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Preface

This bachelor thesis on motor imagery-based brain computer interface for drone control has
been conducted as part of the requirements for obtaining a bachelors degree within the field of
Biomedical Engineering at the Technical University of Denmark (DTU) and the University of
Copenhagen (KU).

The project was initiated in February 2017 and finished in May 2017 at the Department of
Electrical Engineering in collaboration with DTU Space and was supervised by main supervisor
Sadasivan Puthusserypady1 and co supervisor Jakob Jakobsen2.

The total workload of the project represents 15 ECTS points pr. student. The study consists
of this final thesis along with all relevant MATLAB ® and Python codes, which are included in
the Appendix.

1Associate Professor at DTU, Department of Electrical Engineering.
2Researcher at DTU Space, National Space Institute.
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Abstract

Brain-computer interfaces (BCIs) allows encephalic activity to control an external device or
computer. This implies that by recording the signals emitted by the brain, commands can be
defined and extracted from the subject to control a variety of devices in a virtual or real world
and this technology can be applied to achieve a variety of goals.

Millions of people worldwide are restricted to moving in a wheelchair due to either spinal
cord injuries or motor neuron diseases such as amyotrophic lateral sclerosis. Regardless of what
disability caused this restriction in movement, the consequences with regard to independence
and quality of life can be devastating. A BCI system for controlling a drone may help these pa-
tients regaining a certain degree of independence and thus elevate their quality of life. The aim
of this project was to design and develop an electroencephalography(EEG)-based BCI system
for drone control to provide this opportunity to the described patient group.

To meet this goal, EEG data was acquired from two different subjects. The data set was of
5 different motor imagery tasks, representing the 5 movements the drone would be capable of
performing, and the relaxed state of the brain, i.e. idling state, which would correspond to the
drone staying in position.

The data was preprocessed with a bandpass filter and 16 different features were proposed to
be extracted from the filtered EEG signals of which 13 were used. A feature selection code was
developed to determine the optimal combination of these features to be used in the developed
system. Furthermore, different classifiers were investigated, which lead to the use of a Support
Vector Machine for the classification. Moreover, two live systems were developed to allow for
subject training and assessment of the subjects ability to control an aircraft in virtual reality
prior to controlling a drone in the real world.

The resulting BCI systems performance was evaluated with several metrics and the maximal
classification accuracy obtained during the offline testing of the system was 71.7%.
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Resumé

Hjerne-computer interfaces (HCI) gør det muligt at controllere eksterne enheder og computer
med hjerne aktivitet. Dette antyder, at det er muligt at optagne signaler udsendt af hjernen kan
definere og ekstraher kommandoer fra en forsøgsperson for at kontrollere en række enheder i en
virtuel- eller i den virkelige verden og denne teknologi kan anvendes til at opnå en lang række
ting.

Millioner af folk verden over er begrænset til at bevæge sig med en kørestol enten på
grund af rygmarvsskader eller motor neuron sygdomme, så som amyotrofisk lateral sklerose.
Uanset hvilket handicap, der har forårsaget denne bevægelsesrestriktion, så kan konsekvenserne
i forhold til uafhængighed og livskvalitet være katastrofale. Et HCI system til kontrol af en
drone kan muligvis hjælpe disse patienter med at tilbage vinde en smule af deres frihed og
derved øge deres livskvalitet. Målet med dette projekt er at designe og udvikle et electroen-
cephalografi(EEG) baseret HCI system til at kontrollere en drone, for at give denne mulighed
til den omtalte patientgruppe.

For at nå dette mål, så blev EEG data erhvervet fra to forskellige forsøgspersoner. Datasættet
var af 5 forskellige motor-imaginationsopgaver, der repræsentere de 5 bevægelser dronen vil
være i stand til at udføre, og afslappet tilstand, som svarer til at drone står stille i luften.

Data’en blev preprocesseret med et bandpass filter og 16 forskellige karakteristika blev
forslået til karakteristika ekstrahering af et filtrerede EEG signal, af hvilke 13 blev brugt. En
karakteristika selektionskode blev udviklet til at bestemme den optimale kombination af disse
karakteristika, som blev brugt til udviklingen af systemet. Derudover blev forskellige klassi-
fikatorer undersøgt, hvilket ledte til at ”Support Vector Machine” blev brugt til klassifikation.
Endvidere blev to live systemer udviklet for at akkommodere træning til forsøgspersonerne og
for at vurdere deres evner til at kontrollere et fly i en virtuel verden, før de skulle kontrollere en
drone i den virkelige verden.

Det resulterende HCI systems ydeevne blev evalueret med flere forskellige metrikker and
den maximale klassifikationspræcision opnået under offline test af systemet var 71,7%.
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Abbreviations

Table 1: Overview of the abbreviations used throughout the thesis

Abbreviation Explanation

AAR Adaptive Autoregressive
ANN Artificial Neural Network
BCI Brain-Computer Interface
BGN Bayesian Graphical Network
BP Band power
BP NN Back-Propagation Neural Network
BRI Brain Robot Interface
CNS Central Nervous system
CSP Common Spatial Pattern
CWT Continuous Wavelet Transform
DFT Discrete Fourier Transform
DOI Degree Of Imagery
DWT Discrete Wavelet Transform
EEG Electroencephalography
e.g. exemplie gratia, for example
EMD Empirical Mode Decomposition
EMG Electromyography
ERD Event-Related Desynchronization
ERS Event-Related Synchronization
FBCSP Filter Band Common Spatial Filter
FFT Fast Fourier Transform
FT Fourier Transform
HHT Hilbert-Huang Transform
HMM Hidden Markov Model
HSA Hilbert Spectral Analysis
ICA Independent Component Analysis
i.e id est, that is
IMF Intrinsic Mode Functions
LDA Linear Discriminant Analysis
LSL LabStreamingLayer
MI Motor Imagery
NN Neural Network
OVR One Versus the Rest
PSD Power Spectral Density
PSE Power Spectral Entropy
PNS Peripheral Nervous System
RBF radial basis function
ROC Receiver Operating Characteristics
SCI Spinal Cord Injury
SD Standard Deviation
SMR Sensorimotor Rhythms
SNR Signal-to-Noise Ratio
SSVEP Steady-State Visually Evoked potentials
VR Virtual Reality
VRML Virtual Reality Modelling Language
WT Wavelet Transform
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Chapter 1

Introduction

1.1 Motivation

Millions of people worldwide suffer from tetraplegia (’tetra’ - greek four, ’-plegia’- greek plege
blow or stroke), implying partial or total paralysis of all four limbs and torso. The most common
aetiology of this disability is a spinal cord injury (SCI) in the cervical segment of the spine
which, in the case of tetraplegia, leads to impairment of the motor and/or sensory functions,
resulting in impaired functions in the upper and lower limbs, trunk and pelvic organs. Another
great number of patients suffer from motor neuron diseases (MNDs), including Amyotrophic
Lateral Sclerosis (ALS). MND’s are a group of progressive neurological disorders destroying
motor neurons, controlling essential voluntary muscle activity. Over time, the ability to control
voluntary movements can be completely lost and the patients totally paralysed.

As one can imagine, the profound changes in an individuals quality of life after being diag-
nosed can be completely devastating, as the disability ruins your independence and to a great
extend your freedom. Fortunately, as technology evolves, so does the technical means to help
this large patient group regain a certain independence with regard to mobility and thereby im-
proving somewhat the quality of life. Thus, the driving force behind this study has been to try to
contribute further to the development of this new technologies to the benefit of this vulnerable
group of tetraplegics and MND patients.

1.2 Hypothesis

Tetraplegia and MNDs, does not affect the cognitive functions, which means that most patients
in these groups still have full cognitive capabilities, which is a prerequisite for the use of brain
computer interface technology, being that the only requirement of the user is his or her ability
to think. As one of the most prominent challenges amongst people suffering from tetraplegia or
late stages of MNDs is the inability to move autonomously, the combination of a BCI system
with the drone technology of today could be a sensible and relevant approach to help these
patients restore a certain mobility and thereby improve their quality of life. Taking this hybrid
BCI system one step further and combining it with VR-technology, eye-tracking technology
and a rotating camera on the drone, would give paralysed patients the ability to experience
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movement without any constraints or obstacles. This system could then be modified to suit
the individual patients needs. For instance, if the drone and the patient were equipped with
microphones and speakers, they would be able to interact and communicate with people without
leaving their home. This design may imply the possibility for tetraplegic patients to visit their
families and friends without ever leaving home.

1.3 Main aims and objectives

The main aim of this study is to provide part of the hybrid system described in the hypothesis,
namely the BCI system which allows the user to control the movement of a drone solely with
their brain activity.

1.4 Organisation of the thesis

Chapter 2: Clinical background
In this chapter, the relevant terms and processes in the human nervous system are presented
and a basic understanding of how brain signals are obtained through electroencephalography is
provided.

Chapter 3: BCI systems
A description of the general structure of an EEG-based BCI system is provided in this chapter.
Especially MI-based BCI systems are covered, as these are relevant to the project.

Chapter 4 : State-of-the-art
In this chapter, a historical review covering relevant studies in the field of EEG-based BCI sys-
tems is presented.

Chapter 5: Materials and methods
A comprehensive description of the equipment and data acquisition process used for obtaining
6-class MI EEG data sets from subjects during the project is presented in this chapter.

Chapter 6: Signal processing
The signal processing steps for creating the MI-based BCI system are presented in this chapter.
These include: preprocessing, feature extraction, feature selection and classification.

Chapter 7: Results
In this chapter, the results regarding performance of both the offline and online MI-based BCI
system created during the project are presented and described.

Chapter 8: Discussion
A comprehensive discussion regarding the performances of the resulting BCI systems is pro-
vided in this chapter.

Chapter 9: Conclusion
Finally, the work related to this study is summarized in a comprehensive final conclusion.
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Chapter 2

Clinical Background

This chapter presents the theoretical foundation required for understanding and studying EEG-
based BCI systems. The nervous systems physiology and anatomy is described based on
[45][52] and a short explanation of the concepts behind electroencephalography concludes the
chapter.

2.1 Neuroanatomy and neurophysiology

From feeling, thinking and talking to moving, virtually everything our body does is controlled
by the nervous system.

From an anatomical perspective, it consists of the central nervous system (CNS) and the pe-
ripheral nervous system (PNS), where the CNS includes the brain (encephalon) and spinal cord
(medulla spinalis) and the PNS consists of all nerves residing outside of CNS. This includes
amongst other the 31 pairs of spinal nerves (nervi spinalis) and the twelve pairs of cranial nerves
(nervi cranialis), with the sole exception of the optic nerves (also known as cranial nerve II)
which can be seen as a part of CNS. Nerves are defined as bundles of axons connecting CNS to
sensory receptors, glands and muscles.

Nerve anatomy and physiology

The core structural and functional unit of the nervous system in general, and for the brain in
particular, is the nerve cell or neuron, sometimes referred to as "brain cell" in layman’s terms.
Neurons are electrically excitable cells that processes and transmits information by electro-
chemical signalling. They typically consist of three main parts: the cell body, soma, and two
different types of cellular projections, termed dendrites and axons respectively. The nucleus is
located in the cell body, from which both the axon and multiple dendrites emanates. These two
cellular extensions serve as the intercommunication lines between neurons and form synapses
with one another at interconnection points between one neurons dendrite and another’s axon.

When one of the cytoplasm-filled dendrites of a neuron is stimulated by another neurons
axon in a synapse, the stimulus is conducted to the cell body of the neuron. As this neuron
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may contain multiple dendrites, it can receive many stimuli and when the sum of these stimuli
reach a certain threshold, an action potential is generated. An action potential is caused by
ion movements through voltage-gated ion channels, which change the intra- and extracellular
concentrations of different ions and it consists of a depolarization of the neuron followed closely
by a repolarization. It propagates through the nerve cells axon to a synapse connecting it to one
or multiple other electrically excitable cell. Through these mechanisms, the brain is able to
send out commands, e.g. move right foot forward, through the nervous system and its intricate
network of neurons to obtain a muscle reaction.

Figure 2.1: Neurons and their anatomy. The neuron consists of dendrites, a cell body (soma) containing
the nucleus, an axon enveloped in a myelin sheath and the axon terminals. Figure taken from [51].

Apart from the neurons, a number of other cells are present in the nervous system and are
termed the neuroglial cells as a group. From filling spaces and providing structural framework
to produce myelin and carry out phagocytosis, these supportive cells help the nervous system in
a variety of ways.

In CNS the neuroglial cells outnumbers neurons greatly and the following four types are
present: astrocytes, microglial cells, ependymal cells and oligodendrocytes. The latter of the
four types, occurs in rows along the axons of neurons and provide insulating layers of myelin
around these in the brain and spinal cord. These myelin sheaths, which are interrupted by nodes
of Ranvier, lowers propagation time in the axons as the action potential propagates from node
to node. In PNS, Schwann cells have a similar function as oligodendrocytes in CNS, except
they only provide one myelin sheath per cell and an illustration of these can be seen in Fig. 2.1.

Brain anatomy and physiology

The brain (encephalon), a wrinkled and soft organ that weighs 1,3-1,45 kg, is located inside
the cranial cavity, where the bones of the scull surround and protect it. It contains around 100
billion neurons, which are all heavily interconnected in a cobweb of complexity.

The brain can be subdivided into three major portions: the cerebrum, the cerebellum and
the brain stem. Included in the cerebellum, are centers that coordinate muscle movement, while
the nerve pathways in the brain stem regulate certain visceral activities and connect various
parts of the nervous system. The cerebrum, which is the largest part of the brain, provides
higher mental functions, such as reasoning and memory, and contains nerve centers associated
with sensory and motor functions. It consists of two large masses called the left and right
cerebral hemispheres, which are basically mirror images of one another. Each of these cerebral
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hemispheres are subdivided into the following lobes, as illustrated in Fig. 2.2, named after the
skull bones they underlie:

• The frontal lobe forms the anterior part of the cerebral hemispheres and is important in
aggression, the sense of smell, mood and motivation. The prefrontal cortex, situated in
the anterior region of the lobe, is involved in personality and decision making and the
motor cortex, situated in the posterior part of the lobe, is involved in planning, control
and execution of voluntary movements.

• The parietal lobe is located posterior to the frontal lobe and is the major center for
receiving and evaluating most sensory information, except for smell, taste, vision and
hearing.

• The temporal lobe lies below the parietal and frontal lobes. It plays an important role in
memory and receives and evaluates input for hearing and smell.

• The occipital lobe forms the posterior portion of each of the cerebral hemispheres and
receives and integrates visual input.

Figure 2.2: The lobes and some of the functional areas of the cerebrum. The figure illustrates the frontal
lobe, temporal lobe, parietal lobe and occipital lobe. In addition the locations of the motor cortex and
somatosensory cortex are indicated. Furthermore, the figure indicates the position of the cerebellum,
brainstem, olfactory bulb and spinal cord. Figure taken from [38].

As this project deals with BCI systems based on motor imagery, which is the imagination of
a movement, the most important part of the brain for this project is the motor and somatosensory
cortex.

2.2 Electroencephalography

Electroencephalography (EEG) is the recording of electrical activity on the scalp and was first
introduced on humans in the 1920s. As the technique is noninvasive and inexpensive, EEG
is a very popular method for measuring and utilizing brain activity. It has a good temporal
resolution (in the millisecond range), but unfortunately it has a very low spatial resolution,

5



BCI for drone control CHAPTER 2. CLINICAL BACKGROUND

which is primarily due to the many different layers of tissue between the recording electrodes
and the cerebral cortex, as these layers functions as low-pass filters and smudge the signals.
Fortunately, multiple preprocessing tools have been developed for improving the low spatial
of the EEG signals, e.g. different Laplacian and common spatial pattern filters, as shall be
described in Chapter 6.

EEG recordings are often done with so-called EEG-caps on which electrodes are placed in
specific positions according to the international 10-20 system, developed to ensure standard-
ized reproducibility of electrode placement. The system is based on measurements of the skull
perimeter in both the transverse and median plane, employing locations behind the ears (proces-
sus mastoideus), on the nose (nasion) and at the back of the head (inion) as reference electrode
placements. The positions of the rest of the electrodes is then determined by 10% and 20% in-
tervals in relation to the distance from nasion to inion (front to back) and from the left mastoid
process to the right (left to right). Furthermore, the electrode placements are intuitively named
according to the lobe(s) on which the given electrode is placed, as can been in Fig. 2.3.

Figure 2.3: The international 10-20 system for electrode placement in electroencephalography, set in
place to ensure standardized reproducibility of electrode placement. Figure taken from [21].

As mentioned in the previous section, the brain contains approximately 100 billion neurons
and as the electrodes are not sensible enough to measure the activity of one single neuron,
the continuous fluctuation of brain activity recorded during an EEG is actually a temporal and
spatial summation of activity happening perpendicularly to the given electrode. Each electrode
is connected to an amplifier, as the received signals are very small in amplitude and need to be
amplified before being displayed for analysis. In addition, the brain signals will often need to
be preprocessed before being analysed. A bandpass filter from 0,5 Hz to 100 Hz is often applied
on the data, as the brain waves normally oscillates within this frequency range. A notch filter
may also be applied to remove noise created by power-line interference occurring at 50 or 60
Hz depending on the country. Furthermore some filtering of the data may be done to eliminate
artefacts arising from e.g. muscle activity or eye-movement depending on the primary use of
the brain signals in the given case.

In EEG recordings, different oscillatory patterns can be identified and can, to a certain
degree, be used to assess a persons mental state and level of conciousness. These patterns are
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Table 2.1: The different types of brain wave patterns identified during EEG recordings presented along-
side their corresponding frequency range, primary and the conditions under which they are present.
Information taken from [20][48][50].

Type Frequency range Conditions Primary location

δ 0,5-3 Hz REM-sleep, infants Prefrontal in adults

θ 3-8 Hz Drowsiness, arousal, idling
Limbic area and frontal
regions

µ 8-12 Hz Absence of movement Sensorimotor areas
α 8-13 Hz Resting state with closed eyes Posterior cortical sites

β 13-35 Hz Actively concentrated, alert
Parietal and frontal
regions

γ 35-100 Hz Short-memory and motor tasks Somatosensory cortex

defined by frequency bands/ranges, which varies slightly in the literature, and the different types
of brain rhythms and their corresponding frequency bands, frequent locations and conditions are
listed in Table 2.1.

The most interesting types of brain waves for this project are the µ and β rhythms, as
specific neurophysiological phenomena occur in the frequency bands corresponding to these
rhythms during motor imagery. These phenomena are further described in the last section of
Chapter 3.
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Chapter 3

Brain Computer Interface (BCI)

This chapter seeks to provide a fundamental understanding of brain-computer interfaces. This
is sought achieved by giving an introduction to the general structure of such a system, as can
be seen in Fig. 3.1, and presenting the different types of BCI systems. In addition, a brief
description of some frequently used EEG-based BCI paradigms is provided, with an expanded
description of the motor imagery paradigm.

A BCI, sometimes referred brain-machine interface (BMI), translates user intent from en-
cephalic activity into actions in an external device. The concept was first described by Dr. Grey
Walter in 1964, but due to limitations in the technology needed for these systems to be effective,
the progress of BCI research was essentially at a standstill after its discovery. However, due to
developments in technology, the field of BCI research has been growing rapidly in recent years,
especially over the past decade.

3.0.1 General structure

Figure 3.1: The general structure of an EEG-based BCI system. EEG signals are acquired from the
subject and digitized, before being preprocessed. The desired features are extracted and classified. The
resulting control signal creates an action in the application, which usually provides feedback to the user.
Figure taken from [1].
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As previously mentioned, a BCI system translates brain activity into actions and the first step
to achieve this purpose, is the extraction of a dataset from the encephalic activity. The data
can be acquired non-invasively with electroencephalography (EEG) or invasively with either
electrocorticography (ECoG) or intracranial electroencephalography (iEEG). After the data is
acquired it is digitized by an A/D converter before being fed to the processing unit. Due to
different types of noise (e.g. power line noise) in the acquired data, it needs to be filtered before
the deriving its control signal. Once the data is filtered, specific features from the dataset which
reflects the users intent are extracted through feature extraction algorithms. The features are
then classified by a classification algorithm and the resulting control signal is then forwarded
to the external device or application, where the intended action is executed. Additionally, most
BCI system provide some kind of feedback to the user, which is usually visual.

3.0.2 Types of BCI systems

There are multiple ways to characterize a BCI system based on different aspects of the system,
whereof some are described in this section based on definitions from [6].

Dependent or independent
One of the important features of a BCI system is that it does not send its commands to the
external device through the brains normal output pathways consisting of nerves and muscles.
However activity in these pathways might be necessary for generating the needed brain signals
for the system to work. If the latter is the case, the concerned BCI system is considered as a
dependent system, as opposed to an independent system, where activity in the brains natural
output pathways is unnecessary for obtaining the commanding brain signals. Good examples
of dependent BCI systems are most of the VEP-based and SSVEP-based BCIs, as the measured
brain activity commanding the external device is carried from the subjects eye to the visual
cortex in the occipital lobe by the optic nerve or cranial nerve II. Such systems are thereby
dependent on activity in the optic nerve for generating command signals from the brain and
are hence categorized as dependent systems. Most BCI systems are independent and motor
imagery-based BCIs fall under this category, as the subject simply imagines movements to
evoke the needed brain signals for commanding the external device. However, if one were to
use actual movements for provoking the same brain response as with MI, the system would be
dependent since muscle activity and thereby activity in the peripheral nerves is used to generate
the brain signals extracted for controlling the device.

Synchronous or asynchronous
Synchronous or cue-paced BCIs are cue-based systems which are restricted to predefined time
frames. These BCI systems depend on protocols determining the onset, offset and duration of
the different operations and are hence limiting, as they do not allow subjects to control them at
any desired moment. As an example, the subject is placed in front of a screen and instructed to
wait for a cue in the form of a beeping sound before being presented with a task on the screen
for him or her to perform to produce the desired EEG signal. The task command then disappears
from the screen after a predetermined amount of time, the subject stops the mental task and the
system provides feedback about his or her performance after computing a decision based on
the EEG signals received. While feedback is given to the subject, the system usually does not
process the EEG signals and the signal processing is hence discontinuous. Asynchronous or
self-paced BCIs, on the contrary, are always active and the signal processing in these systems
is continuous. This type of BCI system is hence able to identify the subjects rest state (idling
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state), corresponding to the EEG signals arising in periods where the subject has no intent of
controlling the system, as well as the EEG signals arising from the predetermined mental tasks
used for commands controlling the system. This enables the subjects to control these systems
at any moment they desire and thereby offers a much more natural mode of interaction than the
synchronous systems. Examples of asynchronous BCI systems are all the systems developed
for controlling wheelchairs [28][54][57].

Offline or online
As a fundamental aspect to BCI is its ability to operate in real time, a BCI system with any real
application must therefore be an online system to facilitate direct control. Offline systems can
be used for examining the different components in EEG signals and to simulate proposed online
systems. In offline systems, the effectiveness of different preprocessing, feature extraction and
classification methods can be examined and tested while keeping track of potential disruptive
artefacts [16].

3.0.3 BCI paradigms

A BCI system can be based on different paradigms, which are chosen according to the ob-
jective/goal of the system in question. Some of the prominent EEG-based BCI paradigms are
described below, in the order of the most frequently used to the least based on a survey con-
ducted by Han-Jeong Hwang in 2013 [19].

• Motor imagery: MI is described as the imagination of kinesthetic movements of differ-
ent body parts (e.g. hands, feet, tongue etc.). Distinct changes in the µ and β rhythms
occurs during motor imagery, which can be used for classification of the users intent.

• Visual P300: P300 is an event-related potential (ERP) evoked by infrequent, task-dependent
stimuli around 300 ms. after each stimulus. Visual P300 is simply a subcategory P300,
where the ERP’s are evoked by visual stimuli.

• Steady-state visual evoked potential: SSVEP is evoked by a repetitive presentation of
a flickering visual stimuli with a certain fixed frequency.

• Non-motor mental imagery: Nonmotor mental imagery implies all types of mental im-
agery except motor imagery. This could for example be spacial navigation, mental calcu-
lations or internal singing or speech.

• Auditory: The auditory paradigm uses brain signals evoked by auditory stimuli. Exam-
ples hereof are auditory steady-state response auditory P300.

A BCI system can also be hybrid, which implies that the system is composed of either
two different paradigms, as those mentioned above, or one of these paradigms combined with
another type of system, such as an electromyography (EMG)-based system or a gaze-tracking
system.

An ideal BCI system takes only signals from encephalic activity as input, which implies
that the acquired signals are either recorded using electrodes on the scalp, on the surface of the
brain or inside the brain of the subject. This suggests that the use of signals evoked from for
example eye motion or blinking in a BCI system, transforms it into a hybrid system.
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Motor imagery (MI)

As stated in the previous section, BCI systems can be based on different paradigms. In this
project the focus is on the MI paradigm, which is the voluntary imagination of movement with-
out actually performing the movement.

Performing MI or actual movements (AM) has been proven to cause changes in the senso-
rimotor rhythms (SMRs) over the motor and somatosensory cortices of the brain (see Fig. 2.2
for location hereof). For this reason, BCI systems based on the MI paradigm are sometimes
referred to as SMR-based systems in the literature.

Two event-related responses can be observed in EEG recordings of a subject performing
MI, namely event-related desynchronization (ERD) and event-related synchronization (ERS).
The former refers to a blocking response, which implies a diminishing of the amplitude in the
brains electric oscillatory response, whilst the ERS refers to an increase in amplitude of the
latter. The neurophysiological changes during MI or AM are highly band specific and occur in
the µ- and β -bands. During MI or AM, ERD can be observed in the SMR. Correspondingly,
ERS can be observed in the SMR after MI or AM has been performed. The ERS/ERD patterns
can be observed in both the right and left cerebral hemispheres, but are more prominent in
the contralateral side compared to the ipsilateral side with regards to the imagined movement
[15]. This suggests that if a subject imagines moving his or her right hand, it will provoke a
measurable ERD in the µ-rhythm over the left side of the motor cortex of the subject, which
is also true the other way around. In MI-based systems this can be used to distinct between
imagined left and right hand movements [27][33][54].

The ERS which occurs after MI or AM is terminated, is often referred to as β rebound,
which simply implies that the ERS occurs in the β -band after a movement terminates. Depend-
ing on which movement is imagined or performed, the frequency at which this beta rebound
occurs varies. This beta rebound phenomenon in EEG, has been proven to be useful in detect-
ing and classifying left and right foot movements [15].

Apart from a decrease in magnitude, the active imagination of a movement typically gen-
erates brain activity that is spatiotemporally comparable to the activity produced during actual
movements [41]. By training individuals to utilize their SMR to provoke an action on a screen,
one can minimize this decrease in magnitude and achieve better results in the given MI-based
BCI system. This improvement relies on a neurological mechanism termed neuroplasticity,
which refers to the brains ability to reorganize itself by forming new neural connections, thereby
modulating its electrical oscillatory responses.
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Chapter 4

State of the Art

This chapter provides a literary and historical review, covering some of the recent developments
in BCI research and the relevant topics for this study. As the latter falls in both the category of
BCI systems in medicine and in entertainment, a short review of some of the studies conducted
within both fields in recent years is presented in the two first sections of this chapter.

As this project revolves around a MI-based BCI system, an extensive literature review about
these systems is provided in the third section of this chapter. This section also contains a table
comparing some of the MI-based BCI systems reviewed during the writing of this chapter with
regards to algorithms used, accuracy obtained, number of classes etc. Lastly, this section con-
tains an overview of the feature extraction and classification algorithms used in these systems,
based on a very recent review article of the progress in EEG-based BCI systems [32].

The fourth section of this chapter is dedicated to describing the research behind the suc-
cessful MI-based BCI system for drone control developed by LaFleur et al. in 2013 [27] and
the research in the control of a helicopter in a virtual 3D environment which served as a base
for the development of this system [10] [44] .

As the resulting BCI system in this study is MI-based and asynchronous, a challenge in its
design is the long training phases with durations of up to several months, due to the inherent
variability of brainwaves from user to user and the need for a subject naïve to BCI to train
his or her brainwaves. Therefore the last section of this chapter is dedicated to research based
on reducing these long training periods and an example of how the training sessions for the
MI-based BCI system for drone control can be established.
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4.1 BCI in medicine

The amount of research done regarding electroencephalography(EEG)-based brain-computer
interfaces (BCIs) has been increasing rapidly over the past several decades due to the develop-
ments in the technology needed for such systems. The technology has primarily been focused
on helping patients suffering from severe motor disabilities, e.g. amyotrophic lateral sclerosis
(ALS) and spinal cord injuries, interacting and communicating with the world around them
as well as providing different applications in neurorehabilitation [12]. The possibility of non-
assisted movement in the form of a BCI-controlled wheelchair for the same patient group has
also been researched extensively and as early as 2007, the concept was investigated with a
tetraplegic patient in an virtual environment (VE) by Robert Leeb et al. [28]. The spinal cord
injured subject was able to generate beta oscillation bursts in the EEG by imagining movement
of his paralyzed feet, which Robert Leeb and his colleagues utilized in the first demonstra-
tion of an asynchronous MI-based BCI system, through which a tetraplegic subject can control
his wheelchair within the VE. The concept has in recent years been taken out of VE and into
the real world by multiple research groups: In the year 2014, both a P300-based BCI system
presented by D. Wee-Kiat et al. [54] and an SSVEP-based BCI system by R. Zhang et al.
[57] were introduced. In 2016 R. Zhang and his colleagues improved their system further and
combined it with an MI-based BCI system and automated navigation to achieve an improved
brain-controlled intelligent wheelchair [58].

4.2 BCI in entertainment

Despite of the primary aims of BCI research being in medicine, the concept has over the past
decade attracted attention from other research fields and with a little imagination it is not hard
to visualize it spreading to the general population in the form of entertainment and toys in the
future. An example hereof has already been developed and described in 2012 by C. Kapeller
et al. [23], where the group demonstrated the use of EEG-based BCI for the real-time control
of an avatar in the popular game World of Warcraft. C. Kapeller and his colleagues used an
SSVEP-based BCI to provide the user with the ability to control a virtual object in a 3-D world.
This concept was also applied to flying a virtual helicopter through an MI-based BCI system
in 2010 by A.S. Royer et al. [44]. Royer and his group achieved the latter with a conventional
4 class system typically used for control in 2-D combined with intelligent control strategies to
obtain fluent and quick navigation in 3-D. Members of the group later expanded the capabilities
of the system to allow for full 3-D control of the helicopter in virtual space and their results were
published in 2011 by A. Doud et al. [10]. The reductionist control strategy that was employed
by Royer and his colleagues in 2010 [44], proved to be a robust control system and was later
used for subject training during trials with a MI-based BCI system for drone control developed
by K. LaFleur et al. in 2013 [27]. The latter is described in more details in the last two sections
of this chapter.

4.3 Motor imagery(MI)-based BCI

Approximately 56% of all EEG-based BCI related articles from 2007 to 2011 were about MI-
based BCIs, according to a thorough literature survey from 2013 on EEG-based BCIs by Han-
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Jeong et al. [19]. This makes MI the most frequently used paradigm within the field of EEG-
based BCI and there is therefore an abundance of scientific articles on the subject, of which a
handful are presented here.

According to an article by Juan Tian and Zhaochen Zhang from 2017 [49], the research
on MI-based BCI projects using EEG signals was first carried out by Pfurtscheller et al. in
the 1990s. The research demonstrated that ERD was produced in the contralateral brain area
during unilateral hand movement or motor imagery, while ERS occurred in the ipsilateral brain
area. The experiment conducted used electrode position C3 and C4 (see Fig. 2.3 for elec-
trode placements) to demonstrate that during MI, the ERD and ERS in the sensorimotor areas
of the cerebral cortex occurred in a symmetrical manner with regards to the two brain hemi-
spheres. Further research showed that obvious ERD/ERS phenomenon during MI occurred
mainly within the frequencies of µ-rhythm (8-12 Hz) and β -rhythm (13-28 Hz), demonstrating
that the phenomenon is very band specific with regards to frequency. The discovery of these
EEG characteristics taking place during MI lead to a simple way of classifying left and right
hand motor imagery tasks by exploiting the laterality of µ ERD between contralateral and ip-
silateral sides occurring during these tasks. By using the estimation of the band power in the
µ-band as a feature, multiple research groups have developed MI-based BCI systems with left
and right hand motor imagery [13][37].

In a study by Pfurtscheller et al. from 2006 [40] the researchers further investigated the
µ-rhythm (de)synchronisation during different MI tasks. The purpose of the study included
investigating the distinctiveness between four different MI tasks, namely imagination of left
hand, right hand, feet and tongue movements. Furthermore, the inter- and intrasubject variabil-
ity of event-related EEG (de)synchronization patterns in the mentioned tasks were investigated
as well as the different frequency components involved in these patterns.

Nine right-handed subjects participated in the study and the EEG signals were recorded
with 60 scalp electrodes placed in accordance to the international 10-20 system (see Fig. 2.3).
Using a cue-based MI, trials were made with tasks presented in random order and trials with
artefacts were removed by visual inspection. Percentage power decrease and increase in relation
to a reference interval was used to quantify the ERD and ERS respectively. Time-frequency
maps obtained at the central electrode positions C3, C4 and Cz were used for selecting the µ-
band rhythms with the most significant band power increase or decrease during the MI tasks.
Adaptive autoregressive (AAR) estimates were used as features and a minimum Mahalanobis
distance (MDA) was used to classify the four MI tasks.

The results for left and right hand MI confirmed the previously described ERD patterns
in the µ- and β -bands. For the foot and tongue MI it was less clear, however a midcentral
ERD and a midcentral ERS was found in the majority of the subjects during foot and tongue
MI respectively. The most reactive frequency components were between 9 and 14 Hz during
all the MI tasks at all central electrode positions. The frequency discrimination between ERD
and ERS revealed a mean frequency of the desynchronized components of 10,9 Hz (±0,9) and
12,0 Hz (±1,0) for the synchronized components. Furthermore, the ERD affects more broad-
banded components within the α-band, while the ERS affected narrow-banded components in
the upper α- and lower β -bands. Lastly, a great intra- and intersubject variability in the upper
µ components reactivity was observed during the different MI tasks.

When motor execution or imagery ceases, beta rebound (ERS in the β -band) occurs within
a couple of seconds after movement or imagery termination [3]. In a study conducted in 2013 by
Yasunari Hashimoto and Junichi Ushiba [15], it was demonstrated that this phenomenon could
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provide high classification accuracy for BCI systems based on left and right foot MI tasks.

Nine healthy subjects with no prior experience in MI were included in the study and the
EEG signals were recorded from 31 scalp electrodes placed in accordance to the international
10-20 system. Five cue-based sessions of 40 trials were performed, whereof the first was a
training session with weak motor execution (without imagery) and the remaining four were MI.
The tasks were presented in random order and surface EMG were monitored to ensure that no
motor execution took place under MI.

During offline analysis, all trials where subjects involuntarily contracted muscles were elim-
inated from the data. An inter-trial variance (ITV) method was employed to calculate the
ERD/ERS values and the beta rebound, β ERD and µ ERD were detected automatically with
the time-frequency maps and custom-made detection algorithms. The program determined the
subject-specific frequency bands and in these the spectral power was calculated. The band
power was used as the feature for classification and a traditional linear discriminant analysis
(LDA) was used as a classifier, which was trained on a dataset prior to classification. Apart
from the offline synchronous system analysis, the study suggested an asynchronous BCI design
for classifying left and right foot MI, which was also evaluated.

A significant β rebound was observed in all nine subjects and the peak of β rebound in
frequencies between 23 and 28 Hz occurred on average at 3,6 s (SD = 0,8 s) in the post-imagery
period. Additionally, in six subjects both the β and µ ERD were significant. In synchronous
mode, the BCI system achieved a classification accuracy of 69,3% on average for all subjects,
while in asynchronous mode the average classification accuracy was 65,7%. The researches
conclude the study with the suggestion that further studies are required to determine the effect
of neurofeedback training on classification accuracy.

Prior to the described study, it had been concluded that left and right foot movements pro-
duces nearly identical EEG patterns in contrast to left and right hand movements which, as
previously mentioned, can be spatially discriminated with EEG. According to the researchers,
this is due to the somatotopic organisation of the motor cortex, as the left and right foot repre-
sentation areas in the brain are closely situated to each other.

4.3.1 Overview of feature extraction and classification algorithms

Early this year, Xiaoqian Mao et al. published an extensive review article on the progress in
EEG-based brain robot interaction (BRI) systems, which refers to a subcategory of BCI systems
applied for robot control. The paper includes a comprehensive review of the signal processing
components of a BCI system within the three main paradigms used in synchronous and asyn-
chronous BRI systems: SSVEP, P300 and MI. The signal processing components included are
the preprocessing, feature extraction and classification and an attempt to summarize the two lat-
ter of these components with regards to the MI paradigm concludes this section of the chapter.

Feature extraction methods in a MI-based BCI system

The feature extraction is key in the design of a BCI system and a variety of methods have been
applied in MI-based BCI systems, whereof some are described here in accordance to the review
by Xiaoqian Mao et al. [32].
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Fourier-based Transform (FT)
The FT methods are primarily used for power spectrum density analysis (PSDA). To lower the
computational power and thereby the delay from thought to action in an online BCI system, one
can use the Fast Fourier Transform (FFT) which is a fast computation algorithm for the Discrete
Fourier Transform (DFT). Within the MI paradigm, a few studies have attempted to recognize
the MI tasks using FFT. In 2014, Hiroyasu et al. [17] utilized the FFT overlap processing for
recognition of right or left handed elbow flexion MI. In another study conducted by Jin et al.
[22], the FFT was used to analyse the frequency range of µ and β to obtain the energy of the
EEG as a feature for classifying left and right MI.

Wavelet Transform (WT)
The WT provide flexible time-frequency resolution and can be used to analyse non-stationary
signals, making it a powerful tool in the analysis of EEG signals. It is based on FT, but has the
advantage of the ease to choose different mother wavelet functions. In MI-based BCI, the WT
can be applied to localize ERD/ERS components in the time domain with great precision. W.-
Y. Hsu and Y.N. Sun used weighted wavelet transform features for motor imagery analysis by
utilizing the Continous Wavelet Transform (CWT) [18]. In a study by B. Xu and A. Song [55],
the Discrete Wavelet Transform (DWT) was used to execute multiresolution decomposition of
the EEG signals to show the distribution of the MI signal in time and frequency.

Hilbert-Huang Transform (HHT)
HHT is a recently developed adaptive data analysis method consisting of Empirical Mode De-
composition (EMD) and Hilbert spectral analysis (HSA), with the key part being EMD. The
latter can decompose any complicated data set into a finite number of intrinsic mode functions
(IMFs). Within the MI paradigm, HHT is an effective way to extract µ and β rhythms. In
2008, Wang et al. analysed three MI tasks using HHT, decomposing the signal with EMD and
calculating the Hilbert spectrum based on two IMFs [53]. Lui et al. crafted a new feature based
on HHT in 2011, termed the Degree of Imagery (DOI) and demonstrated improvement in the
detection and classification of ERD effect using DOI [31].

Independent Component Analysis (ICA)
The ICA method seeks to find a linear representation of non-Gaussian data in a manner that
makes the components as (statistically) independent as possible. ICA is mostly used to sepa-
rate noise from the raw EEG signals in preprocessing, while usually combining other feature
extraction algorithms to classify the different tasks when used in feature extraction. In 2006, M.
Naeem et al. investigated the separability of four-class MI data using three different ICA and
compared them to Common Spatial Patterns (CSP) and two types of EEG deviations [36].

Common Spatial Pattern (CSP)
The CSP yields a set of spatial filters designed to minimize the variance of one class while
maximizing it for the other class. It has proven to be superior spatial filtering technique when
compared with other spacial filters, but according to Ortner et al., it needs more electrodes than
others. The CSP is an especially effective method for MI classification and many improved
CSP-based methods have been presented in recent years. Amongst these is the Filter Band CSP
(FBCSP) algorithm which classifies single-trial EEG based on chosen features computed from
subject-specific temporal-spatial filters. It has been used to classify 4 classes of MI tasks by
both Keng Ang et al. and Chin et al.[2][8].
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Classification methods in a MI-based BCI system

Due to the nonstationarity of EEG signals, which are especially apparent in the use of EEG-
based BCI systems, the stability of the classifier is essential in the discrimination of MI tasks.
The most typically used classification methods in BCI are presented here alongside examples
of applications in MI-based BCI systems in accordance to the review by Xiaoqian Mao et al.
[32].

Linear Discriminant Analysis (LDA)
With the use of hyperplanes, LDA aims to separate the data representing the different classes.
The technique is simple and needs very little computational power. In a two-class problem,
the class of a feature vector depends on which side of the hyperplane the vector is, while for
multiclass BCI systems the "One Versus the Rest" (OVR) strategy is generally used. The main
drawback of this classification method is its linearity, which may lead to poor results when used
on complex nonlinear EEG data. In 2014 Chen et al. presented the LDA as a novel classifying
method for left and right hand MI [7].

Support Vector Machines (SVM)
SVM discriminates classes by constructing a linear optimal hyperplane induced from the max-
imum margin principle between two classes. The computer algorithm learns by example to
assign classes to tasks and two of the major advantages of the SVM classifier are its flexibility
and simplicity in usage. A disadvantage of SVM is a longer computational time than other
classifiers. In a study conducted by Rathipriya et al. in 2013 the SVM was used to distinguish
between two classes, right hand and foot and left hand and foot, respectively [43].

Neural Networks (NN)
Neural Networks are loosely analogous to the human brain in their workings and are remark-
ably efficient at classifying data. A multitude of neural networks are utilized in BCI systems
and amongst these the Multi-layer Perception (MLP) is the most widely used. The latter is a
feedforward artificial NN (ANN), in which the Back-propagation network is th most famous
model amongst all the feedforward NN. Back-propagation was used by Hamedi et al. in a study
conducted in 2014 to classify time-domain features from three different classes [14].

Bayesian Classifiers
The Bayesian classifiers uses the posterior probability, calculated from the Bayesian formulas
according to the prior probability of an object. These classifiers are nonlinear and generative
and the classifier group mainly includes naïve Bayes classifier, Hidden Markov Model (HMM)
and Bayesian Graphical Network (BGN). Bayesian classifiers are not as widely used in BCI
applications as the linear classifiers or neural networks, but the naïve Bayes classifier and HMM
have been used in BCI systems. The first of these greatly simplifies learning by assuming the
features are independent given class and is mainly used in MI. The HMMs are highly efficient
for the classification of time series and was used by H-.I. Suk et al. in 2010 for classifying four
classes of MI [47].

Nearest Neighbour Classifiers
Nearest Neighbour classifiers are very simple and work by assigning a feature vector to a class
with respect to its nearest neighbour, which can be a feature vector or a class prototype. The
k nearest neighbour is the most widely used classifier in this group and corresponds to the
majority vote of the nearest k neighbours. It has a good performance in MI and obtains higher
accuracy rates than many other classifiers. In a study conducted by Diana Eva and Tarniceriu in
2015, the kNN was used to classify left and right hand MI [11].
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4.3.2 Comparison of MI-based BCI studies

In Table 4.1, a comparison of some of the studies reviewed during the writing of this thesis,
is presented on the next page. It aims to provide an easy-to-read overview of some of the
possible combinations of feature extraction algorithms and classifier schemes applied in various,
developed MI-based BCI systems.

The resulting classification accuracies are provided for each of the reviewed systems, to
demonstrate the outcome of the various choices made during the studies with regard to algo-
rithms used. Furthermore, the number of EEG channels, subjects and classes are presented,
as well as the year the study was published and whether the system was evaluated in real-time
(online) or not (offline). The latter is quite relevant when comparing the BCI systems, as an
online system will almost always achieve a lower accuracy than an offline system.
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4.4 MI-based BCI system for drone control

As previously mentioned, a MI-based BCI system for drone control was developed in 2013
by K. LaFleur et al. [27] and the group used prior knowledge of 3D control in BCI systems,
which was obtained through previous studies demonstrating control of a virtual helicopter with
an MI-based BCI system [10] [44], in the development of this system. In the study, 5 subjects
successfully controlled a quadcopter with the developed BCI system acquiring up to 90,5%
accuracy. Before the subjects were able to control the quadcopter through the developed MI-
based BCI system, they underwent an extensive training phase which is described in the next
section of this chapter. To the best of our knowledge, this is the first time the ability to control
a flying robot through the sole use of thoughts was demonstrated.

The study consisted of three phases; a training and calibration phase, an experimental task
phase and an experimental control phase. During the initial calibration phase, the offline anal-
ysis toolbox BCI2000 was used to identify the specific electrodes and frequencies that were
most differentially active during the performance of a given imagined movement set, e.g. left
hand and right hand motor imagery. The software created spectrograms of the R2 value for
each subject, from which the electrodes and frequency bins with the highest correlation value
to a given state could be identified and used in the feature extraction, thereby optimizing the
classification for each subject and rendering the system subject-specific. The spectral amplitude
of the chosen electrodes at the selected frequency components was used as the only feature and
was extracted using the BCI2000’s online Autoregressive Filter set with a model order of 16
operating on a time window of 160 ms for spectrum calculation. These time-varying spectral
components amplitudes were selected and then continuously integrated by BCI2000 to gener-
ate control signals that were sent every 30 ms to a Java program which communicated with the
drone through WiFi. The data was acquired with a 64-channel EEG cap with electrodes placed
according to the international 10-20 system and it was sampled at 1000 Hz. The data was then
filtered from dc to 200 Hz by a Neuroscan Synamps 2 amplifier and no spatial filtering was
applied before the data was imported into BCI2000.

During the experimental control phase, subjects attended three days of the protocol with 6-
15 trials lasting up to 4 minutes each in each daily session. Subjects were regularly reminded of
the importance of minimizing movements during experiments, as to reduce the amount of arte-
facts in the EEG signals and thereby acquiring a higher accuracy rate of classification. Visual
monitoring of the subjects during sessions revealed that eye blinking and muscle movements
were minimal during all experimental sessions and no artefact removal was included in the sys-
tem. The MI tasks were assigned to the control directions of the drone in the following manner:
Imagining movement of right hand turned the quadcopter right, imagination of the left hand
turned it left, imagining both hands caused the quadcopter to rise and deliberately imagining
nothing caused it to fall. A constant forward signal was sent to the drone so the linear velocity
of the drone in the absence of rotational movement was measured to be 0,69±0,02ms−1. This
forward velocity attenuated when the quadcopter was turned. The flight environment was set
up in a standard gymnasium where two ring-shaped targets made of light-weight foam were
suspended approximately 1 m above the ground. The subjects did not have a direct view of the
quadcopter, but were provided with visual feedback via a forward facing camera on the hull of
the drone. An AR Drone 1.0 quadcopter was chosen for the experiments due to its strong on-
board stabilization, wide range of programmable speeds, smooth range of motion and relatively
low cost.
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The success rate of the study was assessed by three metrics, namely, percent valid correct
(PVC), percent total correct (PTC) and percent partial correct (PPC). The subjects weighted
average in the three metrics during the experimental task, were 79,2%, 66,3% and 82,6%, re-
spectively.

4.5 BCI training

An important aspect of MI-based BCI that has been discussed and improved extensively over the
past years is the aspect of subject training. Due to the inherent variability of brainwave activity
between individuals, a user must often undergo months of training before being able to control a
given BCI system [26]. During these months, the user learns to consciously modulate his or her
brain signals by looking at a continuous feedback based on brain activity in a region of interest
and actively changing their EEG signal to make the feedback match a provided detection target.
This ability is an inherent consequence of neuroplasticity, which refers to the brains ability to
reorganize itself by forming new neural connections throughout life.

When subjects are training for MI-based BCI systems, they are modulating their SMRs
according to which movement they are imaging and with what part of the body. This implies
that the higher number of actions or classes in the BCI system, the longer the training phase to
achieve high accuracies, as the subject needs to train the modulation of SMR with regards to
multiple movements. Another consequence is the need for a variety of training programs, as
each pair of actions need to be trained individually. The BCI system for drone control designed
by K. LaFleur and his colleagues employed an intuitive training sequence with 5 steps before
subjects navigated the AR drone in a real-world environment [27]. The first step of this process
was a simple 1-D cursor task, which was used by Yuan et al. in 2008 [56]. In this task, a target
appeared on either the left or right side of the screen and subjects were instructed to guide
a cursor to the target, by performing motor-imagery of left or right hand movement, while
avoiding an invisible obstacle located on the opposite side of the target. With a total of three
experimental sessions pr. subject with a minimum 9 trials of 3 min., this task was repeated until
the subjects achieved a score of 80% or above in four consecutive 3 min. trials, or until this
score was achieved when performance was averaged across 10 or more consecutive trials. In
the following task, a second dimension was trained independently from the first with another
simple cursor task. The same concept of an appearing target and an invisible obstacle to avoid
is applied, but this time the target appears on either the top or bottom of the monitor. The
subjects were instructed to imagining curling or squezing both hands to move the cursor up and
to move it down through the use of a volitional rest. Rules for progressing to the next training
phase were the same as for task 1. The third phase combined the command signals from the two
previous phases together in a 2-D cursor task with targets on the top, bottom, left and right sides
of the monitor. When subjects could either select 70% or more valid targets in four consecutive
2-D trials or an average of 70% or more of valid targets over ten consecutive 2-D trials, they
progressed to the next step. The fourth step of the training sequence is, as mentioned earlier,
controlling a virtual helicopter created by Royer et al. [44], which is done over three sessions
for a total average of about 1 h of flight time. The last step before navigating the drone in the
real world, is an enhanced virtual simulation of the AR drone which mimics the behaviour of
the actual drone in a real physical environment better than the virtual helicopter simulation.
After one to three sessions with the virtual AR drone, the subjects started training with the real
AR drone and those who prior to the study had no BCI experience, spent an average of 5 h and
20 min of virtual training over an average period of three months.
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According to a publication from 2015 by N. Kosmyna et al. [26], this training is called
operant conditioning (OC) and all of the first BCI systems relied on this form of training. The
study by N. Kosmyna et al. [26] mentions the main factors involved in the feed-back part of
BCI training and the group presents machine learning and the increasingly powerful computers
as important factors in the solution to these long training periods. They justify the latter by
stating that these developments allowed advanced signal-processing algorithms, which can be
trained to separate noise from EEG-signals and that computers can now be taught how to better
recognize EEG signals. A year prior to the aforementioned publication, N. Kosmyna et al.
presented a bidirectional feedback system for a MI-based BCI system for drone control [25].
By basing the BCI architecture on co-learning between user and system, the group achieved an
operational BCI within minutes, a spectacular improvement from the hours of virtual training
spent over an average period of 3 months during the training phase for the drone control BCI
system developed by K. LaFleur et al. [27].
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Chapter 5

Materials and methods

This chapter presents the procedure surrounding the experimental work realized during this
project. First, the equipment and software used for the data acquisition are described, with an
introductory discussion of how and why the concerned equipment and software were chosen.
The experimental paradigm is then presented, including the setup, recording procedure and vi-
sual interface used for the data acquisition of a 6-class MI EEG data set for classifier training.
Next, a presentation of the two online systems employed during the project is provided. These
systems include a training system in which feedback is presented, in the form of words describ-
ing the given imagined movement, to the subject in real-time and a flight simulation program in
which the control signals from the subject move a plane around in a virtual reality.

5.1 Equipment and software

During the first couple of weeks of the project, a number of problems regarding the provided
equipment were encountered. As the developed BCI system in this project needs to be portable
in order to let a tetraplegic patient control a drone from his wheelchair, the chosen EEG system
must be wireless and somewhat easily transportable. The g.tech system made available by DTU
Acoustics in building 354 was therefore not an option.

An Emotiv Epoc+ neuroheadset was borrowed from DTU compute, as the data transfer
is done via bluetooth making the system both wireless and transportable. Upon receiving the
borrowed equipment, it was found to be in poor condition with corrosion and broken locking
mechanisms on most of the electrodes. Furthermore, the electrode placement on the neurohead-
set was not optimal for recording SMR’s as the electrodes C3, C4 and Cz, which are placed over
the sensorimotor cortex, were not available. A meeting was arranged with the owner of the
system, Per Bækgaard.

After a productive meeting with Per Bækgaard from DTU Compute, the low quality and
fragility of the system became clear; the electrode mounting design and even the design of the
electrodes themselves was poorly done and no amount of care or caution could prevent them
from breaking after a given time in use. Per Bækgaard presented a "home made" combination
of the bluetooth transmitter circuit from an Emotiv neuroheadset and an EEG cap from Easycap
with electrodes of significantly better quality than the neuroheadset from Emotiv. Information
about Emotivs software was also discussed during the meeting and as the software is user spe-
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cific, one needs an ID’d login with Emotiv to acquire the majority of it, which Per could not
provide. He instead provided an alternative: A decryption code written in Python with data
acquisition possibilities used by DTU Compute to acquire raw EEG data from Emotiv systems.

5.1.1 Equipment

The borrowed EEG cap from Easycap was equipped with 16 electrodes whereof two were
reference electrodes. The electrode configuration can be seen in Fig. 5.1. As the electrodes were
AgCl electrodes, a highly-conductive saline gel was used to promote the signal conductance
from the subjects scalp to the electrode.

The two references on the EEG cap corresponds to the ones used in Emotiv neuroheadsets,
where one reference is referred to as the common mode sense (CMS) electrode and the other as
the driven right leg (DRL) electrode. These systems use absolute referencing against the CMS,
while the DRL serves as a feedback noise cancellation system. Together, these two electrodes
form a feedback loop.

(a) Picture of the Easycap used throughout the
project. The electrodes wired with blue and black
wires correspond to the two reference electrodes,
while the electrodes wired with red wire correspond
to the measuring electrodes or channels.

(b) Electrode placement on the EEG cap from Easy-
cap on the international 10-20 system. Blue cor-
responds to the references, green to the electrodes
used by the BCI system and brown to the electrodes
available on the cap, but unused by the system.

Figure 5.1: Electrode placement on the EEG cap from Easycap.

Due to the fact that the bluetooth transmitter from the Emotiv system has been connected
with the Easycap by DTU Compute, the placement of each of the two types of referencing
electrodes could not be determined by the group behind this project. There could therefore
be no investigation into the effects of changing the referencing method with regards to the
developed BCI system.
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Table 5.1: Overview of the Equipment used during the development of the BCI system.

Item Description

Easycap EEG-cap with 16 electrodes including two references

Emotiv transmitter
The Emotiv neuroheadsets inner circuit for transmission of
EEG data through bluetooth

Emotiv dongle
Receiver dongle connecting the bluetooth transmitter with the
computer

Saline gel
Highly conductive saline gel for improving signal conduction
from scalp to electrode (Signa gel)

Two PCs
One used for recording the data and the other for displaying
the visual interface

5.1.2 Software

The main program used during the development of the BCI system was Matlab. This mathe-
matical programming language was used for preprocessing, feature extraction, feature selection,
classification, visual interfaces, feedback mechanisms and simulations.

The data acquisition was performed using Python 2.7, as the available decryption software
provided by DTU Compute was written in Python code.

The Emotiv Xavier Control Panel, provided by the Emotiv software webpage, was utilized
to monitor the connection between the PC acquiring data and the custom made EEG cap from
Easycap. Additionally, the software was used to verify whether the impedances between the
electrodes and the scalp were sufficient. As this software was based on the electrode placement
on the Emotiv neuroheadset, a translation of the corresponding electrode placement on the
EEG cap from Easycap had to be performed in order to label the channels correctly prior to
processing the data. The latter took place in Matlab.

One of the challenges in this project, was to transfer the EEG data recorded in Python to
MATLAB for processing in real-time. For this, Lab Streaming Layer (LSL) was employed,
which is an open source system available on Github and developed for research purposes. LSL
can handle real-time communication between computers and a wide range of different software.
However, in this project it was only used to transfer the recorded data from Python into Matlab
for signal processing.

Table 5.2: Overview of the software used during the development of the BCI system

Program Description

MATLAB R2017a (9.2) Mathematical programming language
Python 2.7 (spider) Programming language
Lab Streaming Layer Open source C++ based streaming software
Windows 10 Operating system used for recording and processing
Emotiv Xavier Control Panel Control panel for Emotiv systems
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To ensure swift communication between computers, UDP (User Datagram Protocol), which
is a transport layer protocol defined for use with the IP network layer protocol, was used.

5.2 Data acquisition: 6-class MI EEG data set

Multiple 6-class MI EEG data sets were obtained from two healthy subjects in their 20’s, one
male and one female, which for future reference will be denoted as subject 1 and subject 2,
respectively. It should be noted, that subject 1 suffers from Tourette Syndrome, which is not
optimal for BCI systems. Both of the subjects had corrected to normal vision and were naïve
to MI prior to the data acquisition process. The low number of subjects in this study is a result
of a combination of a lack of time and unstable equipment. The latter was realized during test
trials of the equipment as a new issue arose every time it was used.

The objective behind the acquisition of 6-class MI EEG data sets was to utilize the data for
training the chosen classifier for the BCI system. It was therefore essential that the recordings
were as noise free as possible. For this reason, it was decided to acquire more data sets than
needed to train the classifier, to ensure the acquisition of enough high quality data sets.

To train the classifier, a sufficient amount of trials for each class is needed. However, it
is important not to feed so much data to the classifier as this may result in overfitting. It was
decided to try using two to three data sets, corresponding to 120 and 180 trials, respectively,
as this amount of data appeared reasonable when comparing to the literature. Furthermore,
this manner provided the ability to compare classification accuracy in relation to the amount of
training data and thereby estimate the optimal amount.

The chosen MI tasks described in Table 5.3 were selected based on the MI movement de-
scribed as identifiable in the articles reviewed during the writing of chapter 4, i.e. the imagined
movements that are generally used. Originally, dorsal flexion of the right foot was assigned to
class 4 and dorsal flexion of the left foot was assigned to class 5 and two data sets of 5 sessions
were produced with these classes. As this type of motor imagery can not easily be spatially
discriminated between, as is the case for the left and right hand, it proved difficult to classify
these to imagined movements with the selected features. Furthermore, it is significant that the
time interval from performed MI task to execution of the corresponding control command is
as short as possible in the live system. Due to the latter, the method presented by Hashimoto
et al. in 2013 [15], where the imagined movement is identified via the β rebound occurring
approximately 3,6 s after termination of the MI task, could not be applied in the development
of the BCI system in this project. The movement used as class 4 and 5, were therefore changed
to dorsal flexion of both feet and movement of the tongue, which have proved efficient tasks for
motor imagery in multiple studies [10][27][39][40].
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Table 5.3: Overview of the different motor imagery tasks and their assigned class number. The tabel
includes a description of what each of the movement entails and which command the given MI task
corresponds to in the developed BCI system.

Class nr. & MI task Description

1. Clench right hand

In this task, the subject imagines clenching his/her
right hand with a constant but mild force. This
movement will correspond to the drone turning right
in the online system.

2. Clench left hand
In this task, the same movement as described above
is imagined with the left hand of the subject. This
gesture corresponds to the drone turning left.

3. Clench both hands

The subject clenches both her hands during this task,
with the same force as described for the right and left
hands. The MI task will correspond to the drone
moving forward.

4. Dorsal flexion of both feet
During this task, the subject imagined flexing both
feet upwards in a dorsal flexion. This MI task will
correspond to the drone moving downwards.

5. Tongue movement

In this task, the subject imagines moving the tongue
either upwards towards the palate or backwards
towards the throat. This imagined movement will
correspond to elevating the drone.

6. Relaxation state

In this task, the subject deliberately focused on
nothing and thereby sat in a rested state with relaxed
but open eyes. This state, termed the idling state,
was recorded as a class to ensure the systems
capability of separating the idling state from the
MI tasks controlling the drone. The task will
correspond to the drone remaining stationary in the
air at the given position.

5.2.1 Experimental setup

All of the recordings accomplished during this project were carried out in building 349 of the
Technical University of Denmark.

The subject was placed in a comfortable chair in front of a computer screen with his/her
arms laying flat on the table in front of him/her. The feet of the subject were placed flat on the
ground thus creating a perpendicular angle between shin and thigh.

The computer placed in front of the subject displayed the visual interface during data acqui-
sition, whilst a computer behind the subject acquired the EEG data. The second computer was
placed as close to the bluetooth transmitter on the EEG cap as possible, as the bluetooth range
had proven poorer than originally expected the dongle needed to be in close proximity to not
lose connection. This was also the justification behind the need for two computers. However,
this dilemma was resolved through the acquisition of a 3 m long male-female USB extension
cord, which was connected to the computer and the receiver dongle. The latter was attached
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with the Emotiv transmitter hanging out from the back of the EEG cap with tape, to ensure
constant connection between the electrodes on the EEG cap and the recording computer. One
would reason that this arrangement rendered the system non-portable, but in reality the subject
had more freedom of movement than previously as the USB cables reach was much longer than
the relatively fragile bluetooth connection.

(a) (b)

Figure 5.2: Experimental setup during data acquisition after optimization, i.e. one computer for both
recording the EEG signals and displaying the visual interfaces. The USB extension cord purchased to
enable the optimization can be seen in figure (b), where the subject is interacting with the online training
system. On this image the bluetooth transmission box is also visible and is clearly connected to the
computer via the USB cable.

5.2.2 Recording procedure

As it was decided to use 120 to 180 trials from each of the six classes to train classifiers, the
recording procedure was designed on the basis of reaching this desired amount.

Figure 5.3: Timeline corresponding to one trial during the recording of the 6-class MI EEG data sets.
In the beginning of each trial the subject was presented with a gray square for 3 sec, representing the
relaxation period. Next, a cue in the form of a fixation cross told the subject to prepare for the MI task.
The latter is shown for 1 sec after which one of the MI tasks is presented to the subject for 6 sec.

Each session produced during one run of the visual interface corresponded to 12 trials, two
of each class. The timeline corresponding to one trial is visualized in Fig. 5.3. After 5 sessions,
a data set of 60 trials, ten for each class, was obtained. For future reference, the definition of a
data set is thereby 60 trials throughout the remainder of this thesis.
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Enough small breaks were held between sessions to prevent fatigue in the subjects and a
longer break was provided after completion of a full data set to the same end goal.

The subject was asked to minimize any activity that could cause noise in the EEG signal,
i.e. involuntary muscular activity and blinking. However, if the subject needed to blink during
the data recording, he/she was instructed to do so during the relaxation breaks between the MI
tasks, as the data recorded during these periods would be discarded before the data sets were fed
to a classifier for training. Optimally, the subject should be under observation during the data
acquisition to note whether the subject moved or blinked at inappropriate times, so the noise
filled trials could be removed before using the data. Due to lack of manpower, this was not
possible, but the two subjects reported when he/she moved or blinked to much during a session
so a new one could be recorded to replace it.

5.2.3 Visual interface

The visual interface used during the recording of two 6-class MI EEG data sets was developed
in Matlab. It was designed to run one session of trials every time it was initiated and thereby
displayed the array of figures, shown in Fig. 5.4, twelve times with the various MI tasks. A
short relaxation period of 5 s preceded each session when initiating the code to allow the subject
to calm down and focus before any measurements were taken.

A function was created to generate random sequences of 12 digits ranging from one to six,
corresponding to the 6 different MI tasks. Each task was repeated twice in each sequence to
achieve an equal amount of trials for each of the six classes during each session. A new sequence
of digits was generated before every session, so the subject could not prepare for a given task
and thereby could not perform motor imagination prior to the MI task being displayed, i.e.
during relaxation and focus periods.

Figure 5.4: The six figures corresponding to the six different MI tasks, presented by the visual interface
during data acquisition.

The setup of the visual interface was inspired by a fellow BCI-enthusiastic DTU student,
Jacob Petersen.
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5.3 Online systems

To asses whether the developed BCI system possessed the ability to classify the MI tasks with
sufficiently high accuracy, before using it to control a drone in the real world, some real-time
programs were developed. These programs also served as training systems for the subjects, as
to improve their capability of performing MI.

5.3.1 Real-time training system

As discussed in Chapter 4, training is an essential part of MI-based BCI systems, as it is nec-
essary for users to modulate their SMRs to enhance the accuracy performance of a given BCI
system. Therefore a simple training system was developed, to improve the subjects ability to
perform MI. The idea behind the system was to provide the users with live feedback during
MI performance, enabling them to evaluate their own ability to perform the different MI tasks.
Feedback consisted of a string of text describing the classified imagined movement, which could
be presented at a maximum pace of one movement per half a second. As this pace could seem
overwhelming to subjects, the training system was programmed to be adjustable with regards
to pace and could thereby display feedback at a slower rate if deemed necessary.

The experimental setup was similar to the one used during the acquisition of 6-class MI
data sets. A control computer was located behind the subject and would receive and analyse
the incoming EEG signals, while another was operating as the user interface as seen in Fig.
5.5. The two computers communicated through the previously described UDP to display the
imagined movements classified by the control computer, in the visual interface on the other
computer in real-time.

Figure 5.5: This figure displays an example of the feedback interface used doing real-time MI training.
The text displays the MI performed at a constant pace.

Additionally, the real-time training system served as a way to investigate the performance
and robustness of different classifiers built on the 6-class MI data sets obtained during data
acquisition. The comparison of accuracy estimates determined from subject performance on
this training system, was considered when selecting which classifier to apply in the resulting
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BCI system.

5.3.2 Real-time simulation program

With the aim of providing the user with a more realistic training experience and ensuring that a
given subject had trained sufficiently to be ready for controlling the drone in the real world, a
virtual reality simulation was setup. This was accomplished by modifying a build-in VR demo
from the MathWorks virtual reality toolbox, in which objects are represented in the virtual
reality modelling language (VRML). The VR demo was transformed to enable it to take input
from the developed MI-based BCI system. Furthermore, the VR simulation was modified in
such a way that the 6-class BCI system would allow for as many degrees of freedom as possible.

The aircraft model used in the VR simulation was not a drone, but an airplane as the one
seen in Fig. 5.6, as a drone was not available in the MathWorks toolbox. When launching
the simulation program, the airplane commences on an airstrip, which is also visualized in the
figure straight ahead from the plane. The airplane model advances or rotates a specific distance
every time it receives a command, which signifies that it will not attain a constant velocity at
any point and that it is only able to move or rotate in one direction at a time.

Figure 5.6: Virtual reality simulation program for aerial flight controlled by the developed BCI system.
The shown VR simulation was generated by modifying a built-in VR demo from a MathWorks toolbox
in Matlab.

The translation of which imagined movement corresponds to which airplane command can
be seen in Table 5.3. Despite the fact that the aircraft is unable to pitch, roll or move backwards,
it can be manoeuvred to any location in a 3D-coordinate system.

Tasks

To assess the subjects ability to control the airplane in real-time and to assist in determining the
accuracy of the developed BCI system, two different tasks were designed.

The first task consisted in manoeuvring the plane through various, predetermined move-
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ments with the aim of attempting to provoke all possible commands, i.e. all possible MI tasks.
The specific planned route corresponded to the following:

1. Elevate the plane above the ground.
2. Fly forward to the roadblock on the airstrip.
3. Rotate 180° clockwise.
4. Fly back to the starting position.
5. Rotate 180° counter-clockwise.
6. Land the plane.

The next task was to fly the aircraft to a certain location by any self determined route after
which the subject should return to the starting position. This task allowed the user to manoeuvre
the plane in any desired manner without being forced to follow a predetermined series of tasks.
Instructions for the specified task can be described as follows:

1. Fly to the top of the right-hand side building.
2. Fly back to the landing strip and land the aircraft.

The building in question can be seen on the right-hand side in Fig. 5.6.
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Chapter 6

Signal Processing

This chapter elaborates on the various signal processing steps involved in the development of the
resulting BCI system of this project. The decisions made with regard to the chosen methods and
algorithms are discussed, alongside examples of the effect or results of the different processing
steps applied. A section describing the different metrics used to assess the robustness of the
developed BCI system in the result section concludes the chapter.

The processing of the EEG data is a crucial step in the design and development of a BCI
system and, as described in Chapter 3, the data processing involves the following steps:

• Preprocessing: Raw EEG recordings are almost certainly contaminated with a combi-
nation of noise and artefacts. The purpose of preprocessing the EEG data is to remove
this noise as well as minimizing the artefacts. In addition, a division of the signals into
epochs also takes place in this processing step.

• Feature extraction: Relevant information characterizing each of the performed MI tasks
can be extracted from the epochs. These characteristics are termed features and are the
elements analysed by the classifier when distinguishing the MI tasks from one another.
After extracting the features from the epochs, they are assembled in a vector termed a
feauture vector, which is fed to the classifier. The dimensionality of the feature vector is
therefore equal to the sum of features forwarded to the classifier.

• Feature selection: To assure the computational efficiency and a high classification accu-
racy, the combination of features describing the EEG signals must be properly selected.
This implies that features which are either non-descriptive with regards to the chosen
tasks or redundant with respect to other features, should be discarded, reducing the di-
mensionality of the feature vector. Furthermore, an investigation of the optimal combi-
nation of the remaining features was achieved through a program created in Matlab.

• Classification: In order to distinguish between the classes based on the selected features
describing the EEG signals, a classifier scheme has to be selected and constructed. As-
sessment of the computational power needed and the classification accuracy achieved by
a given classifier, was taken into account during the selection of an optimum classifier
scheme for the BCI system in question.
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6.1 Preprocessing

To prepare the EEG data for feature extraction and classification, a few preprocessing steps are
necessary. These include dividing the data into small bits termed epochs, bandpass filtering the
data to remove unnecessary frequencies and evaluating the necessity and means of performing
artefact removal.

6.1.1 Division of the EEG data into epochs

Offline

The 6-class MI EEG data was recorded in sessions containing 12 trials of 10 seconds each
combined to datasets of 60 trials, as indicated in Chapter 5. To prepare the data for feature
extraction and classification, it was split into epochs of one second each. Furthermore, only the
segment of each trial containing MI was divided into epochs and used to train the classifier. The
latter corresponds to the time interval 4-10 sec of a trial.

To avoid EEG data containing the transition from the idling state to performance of the
presented MI task, the first two seconds of the MI movement was removed. This was done
based on the subjects’ comments regarding the time it took for them to achieve the sensation
of performing MI. This action resulted in the 6-10 sec section of each trial (see Fig. 5.3 for
reference) being used to train a classifier.

In real-time

In the resulting BCI system of this project, the EEG data was processed in real-time, which
modified the manner by which the data was divided into epochs. The epoch length of the online
data was set to be identical to the epoch length of the offline data, namely, one second long.
However, a half second overlap was added, resulting in the number of epochs for n seconds of
recorded data being equal to Nepochs = 2n−1.

The described overlap was made on the basis of increasing the BCI systems output rate.
One second epochs without overlap would result in a command output once pr sec, which is
slower than the desired output pace. With the overlap the BCI system forwards commands to
the drone at a pace of one command pr. half second. Theoretically, this should on result in a
risk of miss-classifying the transition from one MI action to another.

6.1.2 Filtering of the EEG data

As the recorded EEG signals are contaminated with noise and as the frequency range of interest
is limited, the signals had to be filtered before further processing took place. To perform the
necessary filtering a Butterworth bandpass filter was chosen to filter the EEG data.
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Butterworth filters

The amplitude response of a nth order low-pass Butterworth filter is given by

|H( jω)low−pass|=
1√

1+( ω

ωc
)2n

, (6.1)

where ω corresponds to 2π f and ωc corresponds to the cut-off frequency.

The Butterworth filters amplitude response decreases monotonically and the first 2n− 1
derivatives are zero at ω = 0. These characteristics justifies why the Butterworth filter is some-
times referred to as a maximum flat filter. The attenuation of a low-pass filter at the cut-off
frequency is always −3dB. Butterworth filters have a slow decreasing attenuation curve com-
pared to other filter types, but is still often the preferred choice due to its monotonicity. For
high values of the filter order n, the attenuation curve becomes steeper, leading to a smaller
transition band and the amplitude response thereby approaches the amplitude response of an
ideal low-pass filter. The latter is illustrated in Fig. 6.1.

Figure 6.1: Comparison of the amplitude response of Butterworth filters of different orders.

As this project handles EEG data, it is necessary to filter out both high and low frequencies.
A bandpass filter is therefore the obvious choice and such a filter can be realized by combining
a low-pass and high-pass filter. A high-pass filter can be constructed from a low-pass filter by:
Hhigh−pass = 1−Hlow−pass. However, as Matlab contains functions for constructing Butterworth
bandpass filters, these are used for this project rather than constructing one from scratch. This
is done on the basis that Matlabs own functions tend to be faster with regard to computational
time required for processing.

A Butterworth bandpass filter of 4th order, as used by Wendi Song et al. [46], with a
bandpass ranging from 4 Hz to 25 Hz was created in Matlab and applied to filter the EEG data.
This range was selected based on the fact that it contains the most important features for the
MI movements used in this project. With the goal of avoiding phase distortion, zero-phase
filtering was performed using the Matlab function filtfilt which filters the data forwards
and backwards, resulting in a filtering of 8th order. An example of the effect the applied filter
had on a single trial can be seen in Fig. 6.2.
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Figure 6.2: Unfiltered vs bandpass filtered EEG signal. The EEG data is from a single trial with a
duration of 10 sec made with subject 2 and is taken from the C4 electrode.

6.1.3 Artefact removal

Artefacts, e.g. blinking and involuntary muscle movement, are generally identified in one of
two ways:

1. Observing the subjects doing trials, while noting any blinks, eye or muscle movements
and the time at which they occurred.

2. Manually looking through every trial and identifying every blink and movement from the
EEG data itself or from scalp maps produced from the EEG data.

As the required personal for observing the subject during data acquisition was not available
and as the time limit did not permit looking through all of the EEG data sets, no artefact removal
was done prior to feeding the data to the classifier for training. The subjects were instead
instructed to limit the generation of artefacts as much as possible and contaminated sessions
were discarded based on instructions from the subjects, as mentioned in Chapter 5.

No artefact removal could be done on the EEG data when processing it in real-time, as no
algorithms capable of decontaminating the data real-time has been developed to date [50]. In
addition, it should be noted that artefacts such as blinking and eye movements are of such low
frequency, that the bandpass filtering diminishes them sufficiently.

6.2 Feature extraction

An essential part of any BCI system, be it synchronous or asynchronous, is its ability to ex-
tract and quantify specific features of the recorded brain signals. As briefly described in the
introduction of this chapter, the process of feature extraction corresponds to transforming the
preprocessed signals, which were in epoch format at this point, into feature vectors. These vec-
tors must be specific enough to enable the classifier to classify the given epoch as the right task
and short enough to avoid overfitting and to reduce the amount of computational power in the
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online system.

An abundance of different features have been used in the development of MI-based BCI
systems. To provide the ability of estimating which features and in what combination these fea-
tures would characterize the chosen MI tasks optimally, multiple feature extraction algorithms
were developed to extract a variety of different features from the EEG signals. This ensemble
of features was then passed through a feature selection algorithm, as will be described in the
next section of this chapter. A summary of the 16 extracted features described in this section is
provided in Table 6.1.

Table 6.1: Overview of the 16 extracted features described in this section.

Nr. Feature Nr. Feature

1. Activity (Hjorth parameter) 7. Total average BP
2 Mobility (Hjorth parameter) 8 BP in the θ -band
3 Complexity (Hjorth parameter) 9 BP in the α-band
4 Log energy entropy 10 BP in the β -band
5 Shannon entropy 11 Spectral entropy
6 Zero-crossings 12 AAR parameter (5)

6.2.1 Time-domain features

Hjorth parameters

Introduced by Hjorth in 1970, the Hjorth parameters provide a swift way of computing three
relevant characteristics of a time-varying signal, namely the activity, mobility and complexity.
These parameters are very useful in BCI systems requiring fast computation of features because
they are all based on variance [41].

The first of the three parameters, namely the activity, corresponds to the mean power of the
signal, which is equivalent to the variance. It is therefore mathematically defined as:

Activity = σ
2
j =

1
N

N

∑
n=1

(xi(n)−µ j)
2 (6.2)

where N is the number of data points in the epoch, xi(n) is the n’th sample of the i’th channel
of the epoch and µ j is the mean value of the j’th epoch.

The second of the Hjorth parameters, namely the mobility, is a measure of the root-mean-
square frequency in a given epoch. It is mathematically defind as the square root of the variance
of the derivative of the signal divided by the variance of the signal. This corresponds to the
standard deviation of the derivative of the signal divided by the standard deviation of the signal.

Mobility =

√
var(dxi(n)

dn )

var(xi(n))
=

std(dxi(n)
dn )

std(xi(n))
(6.3)

The third of the parameters, namely the complexity, corresponds to a measure of the root-
mean-square frequency spread. It attempts to reflect the deviation from the sine wave; a high
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complexity means a high derivation from the sine wave. Therefore the degree of periodicity of
the signal is captured by this feature. Mathematically, the parameter is defined as the mobility
of the derivative of the signal divided by the mobility of the signal.

Complexity =
Mobility(dxi(n)

dn )

Mobility(xi(n))
(6.4)

Log energy entropy

According to a study published by Serap Aydin et al in 2009 [4], the log energy entropy values
are considered as signal features that characterize the degree complexity in the EEG signal. It
can be determined mathematically as follows:

Elogenergy =−∑
n

log2(P(xi(n)))2 (6.5)

where P(xi(n)) is the probability of xi(n) showing up in the signal.

Shannon entropy

Introduced by Claude E. Shannon in 1948, the shannon entropy provides another measure for
the complexity or uncertainty of the signal. The measure provides an indication of the pre-
dictability of the signal, as a high entropy means a high level of complexity in the signal and it
is thereby harder to predict. It is defined as follows:

Eshannon =−∑
n

P(xi(n))log2(P(xi(n))) (6.6)

where P(xi(n)) still corresponds to the probability of xi(n) showing up in the signal,

Zero crossings

This feature represents the total count of zero-crossings in an epoch. Zero-crossings corre-
sponds to the amount of times the signal amplitude changes sign, which means a zero-crossing
happens every time the signal crosses the x-axis. This parameter therefore reflects the frequency
of the signal to some degree, as a high amount of zero-crossings indicates a higher frequency.

6.2.2 Frequency-domain features

As the features presented below are extracted from the frequency domain, one must first trans-
form the signal from the time-domain to the frequency-domain. This can be achieved by using
the Fourier Transform (FT), or in this case the Discrete Fourier Transform (DTF) as the signal
is discrete. The latter is defined as:

DFT(xi(n)) = Xi(F) =
N−1

∑
n=0

xi(n)e− j2πFn. (6.7)
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Average band powers

Finding the average band power can be done by estimating the distribution of power in the
frequency domain and the total band power of an epoch can be used as feature.

According to Parseval’s theorem, the power of the EEG signal in a single channel i, can be
computed from the DFT as:

BPi =
1
N

N−1

∑
k=0
|Xi(k)|2, (6.8)

where N is the total number of data points in the DFT and k corresponds to the counter running
through these data points. The total average band power was used as a feature.

The BP does not necessarily need to be computed over the full range of frequencies present
in the signal, but can be determined for a specific range of frequencies, which corresponds to
restricting N to the desired frequency interval. This is done by first applying a bandpass filter
to isolate the desired frequencies and then squaring the resulting signal, as to only have positive
values. Hereafter the average band power can be obtained through integration.

Considering the band power of each of the five (six) frequency bands present in EEG signals
(see Table 2.1 for the specific band intervals) can be used to indicate the brain activity occur-
ring in each of the given brain wave patterns at any given time. As the µ-rhythm has proven
dominant during MI in the contralateral side of the sensorimotor areas of the brain, the average
band power over the frequency range 8-12 Hz can be used as a good indicator of what side of
the body the subject imagines movement of a hand. It is therefore expected to be a prominent
feature. However, it was decided to take the band power of the whole α-band in as feature
instead of solely taking the band power of the µ-band, as this might be a better indicator in a
6-class system.

Additionally, the band power of the other types of rhythms might aid distinguishing between
the 6 different classes. As the EEG signals were bandpass filtered from 4 to 25 Hz, the band
power of δ - and γ-rhythms are irrelevant as features. However, the average band powers of θ -
and β -rhythms were also included as features.

Spectral entropy

The spectral entropy is yet another feature which describes the complexity of the signal. The
measure can be used to estimate changes in amplitude in the power spectrum. It can be deter-
mined from the Power Spectral Density (PSD) of the signal, which in turn can be estimated by
squaring the spectrum and normalizing the result by the number of bins, k:

PSD(Fk) =
1
k
|X(Fk)|2. (6.9)

The calculated PSD then has to be normalized to have values in the range [0;1] so that it
can be viewed as a Probability Density Function (PDF) with an integral equal to one:

pk =
PSD(Fk)

∑k PSD(Fk)
. (6.10)
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The power spectral entropy can now be estimated from the PSD through a modified version
of the Shannon entropy Eq. (6.6), which yields:

PSE =−
K

∑
k=1

pklog2 pk (6.11)

The Power Spectral Entropy indicates the frequency distribution across the spectrum: a high
PSE corresponds to en epoch with a flat spectrum, which implies that the frequencies are fairly
distributed across the whole frequency spectrum of the epoch. If the PSE value is low on the
other hand, it implies that the power is concentrated around one or a few frequency bins.

6.2.3 Time-frequency features

AAR parameters

Autoregressive (AR) models predict current signal measurements based on past measurements
by making use of the fact that natural signals tend to be correlated over time or sometimes space.
A traditional AR model uses a set of coefficients ai, which are equivalent to the AR parameters,
to predict these measurements.

xi(n) =
p

∑
m=1

amxi(n−m)+ ε(n) (6.12)

In the above, am = a1,a2, ...,ap are the AR parameters, xi(n−m)= xi(n−1),xi(n.2), ...xi(n−
p) is the delayed data points in channel i representing past measurements and ε(n) is assumed
to be a zero mean white noise process. The latter is added to account for the differences between
the signal and its linear weighted sum approximation.

In the traditional AR model, a single set of coefficients are used, as the model assumes
the statistical properties of the signal to be stationary. Brain-signals, however, tend to be non-
stationary and the consequence hereof, is the requirement of a set of time-varying coefficients
ai,t . This consequence leads to an Adaptive Autoregressive (AAR) model, which can be de-
scribed as:

xi(n) =
p

∑
m=1

am,txt−i(n−m)+ εt(n) (6.13)

The time-varying coefficients ai,t capture the signals local statistical structures as it evolves
in time and these coefficients or parameters are used as features.

The parameter p represents the order of the AAR model and has to be selected carefully;
choosing too low an order will cause the spectrum to smear, corresponding to a low spectral
resolution, and choosing to high an order might result in modification of the original spectrum in
the form of new peaks. The choice of order can either be done through an optimization process,
e.g. cross validation or fixed a priori to a small arbitrary number according to the introductory
text book on brain-computer interfacing by Rajesh Rao [41]. However multiple studies have
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shown a fifth order model is adequate and even though a high order model might provide better
result, a fifth order model was chosen to fit the scope of the project. This resulted in 5 AAR
parameters, which was used as features and these were expected to provide good results, as
multiple of the reviewed studies using these, which generally resulted in high classification
accuracies (see Table 4.1).

6.3 Feature selection

16 different feature extraction methods have been portrayed in the previous section, with the aim
of potentially describing the traits for each of the 6 classes. However, the amount of data needed
to describe the classes increases exponentially with the number of features, which corresponds
to the phenomenon often called "the curse of dimensionality". This gives rise to the necessity
of eliminating some of the features to decrease the dimensionality of the feature vector.

Selecting the best features for a system with multiple classes can be achieved in a multi-
tude of ways. The feature selection should be done with great care, as the extraction of well-
describing features is crucial to produce high accuracy rates. One should for instance be aware
of the fact that removing or adding a feature may not increase or decrease the overall accu-
racy consistently. So rather than removing a feature, observing a better classification accuracy
and conclude that the feature is not worthwhile, specific combination of features should be in-
vestigated. Therefore, the individual accuracy corresponding to every possible combination of
features should be computed to determine the best feature combination. It should come as no
surprise, that this method is highly demanding with regards to computational power and thus
results in a very time consuming process.

Other less computational demanding methods to select features exist. One method is to pre-
select features based on literature reviews and studies with similar classes as the desired BCI
system, where it has been proven that the given features are able to characterise the aforemen-
tioned classes. Applying this method for selecting features will however increase the risk of
choosing suboptimal features and as a result decrease the overall performance of the resulting
BCI system. Furthermore, an overwhelming amount of features has been used throughout the
literature for each class and paradigm and it would therefore be necessary to find the optimal
feature for ones system by trial and error.

A second option is to perform a forward feature selection. In this method, the most favourable
feature with regard to characterizing the classes of the system is determined from the list of fea-
tures. Another feature is then added to the feature vector and the system is evaluated once more.
If the second feature causes the accuracy to decrease the feature is discarded, on the other hand
if the accuracy increases the feature is preserved and a third one is added to the feature vector
and the system is evaluated once again. The algorithm applied in this context continues to add,
discard and evaluate until there are no more features available on the list.

A third method of selecting features is to perform backward selection, where the accuracy
of the BCI system is first assessed when all features are in use. Hereafter one of the feature is
removed from the features vector and the accuracy of the system is determined again. If the
accuracy improves the feature is then discarded and if it decreases, the feature is put back into
the feature vector. The algorithm performing the backward selection continues in this manner
until all features have been evaluated.
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Both the forward and backward feature selection suffers from the deficiency that they do not
evaluate all possible combination of features. The obvious advantage of these methods is that
they require substantially less computational power than calculating the accuracy of all possible
combinations of features.

Based on the aforementioned options, it was established that the optimal method for feature
selection should be used and all combinations were therefore examined to ensure the quality of
the developed BCI. To accomplish this goal, a Matlab script was written which could perform
the necessary calculations. The number of combinations for a given list of features can be
determined statistically from the dimensionality of the feature vector, as follows:

Combinations =
N

∑
n=1

N!
n!(N−n)!

, (6.14)

where N is the number of features. The implications hereof is that for N+1 features, the number
of combinations It will be increased to 2 · It +1.

To evaluate the accuracy of each combination, a linear and a quadratic SVM classifier model
with 5-fold cross-validation were applied, which will be described in further detail in the next
section in this chapter.

As classifiers may vary in accuracy for each time it is used, the Matlab program was set
up to classify the data five times, evaluate the five accuracies and then determine the mean of
the latter to get a more precise estimate of the accuracy with standard deviation indicated. An
example of the output generated by the Matlab program can be seen in Fig. 6.3.

Figure 6.3: Output table generated by the developed feature selection function, evaluating combinations
of 4 features with three 6-class data sets from subject 2. The standard deviation in the table is denoted as
std rather than SD. The applied classification model was a quadratic SVM and the features corresponded
to 1: Band power in the α-band, 2: Hjort parameter ’Complexity’, 3: Band power in the β -band, 4:
AAR parameter nr. one.

In the provided example, only the combinations of four different features were evaluated
by the program, as the table produced by the Matlab script with all 16 features was to long to
present in the thesis. The total number of combinations in the latter, i.e. number of combinations
when evaluating 16 features, is:

Combinations =
16

∑
n=1

16!
n!(16−n)!

= 65,535 (6.15)
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As seen in Fig. 6.3 the estimated accuracies are often quite similar. It is therefore important
to keep in mind that the dimensionality of the feature vector has implications for the systems
efficiency and assess the optimal feature combination by evaluating both accuracy and number
of features. This implies, that if the feature vector which attained the maximum accuracy has a
higher dimensionality than another with very similar accuracy and a small standard deviation,
the feature vector of lower order dimensionality is preferred.

6.4 Classification

As mentioned in Chapter 4, machine learning has played an important role in the development
of BCI systems by contributing with techniques that can learn to link cerebral activity recorded
with EEG to suitable control commands. The algorithms for machine learning can be gener-
ally separated into two categories, namely, supervised and unsupervised learning. In supervised
learning, sometimes termed function approximation, the given training data consists of a set of
inputs labelled with their corresponding output and the goal is to learn the underlying function
from this training data, so that new unlabelled input is classified as the correct output. De-
pending on whether the outputs are continuous or discrete classes, the problem is called either
regression or classification, respectively. In the other category of machine learning algorithms,
namely, unsupervised learning, the training data consists of unlabelled inputs and the goal is to
learn a statistical model that may prove useful for ensuing analysis. Thus, unsupervised learning
accentuates findings of hidden statistical structure in unlabelled data [41].

As the goal of this project was develop a BCI system that recognizes specific MI tasks
and categorizes these correctly with regard to the given control commands, supervised learning
was the obvious choice. Therefore the training data was recorded synchronously, so the set
of inputs were labelled prior to feeding them to the selected machine learning algorithm. As
the EEG signals are processed in one second epochs, the control commands are in the form of
discrete classes, which leads to the conclusion that the necessary machine learning algorithm is
a classifier and thus the problem is termed classification.

To reiterate, the objective of a classification algorithm is to assign one of N labels to a new
input signal, given labelled training data sets consisting of known inputs and their corresponding
output labels. According to a review of classification algorithms for EEG-based BCIs presented
by F. Lotte et al. in 2007 [30], the following definitions are commonly used when describing
the different kinds of classifier available:

• Generative and discriminative: Generative classifiers, also known as informative clas-
sifiers, learn the class models. The classification algorithm computes the probability of a
feature vector belonging to each class and chooses the most probable. An example hereof
is the Bayesian quadratic classifier. The discriminative ones, e.g. SVM, only learn how
to discriminate the classes in order to classify a feature vector directly.

• Static and dynamic: Static classifiers, e.g. Multilayer Perceptrons, classify a single fea-
ture vector and thus cannot take temporal information into account during classification.
Dynamic classifiers on the other hand, are able to classify a sequence of feature vectors
and can thereby catch the temporal dynamics. An example of the latter is the Hidden
Markov Model.

• Stable and unstable: Stable classifiers, such as LDA, have a low complexity and are said
to be stable, due to their reaction to variations in the training data, as this does not con-
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siderably affect their performance. On the contrary, unstable classifiers, e.g. Multilayer
Perceptrons, have high complexity and small variations in the training data may cause
important changes in performances.

• Regularized: The careful control of the complexity of a classifier with the aim of pre-
venting overfitting is termed regularization. A regularized classifier is thus more robust
with respect to outliers and has a good generalization performance.

Apart from the definitions given in the list above, classifiers are categorized as linear or
non-linear and multiple studies have been conducted to determine which of these methods are
superior with regard to BCI systems. Generally, linear classifiers are more robust due to their
limited flexibility, i.e. fewer free parameters to tune, and are thus less prone to overfitting [32]
[35]. However, non-linear methods can provide better results in some applications, especially
when the application involves complex and/or very large data sets.

6.4.1 Selecting an appropriate classifier

Within BCI systems based on the MI paradigm, a variety of classification algorithms have been
applied, with LDA, SVM and NN being some of the most widely used [32]. See 4.3 for a short
introduction to these three kinds of classifiers.

Based on the literature review conducted during this project, it was decided to use the dis-
criminative SVM classifier to solve the classification problem, as it has performed well in mul-
tiple other MI-based BCI systems and has several advantages suiting the aims of this project.

First and foremost, two major advantages of the SVM are its flexibility and simplicity in
usage, as mentioned in 4.3. Moreover, the SVM is a regularized classifier and as the features
extracted from the EEG signals often contains outliers, the regularization of the classifier is
desired to provide robustness with regard to these outliers by increasing the generalization ca-
pacity of the classifier. In general, regularized classifiers have also proven to provide better
results than their non-regularized counterparts and this is particularly the case for SVM [30].
SVM also has a low variance, which may be key to a low classification error in BCI, as BCI
features are very unstable over time [32]. Many of these advantages come at the expense of a
longer computational time than most other classifiers, but as it has priorly been deemed fit for
online systems, it is assumed that it will not add any significant time-delay to the developed
BCI system.

Furthermore, SVM is a stable classifier and will thus not be affected by variations in the
training data. SVM is also a static classifier, but as it was only necessary to process one feature
vector at the time in the developed system and as the temporal information is irrelevant to the
classification in this system, this was deemed unproblematic. Finally, the SVM classifier has
proven very robust to feature vectors of high dimensionality, implying that the classification
algorithm handles the curse-of-dimensionality well. The latter is relevant to the developed
system as it was decided to use multiple features and was not known whether the amount of
acquired training data was sufficient in relation to the chosen number of features.
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6.4.2 Support Vector Machines (SVMs)

Some classifiers, i.e. LDA and perceptrons, select a hyperplane wT x+w0 = 0, where w is
the hyperplanes normal vector and w0 is the threshold determined from the labelled data, to
separate two classes. The chosen hyperplane is only one out of a potentially infinite number
of hyperplanes dividing the two input classes. It can be demonstrated that among such hyper-
planes, the best generalization is accomplished by selecting the hyperplane with the maximal
margin between the two distinguishable classes [41].

The SVM is a classifier that determines exactly this, i.e. it selects the separating hyperplane
for which the margin between the training data points of the two classes is maximized, as
illustrated in Fig. 6.4.

Figure 6.4: Illustration of a SVM finding the separation line with maximum margin between 2 classes,
indicated as the red and blue dots. X1 and X2 denotes features. This figure is a modified version of Fig.
5.3 from [41].

As training data is often contaminated with noise and artefacts, outliers may appear in
the feature space that makes it impossible to construct a hyperplane that separate the classes
completely. In such cases, a soft margin SVM can be used which finds the maximal margin
while keeping the number of misclassification to a minimum. The optimization problem for the
linear soft margin SVM can be presented as:

w,
min

ξ ,w0

[
1
2
||w||22 +

C
K
||ξ ||1

]
(6.16)

subject to:

45



BCI for drone control CHAPTER 6. SIGNAL PROCESSING

y1(wT xi +w0)≥ 1−ξi

with ξi ≥ 0 for i = 1, ...,K.

Where ||.||2 represent the Euclidian (L2) norm and ||.||1 the L1. ξ is the slack variable, that
is a measurement of the degree of misclassification. xi denotes the feature vectors. K is the
number of input and yi is the class membership. This equation is taken from Brain-Computer
Interfacing by Rajesh Rao [41].

As features extracted from EEG data may be of high complexity, it is assumed that a linear
SVM may not be sufficient and as such, a non-linear SVM may be utilized by using the kernel
trick [41], which allow the SVM to achieve non-linear mapping as it employs the use of inner
products between feature pair instead of computing each features coordinates. An example of
how a non-linear SVM might work can be seen in Fig. 6.5.

Figure 6.5: Illustration of a non-linear SVM finding the separation line with maximum margin between
2 classes, indicated as the red and blue dots. X1 and X2 denotes features.

Non-linear SVM models of kernel level 2 (quadratic) and kernel level 3 (cubic) are used in
this project, as to examine how well they perform. Quadratic SVM have proven to be superior
in some situations versus linear. Cubic usually provides higher accuracy versus both linear and
quadratic, but have a high risk of overfitting the data.

6.4.3 Training the classifier

In multiclass machine learning, and SVM specific, there are two binary strategies for training a
classifier: One-Against-One (OAO) or One-Against-All (OAA). In OAO the classification prob-
lem is reduces to a binary problem, where it will learn to differentiate one class versus another
implying that a total of N(N−1)

2 binary SVMs will be trained, where N indicates the number of
classes. In OAA the problem is also reduces to a binary problem, where the classifier will learn
to differentiate one class versus all other classes giving a total of N SVMs. Even though OAO
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requires more SVMs than OAA, it may create less support vectors than OAA as shown in Borra
et al. [34]. As the the computation power required depends on the number of support vectors
created, the OAO would require less training time than OAA. In this project, it was decided to
use the OAO strategy as it is less complex than the OAA and because of the reduced training
time, even though OAA is more commonly used [7].

As the data to be handled by the classifier was recorded synchronously, implying that the
class of each epoch is known, a classifier can be trained using supervised learning. To achieve
this, Matlab’s Classification Learner was used, which is an integrated application for training
a number of predetermined classifier types. Using this tool enables training of a wide array of
different classifiers quickly and with relative ease and thereby enables testing different classi-
fiers to determine the best one to use for a given type of data. An example of the Classification
Learners interface and use can be seen in Fig. 6.6.

Figure 6.6: Matlab’s Classification Learner in use with three 6-class data sets from subject 2. Accuracy
of trained classifiers can be seen on the left side, while data point can be seen in the middle and colour-
coding for the data point is on the right.

k-fold Cross-Validation

In this project, k-fold cross-validation was used to train classifiers and estimate the accuracies
of these.

In k-fold cross-validation, the dataset is scrambled and partitioned in k bins. A classifier
is then trained on k− 1 bins thus leaving one bin out, which is then used for estimating the
performance of the newly trained classifier. This process is then repeated k times until all
combinations have been examined and the k accuracy results can then be averaged to reveal
the estimated accuracy of the k-fold cross-validation. This method protects from overfitting
the data and is a commonly used statistical means for estimating the classifiers performance on
unlabelled data. A more precise variant of the k-fold cross-validation exists, the stratified k-fold
cross-validation, which partitions the data in bins with even distribution of each label. As this
is available through Matlab, this variant is used.

Choosing the right value of k can prove difficult, as higher values of k may produce estimates
with lower variance but will require more data and computations. Lower values of k can increase
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the variance due to instabilities of the training sets, especially in sets with many categories. It
is commonly recommended to use either 5, 10 or 20 as values of k [24] [5]. It was therefore
decided to test classifiers with 5 and 10 as values for k.

6.4.4 Evaluation of the BCI systems classification performance

As mentioned in the state-of-the-art, there are multiple evaluation techniques for quantifying
the classification performance of asynchronous BCI systems and no official method has been
decided upon. It was therefore necessary to determine by which metrics the developed system
should be evaluated. Apart from the obvious parameter for performance evaluation, namely,
the accuracy of the classifier, another important aspect with regard to the system developed in
this project, is the classification time. The latter is important due to the fact that the resulting
BCI system of this project is an online system and should compute commands from EEG sig-
nals fast enough, as to minimize the delay from thought to action in the drone. Therefore the
classification time of the system will be taken into account, when presenting and discussing the
results obtained from the BCI system. Furthermore, it was decided to use confusion matrices
to illustrate the system performance, alongside the aforementioned accuracies estimated by the
k-fold cross-validation, as these provide a deeper knowledge of the classifiers performance than
simply indicating accuracy.

Confusion matrix

A confusion matrix provides information concerning the classification results of a BCI system
in an illustrative and sensible manner. It is a N×N matrix, where N denotes the number of
classes in the evaluated system, and the rows in the matrix represent the true class labels while
the columns represent the classifiers output.

Figure 6.7: Confusion matrix for 2-class
problem. P stands for positives, while N
corresponds to negatives. Figure borrowed
from [42]

The case of the confusion matrix for a 2-class
problem (binary classification) is illustrated in 6.7 and
the four entries of the matrix corresponds to: the num-
ber of true positives (TP) or correct positive classifica-
tions, the number of false positives (FP) or incorrect
positive classifications, the number of false negatives
(FN) or missed positive classifications and the num-
ber of true negatives (TN) or correct rejections. The
false positives or sometimes referred to as Type I er-
rors, whilst the false negatives are sometimes referred
to as Type II errors [41].

From the matrix’ diagonal, the total number of
correctly classified samples can be determined as the
sum of the diagonal elements. Furthermore, the non-
diagonal elements of the confusion matrix illustrates
the amount of samples misclassified by the BCI sys-
tems classifier.

The classification accuracy is defined as the ratio between correctly classified samples and
the total number of samples provided to the classifier. It can thereby be derived from the confu-
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sion matrix in the following manner:

Accuracy =
T P+T N

T P+FN +FP+T N
. (6.17)

As the confusion matrices presented in the results of this thesis are computed by Matlab,
they will be based on the k-fold cross-validation used to train the classifier and the accuracy
determined by the above equation is therefore expected to be equal to the accuracy estimated
by the k-fold cross-validation.

The error rate of the classifier can be determined by Error = 1−Accuracy and the chance
level of an N-class system can be calculated as Chance level = 1

N , provided that the number of
examples for each class is the same.
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Chapter 7

Results

This chapter presents the results obtained during this study. First, the results computed by the
developed feature selection algorithm described in Section 6.3 are presented.

Secondly, the accuracies and confusion matrices computed for the 6-class system during
offline classification for both both subjects are displayed. Furthermore, the system was reduced
to a 2-class system, to verify the subjects’ abilities with regard to performance of MI.

Finally, the results from the online classification and training are presented. Due to time
limitations, the training phase was cut short and there were therefore no accuracies revealing
the performance of the online system available to present. Therefore, a qualitative analysis of
the accomplished part of the training phase is presented.

7.1 Feature selection

As described in Section 6.3, a feature selection algorithm was developed with the aim of deter-
mining the optimal combination of features to use in a 6-class BCI system. There was a total of
16 different extracted features to be examined by the algorithm, which corresponds to a total of
65,535 combinations as determined in Eq. (6.15).

Due to the computational power necessary for evaluating each sequence of features, com-
puting the accuracy achieved for each combination of all 16 features was found to be to time-
consuming with the available hardware. Therefore, it was decided to remove some of the el-
ements from the feature vector prior to running the feature selection program. The collection
of features to be removed were determined based on their relevance with regard to the per-
formed MI tasks and their redundancy with regard to the other features. Three features were
discarded, namely, zero-crossings, total average band power and the band power in the θ -band,
corresponding to features six, seven and eight in Table 6.1.

Eliminating three features resulted in a feature vector with 13 elements. The number of
combinations to be evaluated by the feature selection program, was thereby reduced from
65,535 to the following:
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Combinations =
13

∑
n=1

13!
n!(13−n)!

= 8,191. (7.1)

By running the developed algorithm with even fewer features and noting the computational
time necessary for the program to complete its evaluation of all combinations, it was possible to
estimate the necessary time for evaluating all combinations of the 13 features. It was assessed
that the feature selection algorithm would need approximately two days to evaluate the accuracy
of all 8,191 combinations of the 13 features with the available hardware. This time frame was
deemed acceptable for the scope of this project. Nevertheless, the process was still notably
time-consuming and therefore it was decided to run the feature selection program only once on
data obtained from subject 2. The resulting features were used for training the classifiers for
both subject 1 and subject 2, due to the limited amount of time available.

The size of the output table computed by the algorithm was to large to include in the report,
as it included 8,191 rows containing the feature combinations and their corresponding accura-
cies. The combination of features yielding the best accuracy as computed by the algorithm, is
presented in Table 7.1. The highest accuracy obtained was 74,6% and multiple other feature
combinations resulted in similar accuracies, but were of higher dimensionality than the selected
combination.

Nr. Feature

3 Complexity (Hjorth parameter)
9 Band power in the α-band
10 Band power in the β -band
12 AAR parameter 1
12 AAR parameter 5

Table 7.1: Overview of the five optimum features for the developed BCI system, as determined by the
feature selection algorithm. The features are presented alongside their corresponding feature number, as
they were indicated in Table 6.1.

7.2 Offline classification

In this section, the results computed during the offline analysis of the 6-class BCI system are
presented for both subjects. Furthermore, the 6-class system was reduced to a 2-class system
with the classes left hand MI and right hand MI, and the results related to this reduced system
are shown in the end of this section.

As explained in Section 6.4, it was decided to use SVM to solve the classification problem.
However, it was not determined whether to apply the linear, cubic or quadratic SVM, as it was
decided to make this decision based on the stability and performance of the three types of SVMs.
Accordingly, accuracies obtained from all three kinds of SVM are presented for comparison.
Furthermore, each of the classifiers were trained using both 5- and 10-fold cross-validation, as
to investigate which of these yields the highest accuracies for the developed BCI system. The
latter leads to an evaluation on a total of 6 different classifiers for each of the two subjects. To
avoid redundancy, it was decided only to display the confusion matrix for the classifier which
obtained the highest accuracy for each subject, as the prediction distributions were similar in all
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computed confusion matrices.

7.2.1 Evaluation of the 6-class system

The results for classification of the 6-class MI EEG data by the developed BCI system is pre-
sented here for each of the two subjects. To reiterate, the classes are MI of the right hand (class
1), MI of the left hand (class 2), MI of both hands (class 3), MI of feet (class 4), MI of tongue
(class 5) and finally the idling state (class 6), as previously indicated in Table 5.3. As stated in
Section 6.4.4, the BCI system is evaluated by its produces accuracies and confusion matrices.

Subject 1

The accuracies obtained from the 6-class MI data acquired from subject 1, are shown in Table
7.2 for all three types of classifier trained with both 5- and 10-fold cross-validation.

The accuracies obtained from subject 1 are generally low, but are still higher than the the-
oretical guessing level. There are no remarkable differences in the accuracies computed by the
linear SVM, cubic SVM and quadratic SVM, respectively, although it seems as though the lin-
ear SVM performs slightly better then its two counterparts. Likewise, no noticeable differences
are to be found between classifiers trained with 5- and 10-fold cross-validation.

Average accuracy Classifier k

30.1 % Linear SVM 5
29.0 % Quadratic SVM 5
27.2 % Cubic SVM 5
30.6 % Linear SVM 10
29.6 % Quadratic SVM 10
27.2 % Cubic SVM 10

Table 7.2: Table containing accuracies of trained classifiers on 6 classes. The data consists of three
datasets split into 1 sec epochs from subject 1 and are the averages of 30 calculated accuracies with the
corresponding classifier. The column k indicates the cross-validation used.

In Fig. 7.1, two versions of the confusion matrix computed from the classification of 6-class
EEG data from subject 1 is displayed. From these confusion matrices, a clear tendency of mis-
classification of the different classes involving imagined hand movements can be observed, as
the rates of false negatives and false positives are high around the aforementioned classes. Es-
pecially MI of the left hand is confused with MI of both hands, with class 2 being misclassified
as class 3 as frequently as it is correctly classified.

Furthermore, the same tendencies can be observed with regard to class 4, class 5 and class
6, where especially class 5, i.e. MI of the tongue is confused with class 6, i.e. the idling state,
with a false positive rate of 27 %.
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(a) Number of observations (b) True positive/false negative rates

Figure 7.1: Confusion matrix of 6-class classification using linear SVM with data from subject 1 and a
10-fold cross-validation. The accuracy in the confusion matrix may vary from the accuracy in Table 7.2
as it is from a single training. Class 1: Right hand MI, Class 2: Left hand MI, Class 3: Both hands MI,
Class 4: Feet MI, Class 5: Tongue MI, Class 6: Idle state.

Subject 2

The accuracies obtained from the 6-class MI data acquired from subject 2, are shown in Table
7.3 for all three types of classifier trained with both 5- and 10-fold cross-validation.

The accuracies obtained from subject 2 are substantially higher than the accuracies obtained
from subject 1 with a maximum accuracy of 71,7 %. With regard to the classifiers, both the
cubic SVM and quadratic SVM greatly exceeds the linear SVM in relation to the computed ac-
curacies and the quadratic SVM seems like the best fit, when looking at the average accuracies.
It can also be observed that all the classifiers trained with 10-fold cross-validation outperforms
their counterparts which were trained with the 5-fold cross-validation.

Average accuracy Classifier k

39.7 % Linear SVM 5
60.7 % Quadratic SVM 5
66.7 % Cubic SVM 5
40.8 % Linear SVM 10
63.4 % Quadratic SVM 10
71.7 % Cubic SVM 10

Table 7.3: Table showing accuracy of trained classifiers on 6 classes. The data consists of three datasets
split into 1 sec epochs from subject 2 and are the averages of 30 calculated accuracies with the corre-
sponding classifier. The column k indicates the cross-validation used.

In Fig. 7.2, the same two versions of the confusion matrix presented with subject 1, are
shown using the classification data from subject 2. As the accuracy is higher for subject 2
than subject 1, the misclassification tendencies are not as clearly distinguishable as in Fig.
7.1. However, some tendencies can be observed in the misclassification of class 1 as class
2, corresponding to the classifier misinterpreting MI of the right hand as MI of the left hand.
Futhermore, a slightly elevated tendency of misclassifying class 6 as class 5 can be observed,
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which corresponds to the classifier misinterpreting the idle state as MI of the tongue.

(a) Number of observations (b) True positive/false negative rates

Figure 7.2: Confusion matrix of 6-class classification using cubic SVM with data from subject 2 and a
10-fold cross-validation. The accuracy in the confusion matrix may vary from the accuracy in Table 7.3
as it is from a single training. Class 1: Right hand MI, Class 2: Left hand MI, Class 3: Both hands MI,
Class 4: Feet MI, Class 5: Tongue MI, Class 6: Idle state.

7.2.2 Reduction to a 2-Class system

In the following section, the results computed when reducing the 6-class system to a 2-class
system are presented for each subject. The two classes of this reduced system were chosen to
be class 1 and class 2, corresponding to MI of right hand and MI of left hand, respectively.
The purpose of this reduction of the system was to investigate whether the subjects naïve to MI-
based BCI were able to perform MI prior to any training. With this aim in mind, a second 2-class
system was developed for testing the EEG data from subject 1, as he obtained substantially
lower accuracies than subject 2. This system used class 3 and class 6, corresponding to MI
of both hand and idling state, respectively. The classification was done with the three priorly
described classifier versions, but these were only trained with 5-fold cross-validation as opposed
to both 5- and 10-fold cross-validation as done previously.

Subject 1

The average accuracies obtained from the 2-class system based on class 1 and class 2 with EEG
data from subject 1 are presented in Table 7.4.

Average accuracy Classifier k

52.9 % Linear SVM 5
50.4 % Quadratic SVM 5
47.9 % Cubic SVM 5

Table 7.4: Table showing accuracy of trained classifiers on 2 classes (Left- and right hand MI). The data
consists of three datasets split into 1 sec epochs from subject 1 and are the averages of 30 calculated
accuracies with the corresponding classifier. The column k indicates the cross-validation used.
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The linear SVM outperforms the two other classifiers slightly, but as the accuracies ap-
proach the theoretical guessing level of 50 %, this does not indicate anything valuable.

In Fig. 7.3, the two versions of the confusion matrix computed from the classification of
the 2-class system with subject 1 are presented. The most noticeable feature in these matrices is
the misclassification of class 1 as class 2, with an astonishing false negative rate of 55 %, which
implies that the MI of right hand movements was incorrectly classified more frequently than it
was correctly classified.

(a) Number of observations (b) True positive/false negative rates

Figure 7.3: Confusion matrix of 2-class classification using linear SVM with data from subject 1 and a
5-fold cross-validation. The accuracy in the confusion matrix may vary from the accuracy in Table 7.4
as it is from a single training. Class 1 corresponds to right hand MI and class 2 corresponds to left hand
MI.

In Table 7.5, the average accuracies obtained from the 2-class system based on class 3 and
class 6 with EEG data from subject 1 are presented. Compared to the previously described
2-class system, the accuracies are much higher for this system and the linear SVM achieves the
highest accuracy out of the three tested classifiers.

Average accuracy Classifier k

74.2 % Linear SVM 5
67.5 % Quadratic SVM 5
63.7 % Cubic SVM 5

Table 7.5: Table showing accuracy of trained classifiers on 2 classes (Both hands MI and idle state). The
data consists of three datasets split into 1 sec epochs from subject 1 and are the averages of 30 calculated
accuracies with the corresponding classifier. The column k indicates the cross-validation used.

The two versions of the confusion matrix for the 2-class system distinguishing between class
3 and class 6 based on EEG data from subject 1 are shown in Fig. 7.4. The false prediction rate
is quiet low, as the total accuracy is high compared to the other 2-class system with left/right
hand MI. It should be noted that the true positives and false negatives of the confusion matrix
are evenly distributed.
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(a) Number of observations (b) True positive/false negative rates

Figure 7.4: Confusion matrix of 2-class classification using linear SVM with data from subject 1 and a
5-fold cross-validation. The accuracy in the confusion matrix may vary from the accuracy in Table 7.5
as it is from a single training. Class 1 corresponds to both hands MI and class 2 corresponds to Idle state.

In Fig. 7.5 the average power spectrum of right hand MI, left hand MI, both hands MI and
idling state from a whole dataset is shown for subject 1. As it is hand MI, the most noticeable
area should be the µ band (8-12Hz). For the right hand MI, it can be seen that for both the C3
and the C4 electrodes the power in the µ band is diminished compared to the idling state. The
same is true for the both hands MI. For left hand MI, the C4 electrode is diminished whilst the
C3 does not appear to be.

Figure 7.5: The power spectrum of left/right hand, both hands and idle state in the C3 and C4 electrode
location. The data is the average power spectrum of a dataset from subject 1.

Subject 2

The average accuracies obtained from the 2-class system based on class 1 and class 2 with EEG
data from subject 2 are presented in Table 7.4. Compared to the accuracies computed from
subject 1’s EEG data, a substantial elevation in the average accuracy can be observed with a
maximum average accuracy of 80,4 %.
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Average accuracy Classifier k

66.3 % Linear SVM 5
78.3 % Quadratic SVM 5
80.4 % Cubic SVM 5

Table 7.6: Table showing accuracy of trained classifiers on 2 classes (Both hands MI and idle state). The
data consists of three datasets split into 1 sec epochs from subject 1 and are the averages of 30 calculated
accuracies with the corresponding classifier. The column k indicates the cross-validation used.

The quadratic and cubic classifiers outperform the linear SVM, which was also the case for
the 6-class classification for subject 1, with the cubic SVM being slightly ahead of the quadratic
SVM in obtained accuracy.

In Fig. 7.6, two versions of the confusion matrices for the 2-class system are displayed. The
same tendency as for subject 1, i.e. right hand MI misclassified as left hand MI, can observed
from the confusion matrix, although to a lesser degree.

(a) Number of observations (b) True positive/false negative rates

Figure 7.6: Confusion matrix of 2-class classification using quadratic SVM with data from subject 2
and a 5-fold cross-validation. The accuracy in the confusion matrix may vary from the accuracy in Table
7.6 as it is from a single training. Class 1 corresponds to right hand MI and class 2 corresponds to left
hand MI.

In Fig. 7.7 the average power spectrum of right hand MI, left hand MI, both hands MI and
idling state from a whole dataset is shown for subject 2. It can be seen that for right hand MI,
the C3 electrode is much more diminished than the C4 electrode. The reverse is true for the left
hand MI. For both hands MI, both C3 and C4 is diminished.
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Figure 7.7: The power spectrum of left/right hand, both hands and idle state in the C3 and C4 electrode
location. The data is the average power spectrum of a dataset from subject 2.

7.3 Online classification and training

The online training was performed using text based feedback with the setup described in Section
5.3.1. As mentioned in the introduction to this chapter, the training and online testing phase was
cut short due to time limitations, which resulted in subject 1 being the only one of the subjects
to experiment with the training system. As it was deemed necessary to train the subjects prior
to them attempting the two tasks in the VR simulation described in Section 5.3.2, no attempts
were made to complete these tasks. However, some observations were made during subject 1’s
experimentation with the training program.

All the different types of SVMs were tried out during the experimentation with the real-
time training system, i.e. linear, quadratic and cubic SVM, as to evaluate the performance and
stability of each of these classifiers.

Using the linear SVM for testing on subject 1, revealed that when the subject was perform-
ing any of the three hand MI tasks, the classifier would randomly categorize it as either class
1, class 2 or class 3, corresponding to MI of right hand, MI of left hand and MI of both hands,
respectively, with a few offsets to the other classes. When the subject was performing either MI
of the feet or MI of the tongue, the linear classifier categorized it randomly as either class 4,
class 5 or class 6, corresponding to MI of the feet, MI of the tongue and idle state, respectively,
with few offsets to other classes. When performing idle state, the subject was able to get the
classifier to categorize it correctly with very few offsets.

Using the quadratic SVM for subject 1, the same tendencies as with the linear SVM were
seen. It could not be concluded whether or not this provided a more stable results than the linear
classifier.

Using the cubic SVM for subject 1, the same tendencies were also true as for the other two,
though it were more unstable in classifying as it more frequently jumped between all classes.
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Discussion

In this chapter a discussion on the obtained results is provided. This includes a brief criticism
on the feature selection process, a longer discussion on the estimated accuracies for the 6-class
and 2-class system, respectively, and a short analysis of the online tests. A discussion on the
future work and possible optimization proposals, concludes the chapter.

8.1 Feature selection

As the optimal set of features may differ from one subject to another, the feature selection
algorithm should have been used to compute the optimum feature combination for each of the
two subjects. However, as previously stated in Section 6.3, the computational power available
was not sufficient and thus the time required for computing another optimal feature combination
for subject 1 was out of the scope of this project.

Additionally, by only testing the algorithm with 13 out of 16 features, potential optimal
combinations may have been lost in the process. With greater computational power available,
like a cloud based hub system, it would be possible to check all combination for all 16 features
and implement even more features if desired in a short amount of time, compared to using one
personal computer for the task.

8.2 6-class

In Table 7.2 described in the previous chapter, the accuracies obtained from the 6-class system
evaluated on the EEG data from subject 1 are displayed. The accuracies are all consistently low
regardless of the classifier type, corresponding to approximately ∼29% which is almost double
the theoretical guessing level of ∼16.67%. This does indicate some correlation but could also
be a result of overfitting when training the classifier. The linear SVM appears to provide the
highest accuracy and the degree of k-fold cross-validation does not affect the accuracies. When
inspecting Fig. 7.1, it can be observed from the confusion matrix that the three hand MI tasks,
i.e. left hand, right hand and both hands, often get misclassified with one another, while the
same is true for MI of the feet, MI of the tongue and idle state. This would indicate that the
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classifier is able to distinguish between MI tasks based on hand movements and other tasks,
while it is not able to distinguish between the different MI tasks involving hand movements
themselves.

The accuracies obtained from the 6-class system when evaluating on the EEG data obtained
from subject 2, are much higher than that of subject 1 for all the concerned classifiers, as can
be seen in Table 7.3. Unlike in the results for subject 1, the accuracy varies substantially with
regards to the SVM degree with Linear being the most inaccurate at 39.7% and cubic being
the most accurate at 66.7% when considering the 5-fold cross-validation results. As stated in
Section 6.4, it has been suggested that a linear classifier might not be able to classify data of
high complexity, which would explain the remarkable difference in accuracy of the linear- and
non-linear classifiers for subject 2. There is a noticeable rise in accuracy when using 10-fold
cross-validation compared to 5-fold as seen in Table 7.3 which is consistent with the reviewed
literature [5] [24]. The highest accuracy achieved was with cubic SVM using 10-fold cross-
validation at 71.7% which is greatly superior to the theoretical guessing level, suggesting a
large variance between the different classes. From the confusion matrix in Fig. 7.2, it can be
observed that the false prediction rates are close to evenly distributed between all classes, which
indicates that non of the classes correlate too much with one another. However, as mentioned
when describing the results, a minor tendency of classifying right hand MI as left hand MI can
be observed, as well as an even smaller tendency of classifying idling state as MI of the tongue.
The latter suggests that the subject may have found it difficult to perform MI of the tongue,
resulting in similar brain patterns as observed during the idling state.

In 2014, Song et al. [46] measured accuracies of a 4-class BCI system on subjects over
five consecutive days to see the improvement of training and the study showed that one subject
had an increase in accuracy from 40% to 89.5% over these days. As the data recorded during
this project, which was used for estimating the accuracies of both subjects, was recorded over
a timespan of two days, the accuracy of 71.7% could be considered impressive when compared
to the described study by Song et al., as it comes from estimating 6 classes without any prior
training. With further subject training, it would be expected that this accuracy increases and it
would not be a bad assumption that subject 1’s accuracy could improve. It should be noted that
the accuracies might not be completely comparable, as the ones from Song et al. are obtained
with an online system as opposed to the offline estimate from this project.

The system developed by Doud et al. [10] shows a 6 class system achieving up to 87.2%
from online testing. As above, this accuracy is obtained after subjects have trained performing
the specific MI tasks multiple times, as Doud et al. emphasizes training as a main contributor
for increasing accuracy in a subject.

8.3 2-class

The system was reduced to a 2-class system to see whether or not the left- and right hand MI
could be predicted and thereby, if subject 1 was even able to perform this class of MI. From
Table 7.4 it can be seen that the accuracy of left- and right hand MI is ∼50% and Fig. 7.3
shows that the distribution is not shifted towards one of the classes. This indicates that these
classes can not be distinguished from each other as the predicted accuracy is near the same as
the theoretical guessing level, which could mean that the subject is unable to perform MI or that
the features does not represent distinctive characteristics of the performed MI. From Section 4.3

60



BCI for drone control CHAPTER 8. DISCUSSION

it is suggested that left/right hand movement produces ERD in the contralateral brain area in the
µ band while performing this type of MI. Fig. 7.5 shows the power spectrum of left- and right
hand MI compared to MI for both-hands and idle state at the C3 and C4 electrode positions,
which corresponds to the areas where ERD would be visible for these MI tasks. For MI of both
hands, this shows that the ERD appears for both electrodes, when compared to idle state. At the
MI of left hand, ERD appears mainly in the C4 electrode and for the MI of the right hand, ERD
appears for both electrodes as in the case with both-hands MI. A sound conclusion from this,
would be that the subject is unable to perform left- and right hand MI separately. This might be
due by the fact that the subject suffers from Tourette’s Syndrom, which affects the motorsensori
area of the brain, but as no previous studies have been made about this subject, it cannot be
concluded to be the definite cause.

As stated previously in Section 8.2, the 6-class MI classifier for subject 1 appeared to clas-
sify into one of the three hand-classes when MI of the hand was performed, or into one of the
other classes when one of these were performed. As such, a classifier was trained for 2-classes,
i.e. MI of both hands and idle state. The result, which can be seen in Table 7.5, shows that the
achieved accuracies were higher than that of the MI tasks of the left and right hand, with the
highest accuracy being 74.2% when using linear SVM. This is significantly higher than that of
the theoretical guessing level at 50%. Moreover, Fig. 7.4 shows that the distribution of true and
false predictions are even over the two classes. As such, it can be concluded that the classifier
is able to distinguish between these classes.

Though subject 2 was able to achieve high accuracies with the 6-classe system, a 2-class
problem was assessed too, to enable comparison with the results of subject 1. A left- and right
hand MI classification was attempted. The results can be seen in Table 7.6 with the highest
accuracy being 80.4% using cubic SVM. Fig. 7.6 shows that the distribution of predictions is
shifted slightly to favour left hand MI. Furthermore, Fig. 7.7 displays the power spectrum for
the MI of the hands and the idle state in the C3 and C4 electrodes, in which it can be seen that
ERD appears for both C3 and C4 for all hand MI but for right hand MI, the ERD is much greater
in C3 than in C4 and vice-versa for left hand MI. For MI of both hands it can be observed that
the ERD is of the same amplitude. This leads to the conclusion that subject 2 is indeed able to
perform left/right hand MI. The fact that the distribution is shifted slightly towards left hand for
both the 2-class and the 6-class systems is unexpected, as the subject is right handed and thus a
shift towards the right hand would be expected.

The study by Tian et al. [49], where left/right hand MI was performed, showed an accuracy
of up to 91.0% using wavelet transform for feature extraction and a RBF NN as classification
method. Compared to this, the accuracy obtained by subject 2 of 80.4% is quite low. An
explanation behind this could be the fact that the features selected were optimized for use in a
6-class system, meaning that some feature may be redundant and some of the removed may have
improved a 2-class hand based system. Furthermore, the optimal electrode placements were not
available on the modified cap using Emotiv’s system, as the remaining electrodes surrounding
the motorsensori cortex were missing. Additionally, if a 2-class system was to be the objective,
new features would have to found.
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8.4 Online tests

The online training with feedback showed that subject 1 was able to produce steady result when
trying to provoke the idle state respond, although he was unable to do the same for any of the
other classes. As Fig. 7.1 shows, there is a clear correlation between all the different types
of hand-based MIs, which corresponds well with the feedback subject 1 got when performing
any of these. The same can be seen with the other three classes, part from idle state, as feet
and tongue MI most often would result in classification of feet, tongue or idle state. As the
subject was only able to continuously provoke the idle state, it was determined that he should
not continue to the live simulation at any point soon. Furthermore, it was also discussed whether
or not he was MI illiterate, but no conclusion was found. It was decided that the subject should
be tested to see if training could improve the accuracy to a sufficient level, as was achieved by
Doud et al. [10] and Song et al. [46].

As limitations in time did not allow for online testing of subject 2, not much can be said
about it. But as subject 2 did show notably higher accuracy in the offline evaluation than subject
1, it is expected that online testing with her will provide better result that might prove good
enough for testing the live simulation and finally the drone. Online testing and training for
subject 2 is expected to be done in the near future.

8.5 Future work

As this thesis only presents a proof-of-concept, the goal is the make the concept an applicable
study. For this, at least ten subjects should be used for testing over an extended period of time
to allow training, as multiple studies have shown that this can greatly improve accuracies for
MI based BCI, best shown in the before mentioned Song et al. [46].

In the near future, it is planned to implement more features that to increase the chance of
finding an optimal combination. One of such features would be a multiclass CSP (common
spacial pattern) filter, as this is able to greatly increase the variance between classes. Another
feature that might get implemented is the wavelet transform, as this have proven to be useful in
classifying multiclass systems before [46].

Equipment wise, the system is expected to greatly improve if a cap with all relevant elec-
trodes were used, as many features depends on the variance of electrodes close to each other. As
the system was supposed to be wireless, a bluetooth transmitter with an effective range of more
than 20 cm would be preferred, a transmitter using wi-fi would properly be optimal for this job.
In the far future, when the system works on multiple subjects with minimal training, a Rasp-
barry pi might be implemented to bypass the need of a PC, which would make the system more
mobil and flexible to use. As the main feedback when flying a drone would be a front-placed
video camera, it would be optimal for the user to be able to turn it without the need to turn the
drone itself. Eye-tracking or a gyroscope could be implemented, as these would only have little
interference with the MI BCI system itself. All this could be combined with a microphone and
a speaker to make long distance communication possible for user unable to move and thereby
they might achieve a better quality of life.
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Conclusion

The aim of this project was to develop part of a hybrid BCI system permitting the control of
a drone for paralysed patients, based on the hypothesis that this would equip the patient group
with increased mobility and thereby elevate their quality of life. The system part in focus
was the BCI capable of categorizing the MI tasks provided as input by the patient as control
commands that could be fed to the drone with as high an accuracy as possible.

To enable control of a drone in 3 dimensions, a 6-class system was developed, as this is
the minimum amount needed for accomplishing this task, with the movements corresponding
to forward, turn left and right, move up and down, and stay still. As it was decided to apply MI
as the paradigm of the BCI system, 5 different MI task were found in accordance to tasks that
had previously been distinguished by other researches. The chosen MI tasks were as follows:
Left and right hand, both hands at the same time, feet and tongue. Furthermore, the sixth class
was selected to be the idle state.

In order to be able to classify the MI tasks, features needed to be extracted to characterize the
tasks from one another. The features for this were found using an algorithm able to determine
the combination of features that would provide the best result. From this, 5 features were
selected to be used by all subjects. Three different classifiers were used to categorize the classes
using the extracted features, namely, linear SVM, quadratic SVM and cubic SVM. EEG data
sets of the aforementioned MI tasks were acquired from two subjects and the data was used
for training the classifiers. The data sets consisted of 60 trials with 4 seconds of data each and
three of these data sets were deemed sufficient for training the classifiers. The accuracy of the
classifier was estimated using both 5-fold or 10-fold cross-validation.

The 6-class system was evaluated upon and one subject was able to achieve high accuracies
up to 71.7% with even distribution of false predictions, whilst the other was unable to achieve
higher accuracies than 30.6%, which would be considered to low for drone control. The system
was reduced to a 2-class problem to evaluate if the subject was able to perform distinguishable
hand MI. This however, showed that he was not able to get accuracies above the theoretical
guessing level.

As the time did not allow for this study to finish testing, simulation and drone flight, the
feasibility of this can not yet be concluded. This study does however, show that classifying 6
classes is possible.
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Appendix

The Appendix contains all the relevant developed programs used during this project and is
divided into two sections, namely, programs developed in Matlab and programs developed in
Python.

9.1 Programs developed in Matlab

This section of the Appendix contains all of the relevant programs developed in Matlab dur-
ing the project. Many of the functions have been slightly modified to serve slightly different
purposes, but have not been included as they were deemed irrelevant and to avoid redundancy.

9.1.1 Offline data processing script

%% Load data

% This script is for offline procossesing EEG data recorded by the Emotiv

% system. It is setup for a specific data structure and requires knowgles

% of the data classes.

%

% This script should be run in sections, some sections can be skipped

% without consequenses.

%

% Created by Jonas Rossing

% Last modified: 31-05-2017

%

%%%% CLASSES:

% 1 = right hand

% 2 = left hand

% 3 = both hands

% 4 = Feet

% 5 = Tounge

% 6 = Idle

clear all

% Script to load all appropriate paths for data and classifiers

startPath

% Load in data and sequence (the data should be called data,

% and the sequences should be called All_sequences
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load CecilieT456_MI

load sequenceMI_T456

y = All_sequences;

% Extract MI events and set sampling frequency

fs = 128;

dataF = data(6*fs+1:end,:,:);

% Define bandpass filter

cutoff = [4 25]./(fs/2);

[b,a] = butter(4,cutoff);

%% Cut in 1 sec epoch

dataE = [];

yE = [];

for i = 0:floor(size(dataF,1)/fs)-1

dataE = cat(3,dataE,dataF((fs*i)+1:(fs*i)+fs,:,:));

yE = [yE,y];

end

clear dataF

clear y

dataF = dataE;

y = yE;

%% Bandpass filter

for j = 1:size(dataF,3)

for i = 1:size(dataF,2)

dataFe(:,i,j) = filtfilt(b,a,dataF(:,i,j));

end

end

clear dataF

dataF = dataFe;

%% Remove DC component

for i = 1:size(dataF,3)

for i2 = 1:size(dataF,2)

dataF2(:,i2,i) = detrend(dataF(:,i2,i));

end

end

clear dataF

dataF = dataF2;

%% Create feature vector

% Set channels

ChannelPlacement =

string({'O2';'FPz';'P4';'F3';'O1';'F4';'Pz';'Fz';'P3';'C3';'TP10';'Cz';'C4';'TP9'});

clear X

channels = [3 4 6 7 8 9 10 12 13];

X = featureFuncOffline(dataF,fs,channels);

% Assign in struct

classes = cellstr(num2str(y'));
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EEGdata = array2table(X);

EEGdata.Classes = categorical(classes);

%% Test accuracy

load TM_test % Load classifier

yfit = trainedModel.predictFcn(EEGdata);

yfit = str2double(char(yfit));

y2 = yfit-y';

y2(y2==0)=[];

accuracy = 100-length(y2)/length(y)*100

9.1.2 Data recording script

%% Initiation

% This is a scipt used for EEG data recording with the Emotiv system.

% The script is meant to be run simultaneously with a series of images

% corresponding to MI movements on another computer

%

% Requirements:

% - Lab streaming layer (lsl)

% - Input from another system, ex Python

%

% This code should be run in sections

%

% Created by Jonas Rossing

% Last modified: 29-05-2017

% set paths

startPath

% Run this section once for each dataset

% Load lsl libary

disp('Loading the library...');

lib = lsl_loadlib();

% Set sampling frequency

fs = 128;

% Counters

k = 1;

k3 = 1;

% Set duration and number of trials in each session

trialDur = 10;

trialStart = 1;

trialsAM = 12;

%% Data recording

% Search for a data stream

disp('Resolving an EEG stream...');

result = {};
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% Pause 5.5 seconds to allow subject to adjust

pause(5.5);

% Standby if no stream is available

while isempty(result)

result = lsl_resolve_byprop(lib,'type','EEG');

end

% create a new inlet

disp('Opening an inlet...');

inlet = lsl_inlet(result{1});

% Run for a session

for j = trialStart:trialStart+trialsAM-1

% Counters

k = 1;

k2 = 1;

k4 = 1;

fprintf('\n');

disp('Now receiving data...');

while k2<fs*trialDur+1

% get data from the inlet

[vec,ts] = inlet.pull_sample();

% Save the data

data(k,:,j) = vec;

k = k+1;

k2 = k2+1;

end

disp(['Trial ',num2str(j),' done']);

end

fprintf('Done recording\n');

% Set start for new session

trialStart = trialStart+trialsAM;

%% Save the data

save('dataEEG','data');

9.1.3 Live feedback script

%% Initiation

%

% This script is for live testing a BCI system online with feedback. It

% will extract features and classify them according to a specific classifier.

%

% This scipt requires 2 computers setup for UDP transfer. The second

% computer will handle user feedback, while this one handles the data

% processing.

% A modified version of this scipt exist for 1 computer only setup
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%

% Created by Jonas Rossing

% Last modified: 29-05-2017

% Set paths

startPath

% load lsl libary, UDP info and classifier

disp('Loading the library...')

lib = lsl_loadlib();

load TM_6C_SVMC

load udpA

% Set sampling frequency and channels

fs = 128;

%channels = [3 7 8 9 10 13];

channels = [3 4 6 7 8 9 10 12 13];

% Define bandpass filter

cutoff = [4 25]./(fs/2);

[fb,fa] = butter(4,cutoff);

% Search for a data stream

disp('Resolving an EEG stream...')

result = {};

% Standby if no stream is available

while isempty(result)

result = lsl_resolve_byprop(lib,'type','EEG');

end

% create a new inlet

disp('Opening an inlet...');

inlet = lsl_inlet(result{1});

% Counters

k = 1;

k2 = 1;

k4 = 1;

disp('Now receiving data...');

while true

%while true

% get data from the inlet

[vec,ts] = inlet.pull_sample();

% Save data

data(k,:) = vec;

k = k+1;

k2 = k2+1;

% Split into 1s epochs with 1/2s overlap

if size(data,1) == fs/2

if exist('data_old') == 0

data_old = data;

clear data
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k = 1;

else

data_new = [data_old;data];

data_old = data;

clear data

k = 1;

% Filter data

for i = 1:size(data_new,2)

dataDT(:,i) = filtfilt(fb,fa,data_new(:,i));

end

% Detrend data

for i2 = 1:size(dataDT,2)

data_A(:,i2) = detrend(dataDT(:,i2));

end

% Extract features

X = featureFuncOffline_Jonas(data_A,fs,channels);

EEGdata = array2table(X);

yfit(k4) = trainedModel.predictFcn(EEGdata);

yfit(k4)

k4 = k4+1;

% Send data to second computer

fprintf('\n');

if strcmp(char(yfit(k4-1)),'1')

fprintf(udpA,'1');

elseif strcmp(char(yfit(k4-1)),'2')

fprintf(udpA,'2');

elseif strcmp(char(yfit(k4-1)),'3')

fprintf(udpA,'3');

elseif strcmp(char(yfit(k4-1)),'4')

fprintf(udpA,'4');

elseif strcmp(char(yfit(k4-1)),'5')

fprintf(udpA,'5');

else

fprintf(udpA,'6');

end

end

end

end

9.1.4 Live simulation script

%% Initiation

% This scipt is for live simulation of drone flight with a BCI system.

% It will preprocess and extract features and classify them, while

% simulating a plane in a virtual reality.

%

% The script requires some additions to work

% - featureFunc.m

% - vrtest.m

% - biosig toolbox
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% - lsl

% - a classifier

% - a data stream from a secondary program, ex Python

%

% Created by Jonas Rossing

% Last modified: 29-05-2017

% Set paths

startPath

% Load lsl libary and classifier

clear all

disp('Loading the library...')

lib = lsl_loadlib();

load TM_6C_SVMQ

% Set sampling frequency and channels

fs = 128;

channels = [3 4 6 7 8 9 10 12 13];

% Define bandpass filter

cutoff = [4 25]./(fs/2);

[fb,fa] = butter(4,cutoff);

% create and open the vrworld object

w = vrworld('vrtkoff.wrl', 'new');

open(w);

% create the vrfigure showing the virtual scene

fig = vrfigure(w, 'Viewpoint', 'Ride on the Plane');

% get the manipulated airplane node

airpln = vrnode(w, 'Plane');

% read plane initial translation and rotation

originalTranslation = airpln.translation;

originalRotation = airpln.rotation;

originalRotation = [0 0 0 0];

vrdrawnow;

% Predefine location parameters

a = 0;

b = 0;

c = 0;

% Search for a stream

disp('Resolving an EEG stream...')

result = {};

while isempty(result)

result = lsl_resolve_byprop(lib,'type','EEG');

end

% create a new inlet

disp('Opening an inlet...');

inlet = lsl_inlet(result{1});

k = 1;
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k2 = 1;

k3 = 0;

k4 = 1;

k5 = 1;

disp('Now receiving data...');

while true

%while true

% get data from the inlet

[vec,ts] = inlet.pull_sample();

% Save data

data(k,:) = vec;

k = k+1;

k2 = k2+1;

% Split into 1s epochs with 1/2s overlap

if size(data,1) == fs/2

if exist('data_old') == 0;

data_old = data;

clear data

k = 1;

else

% Time the script

toc

tic

data_new = [data_old;data];

data_old = data;

clear data

k = 1;

% Filter data

for i = 1:size(data_new,2)

dataDT(:,i) = filtfilt(fb,fa,data_new(:,i));

end

% Detrend data

for i2 = 1:size(dataDT,2)

data_A(:,i2) = detrend(dataDT(:,i2));

end

% Extract features

X = featureFunc(data_A,fs,channels);

EEGdata = array2table(X);

yfit(k4) = trainedModel.predictFcn(EEGdata);

k4 = k4+1;

end

end

% Calculate new translation and rotation and draw it

if k4 > 1

if k5 > 4

[airpln.translation,airpln.rotation,a,b,c] =

vrtest(str2double(char(yfit(k4-1))) ...

,originalTranslation,originalRotation,a,b,c);

vrdrawnow;

k5 = 1;
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%toc

else

k5 = k5+1;

end

end

end

9.1.5 Feature extraction function

function X = featureFunc(data,fs,Ch)

% X = featureFunc(data,fs,Ch) is used for feature extraction for a BCI

% system.

%

% Requirements:

% Biosig toolbox

%

% Input:

% data: a [datapoint x channels x trials] matrix with EEG data

% fs: The sampling frequency of the system

% Ch: A [1 x N] vector with channels corresponding to the EEG

% data

%

% Output:

% X: A [trials x N*numF], where numF is the number of different

% features.

%

% Created by Jonas Rossing

% Last modified: 29-05-2017

% Remove unwanted channels

data2 = data(:,Ch,:);

% Number of features, should be adjusted is features is added or removed

numF = 5;

% Input to AAR

mode = [1,2];

MOP = [5,0];

% Prelocate

X = zeros(size(data2,3),numF*length(Ch));

% Feature extraction

for i = 1:size(data2,3)

for j = 0:size(data2,2)-1

X(i,numF*j+1) = log10(bandpower(data2(:,j+1,i), fs, [8 13]));

AARparameters = mean(aar(data2(:,j+1,i),mode,MOP));

X(i,numF*j+2) = AARparameters(1,1);

X(i,numF*j+3) = AARparameters(1,5);

X(i,numF*j+4) = log10(HjorthPara(data2(:,j+1,i),'com'));

X(i,numF*j+5) = log10(bandpower(data2(:,j+1,i), fs, [12 16]));

end
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end

end

9.1.6 Hjorth parameter function

function [para] = HjorthPara(f,varargin)

% [para] = HjorthPara(f,varargin) calculates 2 of the Hjort parameters

% mobillity and complexity.

%

% Input:

% f: a [N x 1] vector of EGG data

% varagin: A string, either 'mob' or 'com' for which parameter is

% wanted.

%

% Output:

% para: The chosen Hjort parameter

%

% Created by Jonas Rossing

% Last modified: 29-05-2017

% Calculate the derivatives

n = length(f);

dxf = diff([0;f]);

ddxf = diff([0;dxf]);

mx2 = mean(f.^2);

mdx2 = mean(dxf.^2);

mddx2 = mean(ddxf.^2);

mob = mdx2/mx2;

if strcmp('mob',varargin) == 1;

para = sqrt(mob); % Mobility

elseif strcmp('com',varargin) == 1;

para = sqrt(mddx2 / mdx2 - mob); % Complixity

else

fprintf(2,'Wrong argument input');

end

end

9.1.7 Zero-crossings function

function zerocrossings = zerocross(data)

% zerocrossings = zerocross(data) calculates the zero-crossing of EEG data.

%

% Input:

% data: a [N x 1] vector of EEG data

%

% Output:

% zerocrossing: The zerocrossing of the data
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%

% Created by Cecilie Lochet

% Last modified: 29-05-2017

t = 1:length(data)-1;

zerocrossings = 0 ;

for i = 1:length(t)

if sign(data(i)) ~= sign(data(i+1))

zerocrossings = zerocrossings + 1 ;

end

end

end

9.1.8 Spectral entropy function

function SpecEnt = SpectralEnt(data)

x = fftshift(fft(data));

PSD = abs(x).^2;

sum = 0;

for i = 1:length(data)

sum = sum + PSD(i);

end

PSD_N = PSD/sum;

SpecEnt = 0.0;

for i = 1:length(data)

Ent = Ent - PSD_N(i)*log2(PSD_N(i));

end

end

9.1.9 Feature selection function

function [acTable, acMax, maxFeatures] = featureSelectionFcn(dataR, channels,

classes, fs, classifier)

% [acTable, acMax, maxFeatures] = featureSelectionFcn(data, channels, classes,

fs, classifier)

% is used for finding the best combination of features for EEG based BCI

% for a specific set of classes.

%

% Requirements:

% Modified classification script(s)

% Biosig toolbox

%

% Input:

% data: EEG data with dimensions [data x channels x trials] (a trial

% correspond to 1 class)

%

% channels: A [1 x N] vector with channels corresponding to the EEG

% data
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%

% classes: A [1 x trials] dimension vector containing the true

% classes

%

% fs: The sampling frequency

%

% classifier: Specifies which classifier to use. The options are SVMQ

% (SVM Quardratic) and SSD (subspace discriminant)

%

%

% Output:

% acTable: Table with numeric indication of features and their

% corresponding accuracy. Look in the script for detail on each

% feature

%

% acMax: Max accuracy optained

%

% maxFeatures: A vector containing the features corresponding the

% the max accuracy optained.

%

% Feature translation table: (Update as necessary)

% 1: Bandpower (8-13Hz)

% 2: Hjorts activity (varians)

% 3: Hjorts mobility

% 4: Entropy (log energy)

% 5: Entropy (Shannons)

% 6: Hjorts complexity

% 7: Bandpower (12-16Hz)

% 8: Bandpower (Total))

% 9-13: AAR (Adaptive auto-regressive model)

% 14: Spectral entropy

% 15: Zero-crossing

% 16: Bandpower (4-8Hz)

%

% Note:

% This script can take a very long time to run, consider letting it

% run through the night if it have to evaluate a lot of features.

% The accuracy is around +-8% depending on classification method,

% but this can be decreased by increasing the number of classifications.

%

% Created by Jonas Rossing,

% Last edited 04-05-2017

% Set path to classifiers

startPath

% Start tic count

tic

fprintf('\nInitializing')

% Select only wanted channels

data = dataR(:,channels,:);

y = classes;

% Predefine counters

k2 = 0;
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k3 = 1;

mode = [1,2];

MOP = [5,0];

% Select number of features (Adjust this before using the script)

numF = 16;

% Calculated the total number of iterations needed

NI = 0;

for p = numF:-1:1

NI = NI + factorial(numF)/(factorial(p)*factorial(numF-p));

end

% Prelocate

pickOld = zeros(NI,numF);

for i3 = 1:numF

VaNames(i3) = {['FeatureColumn',num2str(i3)]};

end

% Run for all lengths of combinations

for p = numF:-1:1

CCount = 0;

C = factorial(numF)/(factorial(p)*factorial(numF-p));

% Run till all combinations have been found

while CCount < C

% Select random feature combination and check if already exists

pick = sort(randperm(numF,p));

if length(pick) < numF

pick(numF) = 0;

end

[~,index] = ismember(pickOld,pick,'rows');

if any(index==1) == 0

% Create feature vector (Insert or delete features as required,

% just remember jo adjust numF accordingly)

for i = 1:size(data,3)

k = 1;

for j = 0:size(data,2)-1

AARparameters = mean(aar(data(:,j+1,i),mode,MOP));

if any(pick==1) == 1

X(i,k) = log10(bandpower(data(:,j+1,i), fs, [8 13]));

k = k +1;

end

if any(pick==2) == 1

X(i,k) = log10(var(data(:,j+1,i)));

k = k+1;

end

if any(pick==3) == 1

X(i,k) = log10(HjorthPara(data(:,j+1,i),'mob'));

k = k+1;
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end

if any(pick==4) == 1

X(i,k) = log10(abs(wentropy(data(:,j+1,i),'log

energy')));

k = k+1;

end

if any(pick==5) == 1

X(i,k) = log10(abs(wentropy(data(:,j+1,i),'shannon')));

k = k+1;

end

if any(pick==6) == 1

X(i,k) = log10(HjorthPara(data(:,j+1,i),'com'));

k = k+1;

end

if any(pick==7) == 1

X(i,k) = log10(bandpower(data(:,j+1,i), fs, [12 16]));

k = k+1;

end

if any(pick==8) == 1

X(i,k) = log10(bandpower(data(:,j+1,i), fs, [4 25]));

k = k+1;

end

if any(pick==9) == 1

X(i,k) = AARparameters(1,1);

k = k+1;

end

if any(pick==10) == 1

X(i,k) = AARparameters(1,2);

k = k+1;

end

if any(pick==11) == 1

X(i,k) = AARparameters(1,3);

k = k+1;

end

if any(pick==12) == 1

X(i,k) = AARparameters(1,4);

k = k+1;

end

if any(pick==13) == 1

X(i,k) = AARparameters(1,5);

k = k+1;

end

if any(pick==14) == 1

X(i,k) = specEntropy(data(:,j+1,i));

k = k+1;

end

if any(pick==15) == 1

X(i,k) = zerocross(data(:,j+1,i));

k = k+1;

end

if any(pick==16) == 1

X(i,k) = log10(bandpower(data(:,j+1,i), fs, [4 8]));

k = k+1;

end

end

end
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clear AARparameters

% Save the feature selection in pickOld

k2 = k2+1;

for i2 = 1:length(pick)

pickOld(k2,i2) = pick(i2);

end

CCount = CCount+1;

% Classify data

% Run through classifier 5 times and mean (Improves true accuracy, but

% greatly increases computational time)

% Replace or remove classifiers as necessary

clear EEGdata

clear acT

for MK = 1:5

classes = cellstr(num2str(y'));

EEGdata = array2table(X);

EEGdata.Classes = categorical(classes);

if strcmp(classifier,'SVMQ')

[~,acT(MK)] = SVMQ_model(EEGdata);

elseif strcmp(classifier,'SSD')

[~,acT(MK)] = SSD_model(EEGdata);

elseif strcmp(classifier,'SVMC')

[~,acT(MK)] = SVMC_model(EEGdata);

else

[~,acT(MK)] = SVML_model(EEGdata);

end

end

acSTD(k3) = std(acT);

ac(k3) = mean(acT);

k3 = k3+1;

fprintf('\n')

disp(['Iteration: ',num2str(k3-1),' of ',num2str(NI),' Done'])

clear X

else

end

end

end

% Create table with features corresponding to accuracy

acTable = array2table(pickOld,'VariableNames',VaNames);

acTable.Accuracy = cellstr(num2str(ac'*100));

acTable.std = cellstr(num2str(acSTD'*100));

acMax = max(ac);

maxFeatures = pickOld(ac==acMax,:);

fprintf('\nAccuracy determination completed\n')

toc

fprintf('\nMax accuracy attained was: acMax = ')

disp([num2str(acMax*100),'%']);

end
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9.1.10 UPA setup

%% UDP

% setup script for communication between computer on the same network

% Created by Jonas Rossing

% Last modified: 29-05-2017

%Set IP and port

ipA = '10.16.175.30'; portA = 1335; % IP and port for computer 1

ipB = '10.16.163.131'; portB = 1336; % IP and port for computer 2

%% Create UDP Object

udpA = udp(ipB,portB,'LocalPort',portA);

%% Connect to UDP Object

fopen(udpA)

9.2 Programs developed in Python

This section of the Appendix contains the program borrowed from Per Bækgaard, DTU com-
pute, for the data acquisition process. The program has been heavily modified to suit the neces-
sities of the project.

# In[1]:

# Emotiv data recording code, can be found on Github

# The code itself is heavily modified to allow live recording

#

# Requirements:

# Lab Streaming Layer (LSL)

# emokit (can be obtained through Github or with pip install)

# For other requirements, see EmotivMaster on Github

#

# Last modified by Jonas Rossing, 31-05-2017

# Import packes

import time

import sys

import ctypes

import os

from ctypes import *

from numpy import *

import matplotlib.pyplot as plt

import matplotlib.patches as patches

import threading

import datetime

import numpy

import scipy.fftpack

import scipy

import collections

import numpy
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### load emokit python package

sys.path.append('Set path')

from emokit.emotiv import Emotiv

from pylsl import StreamInfo, StreamOutlet

# Create stream info

info = StreamInfo('Emotive', 'EEG', 14, 128, 'float32', 'myuid34234')

# Create outlet

outlet = StreamOutlet(info)

#define all electrodes

all_electrodes = ['AF3','AF4','F3','F4', 'F7', 'F8', 'FC5', 'FC6', 'T7','T8',

'P7', 'P8', 'O2', 'O1']

electrodes = all_electrodes

# In[2]:

# set run time

tt = 10000

eeg = collections.OrderedDict()

for i in all_electrodes:

eeg[i] = []

# Pre define matrix, because Python

data = numpy.zeros(shape=(14,128*tt))

def column(matrix, i):

return [row[i] for row in matrix]

# In[]

# Couter

j = 0

print ('foo starts at ', str(datetime.datetime.now()))

sf = 128.0 #sampling frequency

c = 0 #initalize c, c is used to count data points taken

stop = 0 #intialize stop, used to stop emokit decoding

rva = 1.0/sf+1.0/sf*0.1-1.0/sf*0.07 # Pause between samples, different

# from PC to PC

validate_timer = 0

# set it to 1,if we want to check that the code is excecuted at the

# but it will crash correct frequency,

if __name__ == "__main__":

with Emotiv(display_output=False, verbose=True) as headset:

while stop == 0:

packet = headset.dequeue()

next_call = time.time()
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starttime = time.time()

if packet is not None:

print ('starting...........')

while c < tt * sf:

# load eeg data into dicitonary

for k in electrodes:

eeg[k].append(packet.sensors[k]['value'])

# Assign data in matrix for output, not optimal but

# works

data[0][j] = eeg['AF3'][j]

data[1][j] = eeg['AF4'][j]

data[2][j] = eeg['F3'][j]

data[3][j] = eeg['F4'][j]

data[4][j] = eeg['F7'][j]

data[5][j] = eeg['F8'][j]

data[6][j] = eeg['FC5'][j]

data[7][j] = eeg['FC6'][j]

data[8][j] = eeg['T7'][j]

data[9][j] = eeg['T8'][j]

data[10][j] = eeg['P7'][j]

data[11][j] = eeg['P8'][j]

data[12][j] = eeg['O2'][j]

data[13][j] = eeg['O1'][j]

dataSend = column(data,j)

j = j+1

# Send data to matlab

outlet.push_sample(dataSend)

c = c + 1

#print ('c', c)

if c == tt * sf:

print (c)

#this is for debugging

if validate_timer == 1:

print(datetime.datetime.now())

#sleep till the period ends

time.sleep(rva)

stop = 1

endtime = time.time()

print('total runtime', endtime - starttime)
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