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Abstract

The goal of this bachelor’s thesis is to optimise the mirror coating for the X-ray
telescope of the Athena mission, in order to obtain an improvement of reflectance
at photon energies of 5 keV and above, without losses in the reflectance of energies
below this. Coating optimisations are computed in the programme IMD, which uses
the Fresnel equations to determine the reflectance of a multilayer structure. This
reflectance is then applied to the geometry of the telescope, to obtain the effective
area.
In this thesis, only bilayer structures have been optimised, but have been so in two
different approaches. The first approach is testing various material combination,
and optimising the recipes for these. The second approach is to divide the rings
of mirror modules into a varying number of sections, and then, using the material
combination from the first approach, which had the best performance, optimising
the recipe for each section individually.
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1 Introduction

Many larger scale structures in the Universe radiates almost exclusively photons in the
X-ray range, which is only observable from space, since photons of these energies are
absorbed by the Earths atmosphere. [7]
One such type of large scale structure is galaxy clusters, in which the intracluster medium
(ICM) accounts for the majority of the clusters baryonic mass. Thus when examining
the formation of these clusters of galaxies, the ICM is a vital part of understanding the
development of the formation.
The ICM consists of hot gas, with a temperature, T, in the range of 2-14 keV, and is thin
enough to be transparent to its own radiation. [7] At these temperatures the radiation
emitted from the ICM will be almost exclusively in the form of thermal bremsstrahlung.
Figure 1 shows the relative intensity of the photon energy emitted by thermal bremsstrahlung
from a gas of temperature T = 2× 108K ≈ 17 keV. This temperature is a bit above the
range of temperatures in the ICM, but it shows how the intensity decays exponentially
with energy. Because of this and the distance to the galaxy clusters, a large throughput
at lower X-ray energies is crucial for a telescope meant to observe these structures.

Figure 1: Spectral form expected from thermal bremsstrahlung in a hot gas at 2× 108K.
Thermal bremsstrahlung is characterised by the temperature of the gas, and at higher
energies the intensity falls of exponentially.
Figure from (Seward and Charles, 2010). [7]

Observing galaxy clusters and their formation, along with black holes and neutron
stars, are some of the scientific objectives of ESA’s X-ray telescope Athena+. [1]
With the science objectives in mind, it is desired to obtain as large an effective area
as possible for the telescope, especially in the lower energy range, where the thermal
bremsstrahlung is most intense, in order to make better observations of the faint, distant
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galaxy clusters.

Athena+ is set to launch in 2028, and will observe the sky in a low-energy X-ray
range, from around 0.1 keV to about 10 keV. This is approximately the same energy
range as the two currently functioning X-ray telescopes XMM-Newton and Chandra,
which were both launched in 1999. This means that in 2028 XMM-Newton and Chandra
will be ripe to be succeeded by a new telescope, which will apply some newer technologies
in order to obtain a larger sensitivity, throughput and resolution, and therefore better
observations.
The current baseline design for the Athena+ telescope, will give rise to an on-axis effec-
tive area (Aeff ) of minimum 2m2 at 1 keV, and 0.1m2 at 8 keV. In Table 1 effective areas
and angular resolution for the two current X-ray telescopes can be seen. It is clear that
Athena+ will have a much larger effective area than both XMM-Newton and Chandra.

Chandra XMM-Newton Athena+
Area @ 1 keV

[
cm2

]
800 1475 2.33 · 104

Area @ 8 keV
[
cm2

]
100 580 1.36 · 103

Angular resolution 1 16 5
(HEW), [arcsec]

Table 1: Areas and angular resolutions are all on-axis. Values for Chandra and XMM-
Newton are from (Willingale, 2002).[8] Values for Athena+ are from simulations and
from (Ferreira et al., 2013).[3]

The purpose of this project is to try and improve the effective area of the Athena+
telescope in the higher part of its energy range, especially around 6 keV, where spectral
lines for Fe are present, without causing losses in the lower energy range. This is done
by computing the theoretical effective area of an array of viable material combinations
(Ir/B4C (base line material combination), W/Si, Pt/C, Ir, Ir/Si and Ir/SiC). The
best candidate is then chosen for a second round of simulations, in which several recipes
are used across the telescope, in order to improve the effective area further.

2 Theory & method

The wish is to determine the reflectivity of a number of material combinations of various
thicknesses, when they are applied to the geometry of the Athena+ X-ray telescope, and
then optimise the recipes for these material combinations in the energy bandwidth from
0.1 keV to 8 keV.

In the first part of this section, the geometry of the Athena+ telescope is explained,
after which the methods used to find the projected area (Aproj) and the effective area
(Aeff ) of the telescope is described. Finally this section contains a description of the
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programme used to compute these simulations of reflectace, and how the recipes were
optimised.

2.1 Athena+ optics description

ESAs X-ray telescope Athena+ is a chonical approximation of the Wolter-I design, and
alters at most from this approximation at the µm level. A Wolter-I telescope is a graz-
ing incidence telescope, and consists of two mirrors; a primary mirror in the form of a
paraboloid, and a secondary mirror in the form of a confocal and coaxial hyperboloid.[6]
A schematic for this type of telescope can be seen in Figure 2.

Figure 2: Illustration of a Wolter-I telescope. The focal point of the confocal hyperboloid
is where the X-rays are focused and form the image.
Figure from (Reid, 2001). [6]

The Athena+ telescope has a focal length of 12m, a radius of 1.5m, and seen edge-on
the telescope is comprised of 6 petals (see petal in Figure 4), each of which is filled with
mirror modules (MMs).
These MMs individually consist of 70 Si plates, of which 68 of these are reflective mirror
plates (MPs).[5]
The MMs are placed in 20 evenly radially spaced rows (or rings), and the width and
length of the MMs (and thereby the number of MMs) in a row are optimised to decrease
the area of unused space. [5]

The MPs are Si wafers replete with grooves, or "pores", to increase the effective
area of the telescope. Each pore is 0.605mm in depth and 0.83mm wide, with a "wall"
thickness of 0.17mm, as is illustrated in Figure 3.

The surfaces of the Si wafers are coated with a high-Z material to reflect high energy
photons, and a low-Z material as an overcoat to reflect lower energy photons. The cur-
rent design for this coating is a 100Å layer of Ir, topped with 80Å of B4C. This recipe
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Figure 3: An illustration of the geometry of the pore structure in the mirror modules.
Pw is the plate width, Dp is the pore depth and Wp is the pore width. All values in the
figure are given in mm.
Figure from (Ferreira et al., 2012).[2]

is henceforth in this report called the baseline design.

2.2 Projected & effective area

The projected area (Aproj) is needed in order to determine the effective area (Aeff ) of
the telescope. Aproj is effectively calculated by summing the pore area for each row in
the telescope.

First the number of MPs in a row is found by multiplying the number of MMs in the
row by 68, since there are 68 reflective MPs in a MM.

nMP (i) = 68 · nMM (i) (1)

where i designates the specific row number in the telescope, i = 1 being the innermost
row.
Then the number of pores in each MP can (approximately) be found by rounding the
width of the MP (in mm) to an integer.

npMP (i) '
WMP (i)− 0.17mm

1mm
(2)

where npMP is the number of pores in the MP of width WMP .
The number of pores in each row of the telescope is then found by multiplying the

number of pores per MP (npMP ) with the number of MPs in the row.

np(i) = npMP (i) · nMP (i) (3)

.
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Figure 4: The layout of a petal in the Athena telescope. Each black box denotes a mirror
module. Figure from (Oosterbroek, 2014).[5]

At last the projected area of each row can be calculated by

Aproj(i) = np(i)WpDp, (4)

where Wp is the width of the pore, and Dp is the depth of the pore.

The total projected area can then of course be found by summing these individual
areas

Aproj,tot =
20∑
i=1

Aproj(i). (5)

All specific values for the Athena mirror used in the calculations above are from
(Oosterbroek, 2014). [5]

The reason for creating an array with the areas of each row is, that every row has a
specific grazing angle, α, for photons travelling with an on-axis trajectory. The grazing
angles are needed in the calculations of the effective area.
Based on the focal length, F , and the middle radius, r of each row, the grazing angle, α,
can be calculated as [5]
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tan (4α) = r/F (6)

⇔ α =
tan−1 (r/F )

4
(7)

Using the middle radius for each rows is of course an approximation. This approach
is used since calculating the middle radius and grazing angle for every ring of MPs com-
plicates the calculations to an extreme degree. It is thus assumed that the grazing angle
does not vary significantly within a single ring, or that they will approximately even out
to the grazing angle of the middle radius.

The effective area, Aeff , of a row can be described as a function of photon energy,
E and the grazing angle, α. As each photon will be reflected twice, the on-axis effective
area is dependent on the square of the reflectance, R.[3]

Aeff =

20∑
i=1

Aproj(i) ·R(E,α)2, (8)

It is this reflectance from Eq. 8 which is computed in the programme IMD for all the
various cases simulated.

2.2.1 IMD

For the reflectance simulations IMD is used. IMD is a programme run in the program-
ming language IDL, which is capable of computing various (optical and) electromagnetic
effects, such as reflectance, transmittance absorbtance, field intensity and more, for mul-
tilayer structures. [9]

2.2.1.1 FRESNEL function & Fresnel Equations

In this project IMD is used to simulate the average reflectance of bilayer structures in
the energy range from 0.1 keV to 8 keV. This average reflectance is computed using the
Fresnel-function in IMD, which uses the Fresnel equations in a recursion algorithm. [9]

By using the Fresnel equations the reflectance can be described as a function of the
material, the angle of incidence and the polarisation of the light.
As the materials used in this project are non-magnetic, the reflection coefficient for light
perpendicularly polarised to the plane of incidence can be described by [4]

rs =
nicosθi − ntcosθt
nicosθi + ntcosθt

, (9)
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and the reflection coefficient for light polarised parallel to the plane of incidence is [4]

rp =
ntcosθi − nicosθt
nicosθt + ntcosθi

, (10)

where ni is the refractive index on the incident side, nt is the refractive index on the
transmitted side, θi is the angle of incidence and θt is the angle of refraction.
The reflectivity of each type of light is then [10]

Rs = |rs|2 (11)

and

Rp = |rp|2 . (12)

The FRESNEL function can use these values to determine the average reflectance,
Ravg, as [9]

Ravg =
RsQ(1 + F ) +Rp(1− F )
F (Q− 1) + (Q+ 1)

, (13)

where Q and F are optional inputs in the function. Q is the polarisation analyser
sensitivity, defined as the sensitivity to s-polarisation divided by the sensitivity to p-
polarisation. F is the incident polarisation factor. It describes the incident intensities of
the s-polarised light compared to the p-polarised light.
Here it is assumed that the instrument sensitivities to s- and p-polarisation are equal,
and that the intensities of s- and p-polarised light are equal too. This means that the
expression for the average reflectance can be shortened to

Ravg =
1

2
(Rs +Rp) . (14)

The required inputs for the FRESNEL function are the angle of incidence (θ), the energy
of the light (λ), the optical constants for the materials at the given wavelengths (NC)
and the thicknesses for the material layers (Z).

The input for angle of incidence must be a scalar or 1-dimensional array of incidence
angles given in degrees, hence the used input is θ = 90◦ − α. Both θ and α are 1-
dimensional arrays containing 20 values, one for each row of MMs.

The input for the wavelengths of photons, λ, is also a scalar or 1-dimensional array
containing the wavelengths in the energy range desired to test reflectance within. It must
be expressed in the same unit as the thicknesses of the layers in the structure, here that
unit being Å. The range from 0.1 keV to 8 keV is used here with an increment of 0.1 keV
between the values in the array. These energies are converted into Å before being used
as input.
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NC is a complex array of optical constants for the materials at the energies given in
λ, and this array must be of the dimensions:
(number of elements in Z+2 , number of elements in λ).
IMD has a data base of optical constants for 150 materials. These constants are avail-
able for the energies spanning from the X-ray region to the infrared, more specifically
from 0.124Åto 3.33× 106Å, and comes from two laboratories; Center for X-Ray Optics
(CXRO) and Lawrence Livernore National Laboratory.[9] In the simulations computed in
this project, all optical constants used are from the latter mentioned laboratory, LLNL.
For computing the optical constants a part of Desiree’s code has been adapted and ap-
plied to the specific materials used.

Further, σ, an optional input, has been used. This input denotes the roughness of
the interfaces between layers (including the top layer and the ambient medium). It can
either be a scalar, a 1-dimensional array or a 3-dimensional array, and must also be in
the same unit as λ and Z. [9]
In all but one simulation (the worst case scenario for the baseline design) a scalar of
4.5Å has been used as roughness. In the worst case scenario a 1-dimensional array was
used

[
20Å, 4.5Å, 4.5Å

]
, where the 20Å is for the roughness of the boundary between

the upper layer and the ambient medium.
The ambient medium used in the simulations is simply vacuum, as the mirror will be
in space, where there is a near-vacuum. For the substrate, all simulations have used SiO.

Based on these inputs IMD can calculate the reflectance of the bilayer. This re-
flectance is then used in Eq. 8 to obtain the effective area of the telescope, when a
specific recipe is used.

2.2.2 Optimising recipes

In all instances for both the multi-recipes and for the single recipe bilayer materials, the
optimisation is computed by calculating the integrated effective area for thicknesses vary-
ing from 0-300 Å, in steps of 10 Å, for each layer. This integrated effective area is then
stored in a 31x31-matrix, and the script identifies at which coordinates the maximum
value for the integrated area lies, and will then prints the coordinates and the integrated
effective area.

Of course this method does not take into consideration that it is our wish to preserve
as much of the reflectance of the lower energies as possible, while adding to the effective
area at higher energy levels. This is not a particularly big problem, since the consequence
of thickening the high-Z layer typically will be, that more of the higher energy photons
are reflected, but also that more of the lower energy photons are absorbed.

In the multiple bilayer recipe simulations this method of optimising has been used
for each of the sections, and the script will, for each of these sections, print the coordi-
nates for the maximum integrated effective area. Thus the best recipe for each of the
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individual sections will be printed, starting from the innermost to the outermost section.
Printed below the recipe description is the total integrated effective area, if this recipe
combination were to be applied to the telescope.

The scripts for the multi-recipes bilayers will automatically save the optimised recipe
combination in a data file called ”nrecipes.dat” , where n = [2, 4, 6, 8, 10] in correspon-
dence to the number of sections which the rows have been split into.

3 Results from simulations

Two main types of simulations have been executed: One type for various material com-
binations, where the same layer thicknesses has been used for all rows in the telescope,
and another type all using the same material combination, where the rows are split into
a varying number of sections, each of which has their layer thicknesses optimised.

3.1 Single bilayer recipe

In the single-recipe simulations 7 material combinations have been tested: Ir/B4C, the
”worst case scenario” for Ir/B4C, Ir alone, Ir/Si, Ir/SiC, W/Si and Pt/C.

All simulations have been performed in the energy range 0.1 keV-8 keV, and all with
a interface roughness of 4.5Å, with the exception of the worst case scenario for the base
line.

1 keV 3 keV 6 keV 8 keV Integrated
Aeff

Baseline, Ir/B4C 2.33249 0.695237 0.259601 0.136267 66.996
Worst case for baseline 2.03870 0.657852 0.270544 0.142595 62.723
W/Si 2.08343 0.576441 0.222705 0.112353 55.987
Pt/C 2.13347 0.628277 0.236926 0.123350 62.347
Ir 1.83895 0.54862 0.256021 0.138693 56.532
Ir/Si 2.07760 0.587521 0.254713 0.135984 60.134
Ir/SiC 2.21338 0.631176 0.253755 0.133650 63.111

Table 2: The effective areas of material combinations at specific energies, and the inte-
grated effective area. All areas are given in m2.

3.1.1 Description of recipes

The following contains descriptions of the optimised recipes, and comparisons to the
baseline.
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Figure 5: Effective area of the telescope as a function of photon energy.

3.1.1.1 Ir/B4C

The Ir/B4C bilayer is the current coating choice for the Athena+ optics. It consist of
100Å of Ir, topped with 80Å of B4C.
For this material choice, a slight improvement was found for a change in the thickness
of the B4C layer from 80Å to 70Å. While the summarised effective area for the entire
energy range was 67.0729m2 in contrast to the 66.9963m2 of the baseline. Over the
entirety of the energy range, this is an improvement of only 0.0767m2.

All other results for the various material combinations and mutiple bilayer recipes
are compared to the baseline design.

3.1.1.2 Worst case scenario for base line

Due to problems in the cleaning process of the MMs, there is at present a likely situa-
tion where most of the B4C-layer is stripped from the mirror surfaces. For this reason,
a simulation have been executed for a B4C-layer of thickness Z =20Å with a surface
roughness of σ = 20Å, while the parameters for the Ir-layer and the substrate have re-
mained unchanged. This simulation is thought to give a reliable picture of performance
of the Athena+ optics, if the upper layer of the coating is damaged on all MMs after

13



0 1 2 3 4 5 6 7 8

Energy, [keV]

0

0.5

1

1.5

2

2.5

3
E

ff
e

c
ti
v
e

 a
re

a
, 

[m
2
]

Reflectance of Material Combinations

Baseline

Worstcase baseline

Ir

Ir/Si

Ir/SiC

Figure 6: Effective area of the telescope as a function of photon energy.

being cleaned.

3.1.1.3 W/Si

The best performance in effective area for the material combination W/Si was found for
30Å of Si on top of 120Å of W .
As seen in Table 3, this material combination has the over-all worst performance, even
when the worst case scenario baseline is taken into consideration. When compared to the
baseline it has a loss of ≈ 10.6% at 1 keV and a loss of ≈ 16.4% in integrated effective
area. Figure 5 reveals a great dip in effective area at around 1.8 keV, which isn’t visible
in Tables 2 and 3.
W/Si cannot be considered a good backup or alternative to the baseline design.

3.1.1.4 Pt/C

For this material combination, the best results were obtained from 60Å of C on top
of 100Å of Pt. At the specified energies in Table 3 its performance is about a solid
8.5− 9.5% lower than that of the baseline. Its integrated effective area is below that of
the worst case for baseline, but it maintains a bit more (≈ 4%) of the effective area at
1 keV.

14



1 keV 3 keV 6 keV 8 keV Integrated
Aeff

Worst case for baseline 87.404 % 94.623 % 104.22 % 104.64 % 93.622 %
W/Si 89.411 % 82.693 % 85.787 % 82.450 % 83.567%
Pt/C 91.467 % 90.369 % 91.265 % 90.521 % 93.061 %
Ir 78.841 % 78.911 % 98.621 % 101.78 % 84.381 %
Ir/Si 89.072 % 84.507 % 98.117 % 99.792 % 89.758 %
Ir/SiC 94.893 % 90.786 % 97.748 % 98.080 % 94.201 %

Table 3: The effective area for material combinations at specific energies, compared to
the baseline.

It is not the worst of the material combinations, but it wouldn’t be a good alternative
to the baseline.

3.1.1.5 Ir

The optimised recipe for Ir calls for 110Å of the material. As seen in Table 2 this coating
yields the second smallest integrated effective area of all materials. Its performance is
slightly above that of the baseline at 8 keV, but as seen in table 3 the effective area at
1 keV and 3 keV is roughly 20 % below baseline.
This simulation illustrates the importance of the low-Z top coating, when wanting to
increase the effective area at the lower energy range. Even the worst case scenario for
the baseline yields better results than Ir on its own.

3.1.1.6 Ir/Si

For this material combination the best results were obtained at 30Å of Si on top of 110Å
of Ir. This yielded an integrated on-axis effective area of 60.134m2, which is ≈ 89.76%
of the base line design. As seen in Table 3 and in Figure 6 it’s performance is over-all
lower than the base line (except in a tiny range from around 0.2 keV to 0.3 keV).
Again, the worst case for the baseline yields over-all better results than this material
combination.

3.1.1.7 Ir/SiC

The best performance of the material combination Ir/SiC was found for 40Å of SiC on
top of 100Å Ir. This recipe is the second best in performance, only after the baseline.
It gives a slightly larger integrated effective area (94.2 % of baseline) than the worst case
for baseline. It has its greatest loss of effective area, compared to baseline, at around
2 keV based on a reading of Figure 6.
Out of the tested material combinations, Ir/SiC is the best alternative to the baseline
design, at least on paper.
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3.2 Multiple bilayer recipes

As the baseline design still yields the best results out of the material combinations, it
is used for the further simulations in the attempt to improve the reflectivity of the tele-
scope. Below are descriptions of the optimised multiple bilayer recipes obtained in the
simulations.
When looking at Figure 7 it becomes clear how similar the results for the varying number
of sections are. It is along most of the graphs impossible to tell them apart. This gives
evidence that this approach does not bring any vast improvements, neither compared to
the baseline, nor among the multiple bilayer recipes themselves.

From Table 5 it is evident that all the multiple bilayer recipe simulations have losses
at 1 keV and all but the results for the 6 sections simulation, have losses at 8 keV as well.

For the divisions of the rows of MMs the most staightforward method has been used.
When possible each section contains the same number of rows each, otherwise the rows
are as evenly distributed as possible.
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Figure 7: Caption
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1 keV 3 keV 6 keV 8 keV Integrated
Aeff

Baseline 2.33249 0.695237 0.259601 0.136267 66.9963
2 recipes 2.27980 0.711338 0.260740 0.135985 67.5317
4 recipes 2.29038 0.716578 0.265974 0.133467 67.7072
6 recipes 2.29012 0.713309 0.263386 0.137239 67.7364
8 recipes 2.28952 0.716090 0.268388 0.195484 67.7558
10 recipes 2.28732 0.724512 0.354402 0.134973 67.7594

Table 4: The effective areas for the multiple recipe designs at specific energies. All areas
are given in m2.

1 keV 3 keV 6 keV 8 keV Integrated
Aeff

2 recipes 97.741 % 102.32 % 100.44 % 99.793 % 100.80 %
4 recipes 98.195 % 103.07 % 102.45 % 97.945 % 101.06 %
6 recipes 98.183 % 102.60 % 101.46 % 100.71 % 101.10 %
8 recipes 98.158 % 103.00 % 103.38 % 99.050 % 101.13 %
10 recipes 98.063 % 104.21 % 103.47 % 99.031 % 101.14 %

Table 5: The effective areas for the multiple recipe designs at specific energies, compared
to basline.

3.2.1 Description of the section recipes

3.2.1.1 2 sections

Rows B4C
[
Å
]

Ir
[
Å
]

1− 10 100 100
11− 20 50 110

Table 6: Recipe description for telescope mirror divided into 2 sections.

For this simulation, the telescope was split into 2 sections, the first of which consists of
the inner 10 rows and the second consisting of the 10 remaining outer rows.
The best results were obtained from the two thickness combinations seen in Table 6.
This recipe combination has an increased integrated effective area of 0.8 % compared to
the baseline design, but as seen in Table 5 it has small losses at 1 and 8 keV.
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3.2.1.2 4 sections

Rows B4C
[
Å
]

Ir
[
Å
]

1− 5 120 120
6− 10 90 90
11− 15 60 80
16− 20 50 140

Table 7: Caption

The mirror was split into 4 sections each containing 5 rings for this simulation. The
thicknesses for the optimised recipes can be seen in Table 7.
Compared to the baseline design it has an increase of 1.06% in integrated effective area,
but as for the majority of the simulations with the mirror divided into sections, the
effective area suffers losses at 1 and 8 keV.

3.2.1.3 6 sections

Rows B4C
[
Å
]

Ir
[
Å
]

1− 4 130 160
5− 8 100 90
9− 11 80 80
12− 14 60 80
15− 17 50 160
18− 20 50 140

Table 8: Recipe description for 6 section simulation.

For this simulation, the telescope was split into 6 sections, the 3 inner of which each
containing 4 rows, and the 3 outer each containing 3 rows. This choice of section division
proved to obtain a larger integrated effective area than switching the simulation to have
the 3 inner sections contain 3 rows each and the 3 outer sections consist of 4 rows each.
This 6 section recipe has an increased integrated effective area of 1.1% compared to that
of the baseline design. Out of the multiple section recipes, it is the only one not to suffer
reflectance losses at 8 keV where it has an effective area of 100.7 % of that of the baseline.
As seen in Table 5, it also has small improvements in effective area at 3 and 6 keV, while
it suffers a loss of ≈ 1.8% at 1 keV.
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3.2.1.4 8 sections

Rows B4C
[
Å
]

Ir
[
Å
]

1− 2 110 250
3− 4 130 160
5− 6 100 100
7− 8 90 90
9− 11 80 80
12− 14 60 80
15− 17 50 160
18− 20 50 140

Table 9: Recipe description for the mirror divided into 8 sections

For this multiple bilayer recipe, the best results were found when the mirror was divided
into 8 sections, the first 4 containing 2 rows MMs each, and the last 4 sections containing
3 rows each.
As for most of the other multiple bilayer recipes, this suffers from losses in effective area
at 1 and 8 keV, but has a slight increase in integrated effective area of 1.13 % compared
to the baseline.
At 3 and 6 keV it has an increase in effective area of 3.00 and 3.38 % respectively.

3.2.1.5 10 sections

Rows B4C
[
Å
]

Ir
[
Å
]

1− 2 110 250
3− 4 130 160
5− 6 100 100
7− 8 90 90
9− 10 80 80
11− 12 60 80
13− 14 60 90
15− 16 50 170
17− 18 50 150
19− 20 50 130

Table 10: Recipe description for the mirror divided into 10 sections

For this 10 section recipe, the mirror was divided into 10 sections each containing 2 rows
of MMs. Out of the multiple bilayer recipe, this yields the largest integrated effective
area at 101.14 % of that for the baseline, which makes it 0.01 percentage points larger
than for the 8 section recipe.
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As for the other multiple bilayer recipes, it suffers losses in effective area at 1 and 8 keV,
while it gains 4.21 and 3.47 % at 3 and 6 keV respectively, when compared to the baseline
design.

4 Discussion

4.1 Single bilayer recipe

As seen in Table 3 none of the material combinations’ over-all performances are as good
as the performance of base line design, and only one of these materials (Ir at 8 keV) has
a better performance than Ir/B4C at any of the specified energies shown in the table.
From this it follows that the current base line design is still the best choice for coating the
mirrors. This is only true however, as long as the B4C-layer isn’t remarkably damaged
which seems to be the case in the present cleaning approach of the mirror plates after
the coating has taken place.

In this case Ir/SiC seems to the best substitute for Ir/B4C, since this material
combination has the smallest loss of effective area at the lower energies (see Figure 6)
and the second to largest integrated effective area at ≈ 94.2 % of the value for base line
(see Table 2).
It does however have a smaller effective area in some energy ranges compared to the
”worst case scenario” for base line, most notably from around 2.3 keV and up. In addition
to being the second best over-all, after the base line it’s the most reflective material
combination at the lower energy range ≈ 0.5 keV − 2 keV, yet its performance is below
the base line and the ”worst case scenario” at higher energies.

4.2 Multiple bilayer recipes

The second approach to optimising the on-axis effective area has been to split the rows
of the telescope into sections, and optimising the Ir/B4C recipe for each of these sections.

The results from these simulations show that there are small improvements of effec-
tive area at 3 and6 keV, but have not proven to contribute any large increases of the
effective area. As seen in Table 4, 5 and Figure 7 there are barely any differences in
the performance of these multiple bilayer recipes, and at 1 keV they all have a slightly
smaller effective area than the base line design.
All the simulations using multiple recipes have slightly larger integrated on-axis effective
areas compared to the baseline design (100.80−101.14% of baseline). However, when the
extra work required in order to gain these small improvements of effective area is taken
into consideration, the question arises if this is the best way to enhance the coating.
Using several recipes for the telescope requires the coating machine to be calibrated sev-
eral times, but will at most, according to the results obtained in this project, increase
the integrated effective area with 1.14%, while there are losses in effective area at 1 keV
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for all multiple bilayer recipes.

There are of course other ways, than what have been used here, to split the mirror
into the various number of sections, but based on the results obtained in this project, it
is not likely to make much of a difference.

4.3 Future work

Since neither of the approaches discussed above have yielded any sizable improvements
compared to the baseline design, it is questionable whether bilayers are the best way to
go, when wanting to improve the effective area of Athena+.
A suggestion is to keep looking into multilayer coatings, as these seem to provide a some-
what larger effective area at the higher energies, without the effective area at the lower
energies suffering as a result thereof. [3]

If there is not found any solution to the damage of the B4C-layer in the baseline
design, it might be reasonable to test the Ir/SiC recipe, to determine how this performs
in practice since it’s the best performing out of the tested alternatives to the baseline.

5 Conclusion

Out of the 5 alternative material combinations to Ir/B4C none of them could improve
the effective area at the higher energies, while still maintaining the effective area in the
lower energy range.
If it proves impossible to use Ir/B4C for the coating, the best alternative found in this
project is Ir/SiC. This material combination should however be tested in practice before
concluding, that it actually is a viable alternative.

In the computations where the mirror rows were divided into sections, and different
recipes of Ir/B4C were used on the individual sections, the 10 section recipe had the best
performance in the range 3-6 keV, but the second greatest loss at 1 keV. The 6 section
recipe is the closest of the tested recipes to fulfill the purpose of the project, as it has the
second smallest loss at 1 keV (≈ 1.8%) and is the only of the computations for several
sections, which has increased the effective area at 6 and 8 keV with ≈ 1.5% and 0.7%
respectively.
As we still see a loss at 1 keV, none of the multiple section recipes really fulfill require-
ment of increasing the effective area of the telescope above 5 keV without the lower energy
range of the telescope suffering as a result.
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