom-iffimp2 - -) |
axiom-impiff :

` concl (axiom-impiff - -) |
axiom-true:

` concl axiom-true |
axiom-not:

` concl (axiom-not -) |
axiom-and:

` concl (axiom-and - -) |
axiom-or :

` concl (axiom-or - -) |
axiom-exists:

` concl (axiom-exists - -)

corollary ` Imp p p
proof −
have 1 : ` concl (Thm (Imp (Imp p (Imp (Imp p p) p))

(Imp (Imp p (Imp p p)) (Imp p p))))
using axiom-distribimp

A.6 Soundness of Proof System 73

unfolding axiom-distribimp-def
by simp

have 2 : ` concl (Thm (Imp p (Imp (Imp p p) p)))
using axiom-addimp
unfolding axiom-addimp-def
by simp

have 3 : ` concl (Thm (Imp (Imp p (Imp p p)) (Imp p p)))
using 1 2 modusponens
unfolding modusponens-def fol-equal-def
by fastforce

have 4 : ` concl (Thm (Imp p (Imp p p)))
using axiom-addimp
unfolding axiom-addimp-def
by simp

have 5 : ` concl (Thm (Imp p p))
using 3 4 modusponens
unfolding modusponens-def fol-equal-def
by fastforce

show ?thesis
using 5
by simp

qed

A.6 Soundness of Proof System
lemma map ′:
¬ occurs-in x t =⇒ semantics-term e f t = semantics-term (e(x := v)) f t
¬ occurs-in-list x l =⇒ semantics-list e f l = semantics-list (e(x := v)) f l

by (induct t and l rule: semantics-term.induct semantics-list.induct) simp-all

lemma map:
¬ free-in x p =⇒ semantics e f g p ←→ semantics (e(x := v)) f g p

proof (induct p arbitrary: e)
fix e
show ¬ free-in x T =⇒ semantics e f g T ←→ semantics (e(x := v)) f g T
by simp

next
fix e
show ¬ free-in x F =⇒ semantics e f g F ←→ semantics (e(x := v)) f g F
by simp

next
fix a e

74 Isabelle Theory File

show ¬ free-in x (Atom a) =⇒
semantics e f g (Atom a) ←→
semantics (e(x := v)) f g (Atom a)

proof (induct a)
fix i l
assume ¬ free-in x (Atom (R i l))
then have fresh: ¬ occurs-in-list x l
by simp
show semantics e f g (Atom (R i l)) ←→

semantics (e(x := v)) f g (Atom (R i l))
proof cases
assume eq: i = STR ′′= ′′ ∧ length2 l
then have semantics e f g (Atom (R i l)) ←→

semantics-term e f (hd l) =
semantics-term e f (hd (tl l))

by simp
also have ... ←→

semantics-term (e(x := v)) f (hd l) =
semantics-term (e(x := v)) f (hd (tl l))

using map ′(1) fresh occurs-in-list.simps eq list.case-eq-if list.collapse
unfolding length2-def
by metis
finally show ?thesis
using eq
by simp

next
assume not-eq: ¬ (i = STR ′′= ′′ ∧ length2 l)
then have semantics e f g (Atom (R i l)) ←→ g i (semantics-list e f l)
by simp iprover
also have ... ←→ g i (semantics-list (e(x := v)) f l)
using map ′(2) fresh
by metis
finally show ?thesis
using not-eq
by simp iprover

qed
qed

next
fix p1 p2 e
assume assm1 : ¬ free-in x p1 =⇒

semantics e f g p1 ←→ semantics (e(x := v)) f g p1 for e
assume assm2 : ¬ free-in x p2 =⇒

semantics e f g p2 ←→ semantics (e(x := v)) f g p2 for e
show ¬ free-in x (Imp p1 p2) =⇒

semantics e f g (Imp p1 p2) ←→ semantics (e(x := v)) f g (Imp p1 p2)
using assm1 assm2
by simp

A.6 Soundness of Proof System 75

next
fix p1 p2 e
assume assm1 : ¬ free-in x p1 =⇒

semantics e f g p1 ←→ semantics (e(x := v)) f g p1 for e
assume assm2 : ¬ free-in x p2 =⇒

semantics e f g p2 ←→ semantics (e(x := v)) f g p2 for e
show ¬ free-in x (Iff p1 p2) =⇒

semantics e f g (Iff p1 p2) ←→ semantics (e(x := v)) f g (Iff p1 p2)
using assm1 assm2
by simp

next
fix p1 p2 e
assume assm1 : ¬ free-in x p1 =⇒

semantics e f g p1 ←→ semantics (e(x := v)) f g p1 for e
assume assm2 : ¬ free-in x p2 =⇒

semantics e f g p2 ←→ semantics (e(x := v)) f g p2 for e
show ¬ free-in x (And p1 p2) =⇒

semantics e f g (And p1 p2) ←→ semantics (e(x := v)) f g (And p1 p2)
using assm1 assm2
by simp

next
fix p1 p2 e
assume assm1 : ¬ free-in x p1 =⇒

semantics e f g p1 ←→
semantics (e(x := v)) f g p1 for e

assume assm2 : ¬ free-in x p2 =⇒
semantics e f g p2 ←→
semantics (e(x := v)) f g p2 for e

show ¬ free-in x (Or p1 p2) =⇒
semantics e f g (Or p1 p2) ←→
semantics (e(x := v)) f g (Or p1 p2)

using assm1 assm2
by simp

next
fix p e
assume ¬ free-in x p =⇒

semantics e f g p ←→ semantics (e(x := v)) f g p for e
then show ¬ free-in x (Not p) =⇒

semantics e f g (Not p) ←→ semantics (e(x := v)) f g (Not p)
by simp

next
fix x1 p e
assume ¬ free-in x p =⇒

semantics e f g p ←→
semantics (e(x := v)) f g p for e

then show ¬ free-in x (Exists x1 p) =⇒
semantics e f g (Exists x1 p) ←→

76 Isabelle Theory File

semantics (e(x := v)) f g (Exists x1 p)
by simp (metis fun-upd-twist fun-upd-upd)

next
fix x1 p e
assume ¬ free-in x p =⇒

semantics e f g p ←→
semantics (e(x := v)) f g p for e

then show ¬ free-in x (Forall x1 p) =⇒
semantics e f g (Forall x1 p) ←→
semantics (e(x := v)) f g (Forall x1 p)

by simp (metis fun-upd-twist fun-upd-upd)
qed

lemma length2-equiv:
length2 l ←→ [hd l, hd (tl l)] = l

proof −
have length2 l =⇒ [hd l, hd (tl l)] = l
unfolding length2-def
using list.case-eq-if list.exhaust-sel
by metis
then show ?thesis
unfolding length2-def
using list.case list.case-eq-if
by metis

qed

lemma equal-length-sym:
equal-length l l ′ =⇒ equal-length l ′ l

proof (induct l ′ arbitrary: l)
fix l
assume equal-length l []
then show equal-length [] l
using equal-length.simps list.case-eq-if
by metis

next
fix l l ′ a
assume sym: equal-length l l ′ =⇒ equal-length l ′ l for l
assume equal-length l (a # l ′)
then show equal-length (a # l ′) l
using equal-length.simps list.case-eq-if list.collapse list.inject sym
by metis

qed

lemma equal-length2 :
equal-length l l ′ =⇒ length2 l ←→ length2 l ′

proof −
assume assm: equal-length l l ′

A.6 Soundness of Proof System 77

have equal-length l [t, t ′] =⇒ length2 l for t t ′
unfolding length2-def
using equal-length.simps list.case-eq-if
by metis
moreover have equal-length [t, t ′] l ′ =⇒ length2 l ′ for t t ′
unfolding length2-def
using equal-length.simps list.case-eq-if equal-length-sym
by metis
ultimately show ?thesis
using assm length2-equiv
by metis

qed

lemma imp-chain-equiv:
semantics e f g (imp-chain l p) ←→

(∀ q ∈ set l. semantics e f g q) −→ semantics e f g p
using imp-conjL
by (induct l) simp-all

lemma imp-chain-zip-eq:
equal-length l l ′ =⇒

semantics e f g (imp-chain (zip-eq l l ′) p) ←→
semantics-list e f l = semantics-list e f l ′ −→ semantics e f g p

proof −
assume equal-length l l ′
then have (∀ q ∈ set (zip-eq l l ′). semantics e f g q) ←→

semantics-list e f l = semantics-list e f l ′
unfolding zip-eq-def
using length2-def
by (induct l l ′ rule: list-induct2 ′) simp-all
then show ?thesis
using imp-chain-equiv
by iprover

qed

lemma funcong:
equal-length l l ′ =⇒

semantics e f g (imp-chain (zip-eq l l ′)
(Atom (R (STR ′′= ′′) [Fn i l, Fn i l ′])))

proof −
assume assm: equal-length l l ′
show ?thesis
proof cases
assume semantics-list e f l = semantics-list e f l ′
then have semantics e f g (Atom (R (STR ′′= ′′) [Fn i l, Fn i l ′]))
using length2-def
by simp

78 Isabelle Theory File

then show ?thesis
using imp-chain-equiv
by iprover

next
assume semantics-list e f l 6= semantics-list e f l ′
then show ?thesis
using assm imp-chain-zip-eq
by iprover

qed
qed

lemma predcong:
equal-length l l ′ =⇒

semantics e f g (imp-chain (zip-eq l l ′)
(Imp (Atom (R i l)) (Atom (R i l ′))))

proof −
assume assm: equal-length l l ′
show ?thesis
proof cases
assume eq: i = STR ′′= ′′ ∧ length2 l ∧ length2 l ′
show ?thesis
proof cases
assume semantics-list e f l = semantics-list e f l ′
then have semantics-list e f [hd l, hd (tl l)] =

semantics-list e f [hd l ′, hd (tl l ′)]
using eq length2-equiv
by simp
then have semantics e f g (Imp (Atom (R (STR ′′= ′′) l))

(Atom (R (STR ′′= ′′) l ′)))
using eq
by simp
then show ?thesis
using eq imp-chain-equiv
by iprover

next
assume semantics-list e f l 6= semantics-list e f l ′
then show ?thesis
using assm imp-chain-zip-eq
by iprover

qed
next
assume not-eq: ¬ (i = STR ′′= ′′ ∧ length2 l ∧ length2 l ′)
show ?thesis
proof cases
assume semantics-list e f l = semantics-list e f l ′
then have semantics e f g (Imp (Atom (R i l)) (Atom (R i l ′)))
using assm not-eq equal-length2

A.6 Soundness of Proof System 79

by simp iprover
then show ?thesis
using imp-chain-equiv
by iprover

next
assume semantics-list e f l 6= semantics-list e f l ′
then show ?thesis
using assm imp-chain-zip-eq
by iprover

qed
qed

qed

theorem soundness:
` p =⇒ semantics e f g p

proof (induct arbitrary: e rule: OK .induct)
fix e s s ′
assume semantics e f g (concl s) semantics e f g (concl s ′) for e
then show semantics e f g (concl (modusponens s s ′))
unfolding modusponens-def
proof (induct s)
fix r
assume semantics e f g r semantics e f g (concl s ′) for e
then show semantics e f g (concl (case r of

Imp p q ⇒
let p ′ = concl s ′ in if fol-equal p p ′

then Thm q else fail-thm
| - ⇒ fail-thm))

unfolding fol-equal-def
by (induct r) simp-all

qed
next
fix e x s
assume semantics e f g (concl s) for e
then show semantics e f g (concl (gen x s))
unfolding gen-def
by simp

next
fix e p q
show semantics e f g (concl (axiom-addimp p q))
unfolding axiom-addimp-def
by simp

next
fix e p q r
show semantics e f g (concl (axiom-distribimp p q r))
unfolding axiom-distribimp-def
by simp

80 Isabelle Theory File

next
fix e g p
show semantics e f g (concl (axiom-doubleneg p))
unfolding axiom-doubleneg-def
by simp

next
fix e x p q
show semantics e f g (concl (axiom-allimp x p q))
unfolding axiom-allimp-def
by simp

next
fix e x p
show semantics e f g (concl (axiom-impall x p))
unfolding axiom-impall-def
using map
by simp iprover

next
fix e x t
show semantics e f g (concl (axiom-existseq x t))
unfolding axiom-existseq-def
using map ′(1) length2-def
by simp iprover

next
fix e t
show semantics e f g (concl (axiom-eqrefl t))
unfolding axiom-eqrefl-def
using length2-def
by simp

next
fix e i l l ′
show semantics e f g (concl (axiom-funcong i l l ′))
unfolding axiom-funcong-def
using funcong
by simp standard

next
fix e i l l ′
show semantics e f g (concl (axiom-predcong i l l ′))
unfolding axiom-predcong-def
using predcong
by simp standard

next
fix e p q
show semantics e f g (concl (axiom-iffimp1 p q))
unfolding axiom-iffimp1-def
by simp

next
fix e p q

A.7 Appendix: Mentioned Built-in Facts 81

show semantics e f g (concl (axiom-iffimp2 p q))
unfolding axiom-iffimp2-def
by simp

next
fix e p q
show semantics e f g (concl (axiom-impiff p q))
unfolding axiom-impiff-def
by simp (rule iff)

next
fix e
show semantics e f g (concl (axiom-true))
unfolding axiom-true-def
by simp

next
fix e p
show semantics e f g (concl (axiom-not p))
unfolding axiom-not-def
by simp

next
fix e p q
show semantics e f g (concl (axiom-and p q))
unfolding axiom-and-def
by simp

next
fix e p q
show semantics e f g (concl (axiom-or p q))
unfolding axiom-or-def
by simp

next
fix e x p
show semantics e f g (concl (axiom-exists x p))
unfolding axiom-exists-def
by simp

qed

A.7 Appendix: Mentioned Built-in Facts
proposition x 6= x ′ =⇒ e(x := v, x ′ := v ′) = e(x ′ := v ′, x := v)
using fun-upd-twist .

proposition e(x := v, x := v ′) = e(x := v ′)
using fun-upd-upd .

proposition (P −→ Q) −→ (Q −→ P) −→ P ←→ Q
using iff .

proposition (P ∧ P ′ −→ Q) ←→ (P −→ P ′ −→ Q)

82 Isabelle Theory File

using imp-conjL .

proposition (case [] of [] ⇒ P | h ′ # t ′ ⇒ P ′ h ′ t ′) = P
using list.case(1) .

proposition (case h # t of [] ⇒ P | h ′ # t ′ ⇒ P ′ h ′ t ′) = P ′ h t
using list.case(2) .

proposition (case l of [] ⇒ P | h # t ⇒ P ′ h t) =
(if l = [] then P else P ′ (hd l) (tl l))

using list.case-eq-if .

proposition l 6= [] =⇒ hd l # tl l = l
using list.collapse .

proposition (l = [] =⇒ P) =⇒ (l = hd l # tl l =⇒ P) =⇒ P
using list.exhaust-sel .

proposition h # t = h ′ # t ′ ←→ h = h ′ ∧ t = t ′
using list.inject .
end

Bibliography

[BA12] Mordechai Ben-Ari. Mathematical Logic for Computer Science.
Springer, 2012.

[Ber07] Stefan Berghofer. First-Order Logic According to Fitting. Archive
of Formal Proofs, August 2007. http://isa-afp.org/entries/
FOL-Fitting.shtml, Formal proof development.

[BGK+16] Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk,
Daniel Kühlwein, and Josef Urban. A Learning-Based Fact Selector
for Isabelle/HOL. Journal of Automated Reasoning, pages 1–26,
2016.

[BP16] Jasmin Christian Blanchette and Lawrence C Paulson. Hammering
Away: A User’s Guide to Sledgehammer for Isabelle/HOL, 2016.
http://isabelle.in.tum.de/dist/doc/sledgehammer.pdf.

[Har06] John Harrison. Towards Self-Verification of HOL Light. In Ulrich
Furbach and Natarajan Shankar, editors, IJCAR, volume 4130 of
LNCS, pages 177–191. Springer, 2006.

[Har09] John Harrison. Handbook of Practical Logic and Automated Rea-
soning. Cambridge University Press, 2009.

[HK16] Lars Hupel and Viktor Kuncak. Translating Scala Programs to Isa-
belle/HOL. In Nicola Olivetti and Ashish Tiwari, editors, IJCAR,
volume 9706 of LNCS, pages 568–577. Springer, 2016.

[KAMO16] Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott
Owens. Self-Formalisation of Higher-Order Logic. Journal of Auto-
mated Reasoning, pages 221–259, 2016.

http://isa-afp.org/entries/FOL-Fitting.shtml
http://isa-afp.org/entries/FOL-Fitting.shtml
http://isabelle.in.tum.de/dist/doc/sledgehammer.pdf

84 BIBLIOGRAPHY

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, et al. seL4: For-
mal Verification of an OS Kernel. In Proceedings of the ACM
SIGOPS 22nd, pages 207–220. ACM, 2009.

[KV13] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving
and Vampire. In Natasha Sharygina and Helmut Veith, editors,
CAV, volume 8044 of LNCS, pages 1–35. Springer, 2013.

[Moo88] Gregory H. Moore. The Emergence of First-Order Logic. In William
Aspray and Philip Kitcher, editors, History and Philosophy of Mod-
ern Mathematics, pages 95–135. University of Minnesota Press,
1988.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isa-
belle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer, 2002.

[Pel86] Francis Jeffry Pelletier. Seventy-Five Problems for Testing Auto-
matic Theorem Provers. Journal of Automated Reasoning, pages
191–216, 1986.

[SV] Anders Schlichtkrull and Jørgen Villadsen. SML Code for Handbook
of Practical Logic and Automated Reasoning. https://github.
com/logic-tools/sml-handbook/tree/master/code/SML.

[W+16] Makarius Wenzel et al. The Isabelle/Isar Reference Manual, 2016.
http://isabelle.in.tum.de/dist/doc/isar-ref.pdf.

https://github.com/logic-tools/sml-handbook/tree/master/code/SML
https://github.com/logic-tools/sml-handbook/tree/master/code/SML
http://isabelle.in.tum.de/dist/doc/isar-ref.pdf

	Abstract
	Preface
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Structure of the Thesis

	2 First-Order Logic
	2.1 Syntax
	2.2 Semantics
	2.3 Equality

	3 Proof Systems
	3.1 Harrison's Axiomatic Proof System
	3.2 Soundness and Completeness

	4 Isabelle
	4.1 LCF-Style Provers and Proof Assistants
	4.2 Isabelle/HOL
	4.2.1 Theories
	4.2.2 Data Types
	4.2.3 Plain Definitions and Abbreviations
	4.2.4 Primitive Recursive Functions
	4.2.5 Proofs

	4.3 Isar
	4.3.1 Inductive Reasoning
	4.3.2 Calculational Reasoning

	5 Formalization: Syntax, Semantics and Proof System
	5.1 Syntax
	5.2 Semantics
	5.3 Rules and Inductive Definition
	5.3.1 Auxiliary Functions
	5.3.2 Rules and Axioms
	5.3.3 Inductive Predicate

	6 Formalization: Proof of Soundness
	6.1 Useful Built-in Theorems
	6.2 Preliminary Lemmas
	6.3 The Soundness Proof

	7 Code Generation
	7.1 Target Language Setup
	7.2 The Generated SML File
	7.3 Embedding into Existing Code
	7.4 Tests

	8 Experiments
	9 Conclusion
	A Isabelle Theory File
	A.1 Syntax of First-Order Logic
	A.2 Definition of Rules and Axioms
	A.3 Code Generation for Rules and Axioms
	A.4 Semantics of First-Order Logic
	A.5 Definition of Proof System
	A.6 Soundness of Proof System
	A.7 Appendix: Mentioned Built-in Facts

	Bibliography

