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Abstract
In an era when data of the Earth’s magnetic field is delivered in high temporal and spatial

resolution from satellite measurements, some associated challenges need to be addressed in order
to make accurate field models. Unmodelled signals from ionospheric and magnetospheric currents
pose a challenge in modelling fields of internal origin such as the core field. Today modellers use
regularization to cope with these unmodelled signals by penalizing the square of second or third
time-derivatives of the field, risking to enforce unwanted smoothing effects on the core surface
and hence restricting inference on core dynamics. In this project we use 68077 data points from
CHAMP in a span of 8.7 years to obtain robustly estimated model solutions of the field where an
alternative approach of regularization is used. This method is less restrictive in minimizing model
roughness and hence contains unmodelled signals that in some Gauss coefficients are manifested
with a periodic behaviour. The model solutions are utilized to investigate the behaviour of the
signals in temporal and geographical distribution on the Earth’s surface, and we show that the
signals have higher amplitudes at polar latitudes which we argue is a strong indication that the
source of the noise is high-latitude polar/auroral current systems. Finally we attempt to address
the question of whether and to which degree it is possible to contain the signals by means of data
selection based on the interplanetary magnetic field and recent satellite-based auroral electrojet
indices in our regularization framework. It is shown that such data selections have a positive effect
on model characteristics, albeit to a rather limited extent. The performed data selections and
the disturbance characterizations strongly indicate that the observed disturbances are solar driven
currents with the most prominent amplitudes in the vicinity of polar regions.

Front page figure: three-dimensional numerical simulation of the geodynamo, simulated with the Glatzmaier-Roberts
geodynamo model. Source: https://websites.pmc.ucsc.edu/~glatz/geodynamo.html

https://websites.pmc.ucsc.edu/~glatz/geodynamo.html
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1 Introduction
1.1 The Aim and Structure of the Project
In this project we build main field models using spherical harmonic modelling and inverse problem
methodology. The data used in building the models are data from CHAMP spanning approximately
8 years in the period 2002-2010. The objectives of the project include the assembly of the modelling
framework that allows the determination of model solutions to the field with a spatial and temporal
dependence and the adoption of known improvements on the models. This yields a foundation for
the main objective of the course: analyzing the effects of data selections to cope with some of the
challenges caused by ionospheric and magnetospheric current systems in field modelling. This will be
a rather modest attempt that will involve a relatively small number of data, but it will allow us to
characterize some aspects of the noise problem in satellite data and to investigate the effects of data
selections on the models to a certain degree.

The project is structured as follows:

1. An introduction to the geomagnetic field, its contributions and the modelling process is given.
Furthermore we give a short description of satellite missions and the data they deliver.

2. The modelling machinery that will give a framework for obtaining model parameters is intro-
duced. With model parameters at disposal one may find the field components at specified time
and location. This includes an important discussion on regularization.

3. The data used in this project will be discussed, together with prior selections and selections based
on the interplanetary magnetic field and satellite-based auroral indices.

4. A section on the results and discussion together with comments on the outcomes and suggestions
for further work.

1.2 Electrodynamics and the Geomagnetic Field
The classical theory of electromagnetism revolutionized our understanding of the electromagnetic in-
teraction, one of the four fundamental forces of nature. The development of the theory culminated
with a set of four equations that unified electric and magnetic phenomena together with a wave de-
scription of light as a manifestation of the same force, a unification which was brought together by J.
C. Maxwell. In vacuum the equations are given by:

∇ ·E = ρ

ε0
, ∇×E = −∂B

∂t
,

∇ ·B = 0, ∇×B = µ0J + µ0ε0
∂E
∂t
.

(1)

Where the fields E(r, t) and B(r, t) are dynamical quantities that depend on spacial coordinates and
time and are determined by the sources, i.e. charges and currents.
One of a celestial body’s key features is its magnetic field. Stars with their huge reservoir of dynamical
plasma produce magnetic fields, and some planets such as the Earth and Jupiter also exhibit magnetic
fields with varying intensities and complexities. Modern theories of the cause of the Earth’s magnetic
field (which from now own will be denoted by the geomagnetic field) strongly indicate that the field
is mainly due to a so-called geodynamo process, in which effects of rotation and convection of a con-
ducting fluid produces the field. From a geophysical point of view, the geomagnetic field is a very
important quantity due to its link to other branches in geophsyics such as plate tectonics. Tracking
the field to the past reveals significant physical insights about the evolution of our planet, and a deep
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understanding of its mechanism is important to make future predictions, e.g. geomagnetic reversals
and explaining core-dynamical events such as geomagnetic jerks, where such an understanding relies
heavily on the accuracy of the available mathematical models of the field. Since the biggest (internal)
source of the magnetic field is due to the geodynamo, the behavior of the field is strongly related to
the complex motion of the fluid in the molten outer core.

1.3 Modelling the Field
An understanding of the behavior of the geomagnetic field is dependant on the models available that
can describe the field accurately. The ability to build accurate models has been enhanced since satellite
missions started to take high-resolution measurements of the field, whereas measurements before were
restricted to observatories with an uneven geographical distribution.
The equations for determining a model for geomagnetic field are Maxwell’s equations for the magnetic
field B. As will be shown later, the solution to the field is a solution to Laplace equation taking form
of a series expansion of a potential determined uniquely by the expansion coefficients. The potential
then determines the field, hence the expansion coefficients are the model parameters that must be
determined to have a geomagnetic field model.
The modelling methodology in geomagnetism is by no way different from any other generic geophysical
problem. In a so-called forward problem, a given model predicts data (measurements) of a physical
system (e.g. the Earth’s magnetic field), while in an inverse problem, models describing a physical
system are constructed using available measurements (i.e. data). As mentioned earlier, the core is
hypothesized to be a complex system of a dynamo process whose behavior is poorly understood, thus
no geomagnetic model can be inferred directly. Knowing the relation between the measurements and
the model parameters as prescribed by a physical theory will then allow us to determine the model
parameters by applying inverse problem methods.

1.4 Satellite Geomagnetism
Measurements taken by a satellite offer a great range of advantages. A full geographical coverage is
unquestionably one of them, in contrast to the limitation of distributing ground observatories evenly
around the the Earth. Apart from a polar gap1, a satellite mission spanning some years would provide
a full coverage of the field in latitude and longitude [Olsen and Stolle, 2012]. This abundance of data
is crucial for modern geomagnetic modelling, and satellites deliver data both in high temporal and
spatial resolutions, both needed in making accurate models. Ground observatories can then be used to
supplement satellite-made models, e.g. by testing the models against their measurements of the field at
specific geographical locations or by actively taking part in the modelling process [Finlay et al., 2016].
However, satellite measurements also pose a challenge in field modelling. One such challenge is the
fact that satellites are in motion with a speed of approximately 8 km s−1 at the low Earth orbit
(LEO) in contrast to stationary stations whose measured variation in the field are solely related to
the temporal change in the magnetic field. Hence methods to separate the spatial and the temporal
dependences must be utilized in order to give correct models that incorporate both dependences. The
biggest challenge in using satellite measurements is unquestionably the altitude of the satellite. Being
in the LEO region where highly dynamical ionospheric and magnetospheric currents have considerable
contributions to the measured field by the satellite’s magnetometer. This is indeed the challenge that
comprises the main concern of this project.
Satellite geomagnetism has a history back in the end 1950s and beginning 1960s, but in the previous

1Which results from the inclination of the satellite and span the circle of radius |90°−i|, where i is the satellite
inclination. In the case of CHAMP, i = 87°.
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two decades Ørested, CHAMP and SWARM have delivered data with high precision of absolute mea-
surements of the geomagnetic field. In this project a number of data has been selected from CAHMP
(described below) to construct geomagnetic models using spherical harmonic modelling.
CHAMP (CHAllenging Minisatellite Payload) was a German satellite designed for geoscientific, at-
mospheric and ionospheric research and was managed by the German Research Centre for Geosciences
(GFZ). The satellite operated in the period July 2000 - Sept. 2010 with an inclination of 87°, providing
data in scalar and vector quantities. The satellite operated at altitude in the range of 260 - 450 km in
the low Earth orbit (LEO).

1.5 The Contributions to the Field
The measured magnetic field by the satellite is a superposition of several contributions. The contribu-
tions to the measured field can be separated into two classes: those of internal origin and those of an
external origin. The dynamo process of the Earth is thought to be generating and sustaining the core
field, also denoted the main field. At the Earth’s surface the core field comprises about 95% of the total
field. Lithospheric2 magnetization comprise most of the remaining internal field, denoted the crustal
field. The fields of external origin include electric currents in the ionosphere and the magnetosphere.
The fact that the satellite’s magnetometer measures a superposition of fields caused by different mech-
anisms poses a natural interest in the ability of separating the different parts of the field. In this
project we consider core field models, where inference on core dynamics require that the data has been
cleaned to a satisfactory degree of any unrelated mechanism. In particular, currents in the atmosphere
(ionosphere and magnetosphere) have been studied thoroughly by modellers in order to exclude data
that are thought to contain external effects in internal field modelling [Finlay et al., 2017]. These cur-
rents and their effect on core-field modelling are of great importance to this project and we shall give
a more detailed discussion of them in later sections.

1.5.1 External Fields and Geomagnetic Indices

The geomagnetic field itself includes the field produced by all sources within and beyond the solid
planet extending to the magnetopause after which the solar contribution dominates in what is called
the interplanetary magnetic field (IMF). This field is carried along with solar plasma (solar wind) from
the solar corona and varies accordingly depending on the solar activity. The external contribution
to the field is located above the neutral atmosphere at the ionosphere and magnetosphere. These
regions of the atmosphere are home to current systems that have been studied extensively, and they
are of great importance when implementing data selections. In what follows some of these currents
are introduced without delving into deep details.
The ionosphere extends from 60 km to 1000 km in altitude and is made of ionized atoms and free
electrons, primarily due to the UV exposure from the Sun. The ionization depends on the solar activ-
ity and varies accordingly. The variations may diurnal or seasonal and additionally it depends on the
Solar cycle. In the region 85-200 km in altitude where the ionospheric plasma is electrically conducting,
a dynamo process takes place due to differential solar heating and lunar gravitational effects. This
region is called the ionospheric dynamo region with several current systems including the equatorial
electrojet (EEJ) and the mid-latitude solar quiet (Sq). An important fact in this regard is that due
to the placement of satellites in LEO the ionospheric currents will be an "internal" source, hence it is
important to carefully select data that are believed to be least disturbed.
The magnetosphere is the region in space that determines the magnetic dominance by a celestial ob-

2The geomagnetic field is either produced by electric currents such as those in the core or by magnetized media,
for which the lithospheric contribution is the only source. This magnetization might be permanent or induced. The
quasistatic approximation is valid in this connection and hence there is no significant contribution from the ∂E/∂t term
in (1).
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ject i.e. by confining electrical particles. The Earth’s magnetosphere interacts with the IMF, creating
the so-called magnetopause on the dayside. Magnetospheric currents include the Chapman-Ferraro
currents, tail currents and the ring currents. The ring current can reach values of hundreds of nT in
disturbed conditions (i.e. geomagnetic storms).
Geomagnetic indices have been developed in order to quantify and characterize ionospheric and
magnetospheric contributions. The indices are numerous and are used in various connections in geo-
magnetism [Kauristie et al., 2017]. Here we mention the ones that are utilized in this project.

• Kp: Kp is an index of global geomagnetic activity. The derivation of the index aims at charac-
terizing geomangetic field disturbances due to particles from solar radiation. It is derived from
13 subauroral stations.

• RC: The RC index measures the strength of the magnetospheric ring currents. This index is an
alternative to the Dst index that has a time-dependant base-line and thus is difficult to use in
modelling. The index is derived in [Olsen et al., 2014] and is used in the CHAOS models.

1.5.2 Core Field and Dynamo Theory

The modern theory for generating and sustaining the geomagnetic field is the so-called dynamo theory3.
At the core no permanent magnetization can be sustained due to the high temperatures that exceed
Curie’s temperature. Hence this rotating, convecting and electrically conducting fluid is thought to
be the source of a dynamo mechanism that sustains the field. The induction of the magnetic field
is caused by the convective outer core (molten iron), supported by kinetic energy from the planet’s
rotation. The Coriolis force in the neighborhood of the core creates fluid motion of electric currents
in the form of columns aligned with the rotation axis of the Earth (Taylor columns). An induction
equation can be determined from Maxwell’s equations (1) and Lorentz force law together with Ohm’s
law:

F = q(E + v×B) (Lorentz force law)
J = σf (Ohm’s law)

(2)

Where σ is the electrical conductivity, F is the force and f = F/q. Using the identity ∇×∇× =
∇(∇·)−∇2 on J one obtains the induction equation:

∂B
∂t

=∇× (v×B) + η∇2B (3)

Where η = 1/µσ is called the magnetic diffusivity. The first term in the above equation is the inductive
part while the second is diffusive part. In the limit of v = 0 the induction equation reduces to the
diffusion equation. Due to the size of the Earth the magnetic field will not disappear (diffuse away)
immediately but will decays away in an e-folding period4 of estimated 20 ka. The geomagnetic field
has existed for much longer period than this decay period as shown in paleomagnetic records, so for
a self-sustaining dynamo an energy source must exist. Indeed core motion means that v is nonzero.
On the other hand, when conductivity tends to infinity (i.e. η → 0) the second term in the induction
equation vanishes, the perfect conductor limit and also called the frozen flux approximation since the
flux does not change (frozen-in field lines). Finally, the ratio between the inductive and the deffusive
part is denoted the magnetic Reynolds number Rm, which can be estimated to be Rm 250, indicating
that a geodynamo process is indeed possible.
The theory of geodynamo is rich and involves numerical solutions of complex nonlinear equations in
the field of magnetohydrodynamics (MHD). These theories are of no relevance to this project and

3The introduction made here is following [Gubbins and Herrero-Bervera, 2007].
4e-folding period is the time for the field amplitude to drop by a factor of e.
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hence shall not be considered further, but since geodynamo theories are the strongest available ones to
satisfactory explain a planetary (celestial) magnetic field then they are of great interest in attempting
to bridge modelling work with the geodynamo-theoretic work.
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2 Modelling
In this section global geomagnetic modelling of the core field by a spherical harmonic (SH) represen-
tation is discussed. There are several methods in geomagnetic modelling, but in the case of dense
geographical coverage (such as those provided by satellite data) the SH representation is advantageous
and describes the field with satisfactory accuracy. Additionally, in this representation the process of
separating internal and external contributions is relatively simple. SH modelling is thus widely applied
in field modelling where models are characterized by several factors such as the expansion order, the
incorporation of the temporal dependence, techniques in appropriately dealing with unmodeled fields
and the use of regularization.
We shall construct a linear model through a SH expansion (as commonly done), discuss time-dependence
through spline fitting and then construct the matrix that determines the model parameters through
least square (LS) estimation. Improving the LS estimation by reiterative LS estimation will also be
discussed and at the end regularization is introduced where its importance and related issues will be
analyzed. The general methodology here follows that of the CHAOS models, with the most recent
one being CHAOS-6 [Finlay et al., 2016], in particular, concerning the use of SH modelling, spline
modelling and reiterative LS.

2.1 Spherical Harmonic Representaion
As described in the introduction, a model for the geomagnetic field is obtained by solving Maxwell’s
equation for B. A global approach by using spherical harmonic expansions is obtained as follows. The
core field is assumed to be measured in current-free regions on a surface of a sphere, so that J = 0,
and there are no displacement currents so that ∂E/∂t = 0 . In this case the curl and the divergence of
B vanish. A conservative vector field can be written as a gradient of a scalar potential B = −∇V , and
together with ∇·B = 0 the problem is reduced to solving Laplace equation for the scalar potential V :

∇2V = 0 (4)

Since we are dealing with a spherical geometry, it is natural to solve the equation in spherical coordi-
nates (r, θ, φ) in a geocentric system. Separation of variables then leads to solving the radial, polar and
azimuthal equations. The field is furthermore divided into two potential fields, one of internal origin
and the other of external origin. The potential of the internal field is given by the spherical harmonic
expansion:

V (r, θ, φ) = a

N∑
n=1

n∑
m=0

(gmn cosmφ+ hmn sinmφ)
(a
r

)n+1
Pmn (cos θ) (5)

Where a = 6371.2 km is the mean Earth’s radius, Pmn is the associated Legendre polynomials and
{gmn , hmn } are the Gauss coefficients for the field of internal origin. It is noted that for the potential
of external origin the expansion is similar to equation (5) with another radial dependence and a new
set of Gauss coefficients. We remind again that internal is with respect to the satellite, hence internal
field in this connection may contain contributions from e.g. ionospheric currents.
The field is hence obtained by

B = −∇V = −
(
∂

∂r
r̂ + 1

r

∂

∂θ
θ̂ + 1

r sin θ
∂

∂φ
φ̂

)
V (6)

2.2 The Linear Model and LS Estimation
The above equations show that the components of B depend linearly on the Gauss coefficients {gmn , hmn },
hence we can write equation (6) as a matrix equation:

d = Gm (7)
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Where d is the data vector containing the components of B = (Br,Bθ,Bφ) at some given locations,
while m is a vector of the Gauss coefficients whose length depends on the choice of expansion degree N
(denoted the spherical harmonic degree). More specifically its length will be given by ℵ ≡ N(N + 2),
where e.g. N = 1 yields a dipolar field determined by the coefficients

{
g0

1 , g
1
1 , h

1
1
}
. Thus a direct relation

is established between the field (physical quantity) and the Gauss coefficients (model parameters) by
a linear operator G that maps model parameters to model predictions which in our finite and discrete
case is merely a matrix. The matrix G reflects the geometric dependence between B and {gmn , hmn }
and is a function of the spatial coordinates r = (r, θ, φ). The matrix G is determined using (6) once
a degree N is chosen, and it has dimensions of (3d× ℵ) where d is the number of data. The matrices
for the three dependences are then given by:

Gr = −a ∂
∂r


cos(φ)P 0

1 (θ, φ)
(a
r

)
. . . sin(Nφ)PNN (θ, φ)

(a
r

)N+1

... . . . ...
cos(φ)P 0

1 (θ, φ)
(a
r

)
. . . sin(Nφ)PNN (θ, φ)

(a
r

)N+1


∣∣∣∣∣∣∣∣∣∣
r=d

Gθ = −a
r

∂

∂θ


cos(φ)P 0

1 (θ, φ)
(a
r

)
. . . sin(Nφ)PNN (θ, φ)

(a
r

)N+1

... . . . ...
cos(φ)P 0

1 (θ, φ)
(a
r

)
. . . sin(Nφ)PNN (θ, φ)

(a
r

)N+1


∣∣∣∣∣∣∣∣∣∣
r=d

Gφ = − a

r sin θ
∂

∂φ


cosφP 0

1 (θ, φ)
(a
r

)
. . . sinNφPNN (θ, φ)

(a
r

)N+1

... . . . ...
cos(φ)P 0

1 (θ, φ)
(a
r

)
. . . sin(Nφ)PNN (θ, φ)

(a
r

)N+1


∣∣∣∣∣∣∣∣∣∣
r=d

(8)

It is remarked that G = (Gr,Gθ,Gφ)5, corresponding to the three components of the field. To
make this clear, equation (7) is rewritten as:

d =

Br

Bθ

Bφ

 =

Gr

Gθ

Gφ

m (9)

Knowing the model parameters {gmn , hmn } will then allow a prediction of the field components at any
location by applying (7).
This defines a so-called inverse problem: given data measurements that are assumed to originate from
the core together with errors with a certain distribution, how do we determine the best fitting model6?
In other words, the geomagnetic field model is determined inversely by utilizing available data and
regression techniques. In particular, we may solve equation (7) by means of LS estimation, i.e. by
minimizing the sum of the squared residuals7. More explicitly, we want to minimize the function f
given by:

f(m) =
d∑
i=1

∣∣∣∣∣∣di −
ℵ∑
j=1

Gijmj

∣∣∣∣∣∣
2

= ‖d−Gm‖2 = (d−Gm)T(d−Gm) (10)

By equating the gradient of f(m) to zero a unique solution for m is obtained and is given by the
famous least square solution:

m =
(
GTG

)−1GTd (11)

2.3 Time-Dependence Through Spline Modeling
Models constructed by (11) at disposal allow to predict the field components at any desired location.
However, since the core field varies with time, the temporal dependence must also be incorporated in
the model. The time variation of the field is indeed the property that is wished to be investigated in

5When the matrices are written in components the notation (Grij , Gθij , Gφij) will be used.
6More accurately, a model that will satisfy some condition, such as a minimization of a cost function
7Where the residual is defined as the difference between the value of the data and the model prediction of that data
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this project, so a systematic method to include time is needed and is done as follows. For a dynamic
time-dependent field the solution of the Laplacian equation (4) is also given by the general form (5)
where the time-dependence is carried by the coefficients {gmn (t), hmn (t)}8. Assuming that we have a
time-series of a certain Gauss coefficient gmn (or hmn ) for a given location, can we determine a model
that describes the time-dependence smoothly9 of gmn in terms of some coefficients amn ? This defines an
inverse problem of the time-dependence in the model as described below.
One way of establishing such a relation is by using spline modelling. Splines are functions defined
piecewisely by polynomials with a certain order. More formally, a spline is a piecewise polynomial real
function S : [a, b]→ R, where the interval [a, b] is subdivided in the following manner:

a = t0 < t1 < t2 < . . . < tk−1 < tk = b.

Then S is defined by its restirctions to the subintervals as Pi : [ti−1, ti]→ R:

S(t) = P0(t), t0 ≤ t ≤ t1,
S(t) = P1(t), t1 ≤ t ≤ t2,

...
S(t) = Pk−1(t), tj−1 ≤ t ≤ tj .

(12)

Where the points tk are called the knots of the spline. The highest order of Pk is called the order of
the spline. We shall only work with cubic splines, i.e. fourth order splines.
As we have seen, splines are represented piecewisely by a set of polynomials. However, splines may
also be represented uniquely by using the B-splines (basis spline) for a given set of knots {tk}. This is
done by representing a spline S in terms of a linear combination of B-splines M(t, tk)10:

S(t) =
∑
k

αkM(t, tk) (13)

For some set of coefficients αk. It is remarked that the number k is related to the knots, hence the
number of the coefficients αk is determined by the knots spacing, which in our case is chosen to be
equal. The functions M(t, tk) can be determined by recursive formulas [De Boor et al., 1978], but we
shall not need these formulas explicitly since they shall be constructed numerically with MATLAB.

2.4 Merging Temporal and Spatial Dependence
Returning to our original problem, we are now in a position of expressing the Gauss coefficients
{gmn (t), hmn (t)} in terms of B-splines that will incorporate time dependence into the geomagnetic model
in a smooth manner such that derivatives11 can be determined. As formulated earlier, given time series
of some model paramter for a time vector t, we may expand the parameter into a linear combination
in terms of some coefficients that will be denoted {(αmn )k, (βmn )k}:

gmn (t) =
∑
k

(αmn )kM(t, tk),

hmn (t) =
∑
k

(βmn )kM(t, tk).
(14)

8The differential operator ∇2 does not involve a time dependence.
9Smoothness is necessary as the aim is to find the secular variation, i.e. time-derivative of the field.

10Here M(t, tk) is used as an alternative for the more reasonable notation of B(t, tk) to avoid confusions with the
magnetic field

11We shall only be considering the first derivative in this project, i.e. the secular variation.
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Which can be expressed as the matrix equations:
g = Mα, h = Mβ (15)

This means that the new set of coefficients determine the model parameters for a geomagnetic model,
since the expressions in (14) may be inserted in (5) and hence {(αmn )k, (βmn )k} determine the field
uniquely for any given time and location. Since the components of B depend linearly on the Gauss
coefficients which in return depend linearly on the set of coefficients {(αmn )k, (βmn )k}, a matrix Λ can
be constructed for the determination of model parameters. Denoting the matrix elements of G and
M by Gij and Mdk where the index d is for the time vector t = (t1, . . . , td) and k is for the knots, the
vector d may now be written explicitly as:

d =

Br

Bθ

Bφ

 =



Br(r1, t1)
...

Br(rd, td)
Bθ(r1, t1)

...
Bθ(rd, td)
Bφ(r1, t1)

...
Bφ(rd, td)



=



Gr11
∑
k(α0

1)kM(t1, tk) + . . .+Gr1ℵ
∑
k(βNN )kM(t1, tk)

...
Grd1

∑
k(α0

1)kM(td, tk) + . . .+Grdℵ
∑
k(βNN )kM(td, tk)

Gθ11
∑
k(α0

1)kM(t1, tk) + . . .+Gθ1ℵ
∑
k(βNN )kM(t1, tk)

...
Gθd1

∑
k(α0

1)kM(td, tk) + . . .+Gθdℵ
∑
k(βNN )kM(td, tk)

Gφ11
∑
k(α0

1)kM(t1, tk) + . . .+Gφ1ℵ
∑
k(βNN )kM(t1, tk)

...
Gφd1

∑
k(α0

1)kM(td, tk) + . . .+Gφdℵ
∑
k(βNN )kM(td, tk)



(16)

Now that the explicit dependence of the field is known in terms of the unknown model parameters
{(αmn )k, (βmn )k}, the matrix Λ relating the field to these parameters is needed in order to inversely
obtain a model that accounts for both the spatial and the temporal dependence of the field, i.e. we
need to construct Λ such that:Br(r1, t1)

...
Bφ(rd, td)

 =

 Λ11 . . . Λ1(ℵκ)
... . . . ...

Λ(3d)1 . . . Λ(3d)(ℵκ)


 (α0

1)1
...

(βNN )κ

 (17a)

d = Λm (17b)

Where κ is the number of knots assigned to each Gauss coefficient. Since the number of {gmn (t), hmn (t)}
for a given N is ℵ, the length of the vector m will be κℵ. For a time-dependent model, the model
parameters are {(αmn )k, (βmn )k}12, related linearly to B by the matrix Λ as shown in equations (17).
It remains to determine Λ whereupon an inversion can be preformed to obtain the desired model
parameters.
Equation (16) shows the product of Λm. The matrices G and M are already known, where the
former relates the magnetic field to the Gauss expansion coefficients through the spatial geometry of
the solution, and the former establishes a time-dependence to each Gauss coefficient through a series
expansion. The following choice (starting with the radial component) can easily be shown to fulfill the
needed task by multiplying the given matrices:

Λr =


Gr11

Gr21
. . .

Grd1

. . .
...
...
. . .

Gr1ℵ
Gr2ℵ

. . .
Grdℵ




M(t; tk)
M(t; tk)

. . .
M(t; tk)

 (18)

12Which from now on will be labeled by m to retain the notation of equation (7).
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Where the empty space in the matrices represent zeros, and the matrix M(t; tk) is defined earlier
in (15). Additionally we can see that the dimension of Λr is as expected:

dim(Λr) = dim
{

(d× dℵ)(dℵ × κℵ)
}

= d× κℵ

However, we need to use the data from all the available three components of the field, so a similar
procedure is done for Gθ and Gφ. With those at disposal, we may write the above construction
together with the φ and θ part in a single matrix in the following compact way:

Λ =


diag

(
Gr
j1
)
, . . . , diag

(
Gr
jℵ
)

diag
(
Gθ
j1
)
, . . . , diag

(
Gθ
jℵ
)

diag
(
Gφ
j1
)
, . . . , diag

(
Gφ
jℵ
)


diag

[
M(t; tk) , . . . , M(t; tk)

]
diag

[
M(t; tk) , . . . , M(t; tk)

]
diag

[
M(t; tk) , . . . , M(t; tk)

]
 (19)

Where the index j here has the values j = 1, . . . , d. The matrix Λ will be used in all model computations
done in this project.
initially, a solution to (17) can be obtained by the LS estimation described earlier, i.e.

m =
(
ΛTΛ

)−1ΛTd (20)

2.5 Iteratively reweighted LS Estimation
Estimating model parameters is very common in geophysics in order to make reasonable inference from
available data. Earlier we have introduced least square estimation as an initial approach to determine
the desired model parameters. However, by doing so one is assuming that the errors of the model are
Gaussian (normally distributed), an assumption that is not necessarily valid [Constable, 1988]. Some
or the majority of the errors may be Gaussian, but even a small fraction of outliers may result in a
considerable negative effect on the models. In least square estimation one is minimizing the sum of
the squares of the residuals (the loss function). This loss function is however not robust to outliers
and hence would cause an unwanted effect in the models due to the big contribution from their side
on the squares of the residuals. What is needed is a robust regression method which in our case will
be the iteratively reweighted least squares (IRLS) with the weights w being the Huber weights. The
method and Huber weights are described in detail in [Olsen et al., 2014].
The estimator will be different compared to ordinary LS estimator introduced in equation (10). In
this case the minimizer will contain a diagonal weight matrix W:

Θ(m) = (d−Gm)TW(d−Gm) (21)

Taking the gradient and equating to zero as done previously with ordinary LS yields the unique
solution:

m =
(
GTWG

)−1GTWd (22)

It is noted that the LS solution introduced earlier in eq. (11) is only a special case of the weighted
least square estimator since in ordinary LS all errors are equally weighted, i.e. wi = 1. This method
is iterative in the sense that the weights (initially taken to be wi = 1) are iteratively calculated until
the matrix W converges. The iteration number Nit can hence be found by saving the weights and
choosing the number that achieves convergence, which in our case is determined to Nit = 6.
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2.6 Regularization
2.6.1 Regularization in Field Modelling

It is now worth pausing for a brief recapitulation of the objectives of our work. The aim is to build
models that describe the core (main) field and allow us to investigate problems related to unmodelled
contributions. The modelling is done by a spherical harmonic representation of the field which allows
solving a linear equation that yields the model parameters. This is done on the assumption that the
satellite is measuring the core field (superposed with a crustal and external modeled contribution) and
hence the delivered data contains measurements of the core together with errors as independent random
variables with some probability density function that initially is assumed to be a normal distribution.
In our case this is clearly an invalid assumption as we know that measurements are contaminated by
nonmodeled signals (in particular ionospheric and magentospheric currents) and hence models will lack
robustness due to the fact that the loss function (sum of the squares of the residuals) has a tendency to
be dominated by outliers. The reiteratively weighted least squares partially solves this problem with
the use of the Huber loss function.
This, however, does not eliminate the nonmodeled signals and one must impose a further restriction
on the estimator. In addition to minimizing the sum of the squares of the residuals, an additional
functional is minimized that characterizes the "roughness" of the curve. More specifically, we seek a
solution of the class C2[., .]13 with a misfit to data measured by the LS loss function and an additional
term that can be adjusted by a parameter λ that is denoted the smoothing parameter :

f(m) = (d−Gm)TW(d−Gm) + λmTRm (23)

Where R is the regularization matrix. The second term in the equation above is motivated as follows:
Focusing on one Gauss coefficient (call it g) from {gmn (t), hmn (t)}, we want to represent g by a spline
expansion as done in equation (13). The roughness (which shall be minimized for a given λ) will be
represented by the functional:

F [S(t)] = λ

∫ tN

t1

(
∂2
t S(t)

)2
dt = λ

∫ tN

t1

[
∂2
t

∑
k

αkM(t, tk)
]2

dt (24)

Where we use S(t) =
∑
k αkM(t, tk) as a spline expansion. This term can then be written in matrix

expression as λmTRm if we write the elements of R as:

Rij =
∫ tN

t1

∂2
tMi(t)∂2

tMj(t)dt (25)

Where m will contain the expansion parameters {(αk)}. With this in mind we may build R of equation
(23) to include all the Gauss coefficients by diagonally concatenating ℵ = N(N + 2) identical versions
of R:

R = diag

 ℵ times︷ ︸︸ ︷
R , . . . , R

 (26)

The unique minimizer to equation (23) is derived analogously to previous solutions (taking the gradient
and equating to zero):

m =
(
GTWG + λR

)−1GTWd (27)
13where C2 denotes functions of the second class of differentiability, i.e. twice continuously differentiable functions on

some interval, granting the first two time-derivatives.
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This method is called spline smoothing, where the smoothing parameter λ determines the degree
of "smoothing". In the case λ → 0 we recover equation (22), and for increasing λ the term λR
(smoothing term) dominates over GTWG in (27) above. Models built with equation (27) will be
denoted R-regularized models.

2.6.2 The Regularization Issue

As described earlier the effect of regularization is minimizing the "roughness" (integral of the squared
second derivative) of the curve appropriately. Regularization is very useful in geomagnetic modeling, for
instance in ionospheric signals in geomagnetic observatory measurements [Constable and Parker, 1988].
It is also used extensively in main field modeling as an approach to deal with unmodeled signals as
done in the CHAOS-6 model [Finlay et al., 2016]14. Most of the current field models are built through
imposing regularization as a necessary approach to ensure convergence in spatial and time domain. In
figure (1) we see the effects of regularization on example models of one year knot spacing at ground
observatories in three different geographical locations. Unregularized models exhibit a high level of
oscillations compared to ground observatory data, and they risk to explode when downward-continued
towards the core.
However, some negative consequences follow along implementing the kind of regularization discussed
above (R) in main field modeling. We recall that our model parameters allow to make predictions at
any given location and at any given time within a certain domain. In the context of core dynamics one
particular region is of great interest, namely the core mantle boundary (CMB), lying in the region
between the silicate mantle and the iron-nickel core and is located approximately 2891 km deep from
the Earth’s surface. This region is important for inferring physical processes taking place in the fluid
core. The smoothing as forced by regularization can however remove some of the important signals of
the core as we downward-continue towards core regions such as the CMB.
The noise15 that is superposed with the core contribution hampers a satisfactory modeling process in
which excessive regularization is not needed. Ideally one wishes to mathematically model the unwanted
signals to systematically filter them out, but the complexity of the ionospheric and magnetospheric
currents makes such an endeavour a rather difficult task.
In what follows we shall attempt to use an alternative method of regularization as proposed by
[Gillet et al., 2013].

2.6.3 An Alternative Approach: AR-2 Process

The project shall attempt to utilize an alternative method to the regularization introduced previously
as they yield unrealistic covariances. The details of this alternative regularization is rather complicated
and shall not be discussed here. We refer to [Gillet et al., 2013] for details and suffice to note that
using this method allows for model solutions with more complex time-dependence than models that
are derived minimizing smoothing norms, and hence not suppressing rapid changes in the SV that
might be caused by core-related events. The aim is then to use this approach to examine whether (and
to which degree) it is possible to eliminate unmodelled fields from the ionosphere and magnetosphere.
The R in equation (27) will be replaced by the new matrix, denoted RAR2. This will be the equation
that yields the models we shall investigate:

m =
(
GTWG + λRAR2

)−1GTWd (28)
14The CHAOS-6 model (and previous versions), impose a more complicated version of regularization then the one

mentioned in (27). The minimized cost function includes terms involving data error covariance matrix and two regular-
ization matrices penalizing the squared values of the second and third time-derivatives of Br at CMB. See equation (3)
in [Finlay et al., 2016]

15More correctly, the unmodelled contributions to the field.
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Figure 1: The effect of implementing regularization is seen in the values of SV at MCQ and HER ground observatories
(see table 1), here for models with one year knot spacing. Black dots: monthly mean ground observatory; red curves:
non-regularized model predictions; blue curves: RAR2-regularized model prediction (introduced in 2.6.3).

Since RAR2 will not impose a (as) strict form of smoothing, the models obtained by using this new
matrix will be very oscillatory (as we shall see in later sections), in part due to the ionospheric and
magnetospheric currents. As mentioned, the reason for using RAR2 is to avoid potential suppression
of weak core signals by the smoothing imposed by matrices such as R as modellers need to do today.

2.7 Computing Model Parameters
The model parameters are computed using the methods introduced in the modelling subsections above.
Here we shall give an outline of the actual implementation of the computation process.
The goal is to determine the set

{
(α0

1)1, (α0
1)2, ..., (βNN )κ−1, (βNN )κ

}
given the data d = (Br,Bθ,Bφ), a

specified expansion orderN and the observation matrix Λ. The following list summarizes the procedure
of obtaining models:

• The matrices G = (Gr,Gθ,Gφ) given by the expressions in (8) are determined using a script
called design_SH.m (Olsen, 2003). The script determines the matrices G given the data and an
expansion order N . Unless otherwise stated the models will have N = 16, an appropriate choice
for core field.

• The matrices M are the B-spline collocation matrices. The matrix is constructed using MAT-
LAB’s spline toolbox command spcol(knots,k,t). This returns a matrix of dimension (d× κ)
with (i, j) entries of Dm(i)Bj(t(i)) [de Boor, 1997]. This is the value of the m(i)’th derivative of
the j’th spline of order k for the knots κ evaluated at t(i). The spline degree will be set to k = 4,
i.e. a third degree or cubic (spline) polynomial, and the knots κ will be given by the model span
(2002 : ∆t : 2010) with a knot spacing ∆t. We shall build models that have knot spacing of 0.5
yr and 1 yr. However, the final tests shall be implemented on 0.5 yr knot spacing. The utility
of one year knots models are limited as we wish to resolve core signals on a higher temporal
resolution. Figure (2) shows an example of a one year vs. a half year knot spacing model. It
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is clearly seen how the one year model suppresses some oscillations seen in some of the Gauss
coefficients (to be discussed later).

• With the matrices G and M at disposal the observation matrix Λ is straightforwardly computed
using equation (19). This matrix is then a function of t, r and N , i.e. Λ = Λ(t, r, N).

• Once Λ is given, all the tools needed to build a model for the core field are then available.
Using the LS estimation as given by equation (20) one obtains the models parameters m ={

(α0
1)1, , ..., (βNN )κ

}
. However, in the residuals of the models are noticed some outliers, i.e. values

that exhibit an extreme departure from all other residuals. They are not numerous but their
great residual value affects the quality of the model. Since these are not related to the inversion
process they are removed from the data set and a new inversion is made.

• To handle the problem of weighing the residuals equally a reiterative LS estimation is performed.
The algorithm is rather simple and is shown in the MATLAB code in the appendix. As mentioned
before, the iteration number is shown to be Nit = 6, so for each model 6 other inversions must
be made before obtaining the solution from equation (22).

• As an additional constraint one needs to make a choice of regularization. In (2.6.2) we discussed
the unwanted effects of the regularization methods used in most current field models. We shall
mainly construct model solutions that use the covariance matrix RAR2 as an alternative approach.
With this approach one may investigate the possibility of improvements in field models using
data selection based on different criteria.

• From model parameters one may obtain the so-called pp-form. This is the polynomial version
of m that can be used to evaluate the Gauss coefficients {gmn (t), hmn (t)} and their time deriva-
tive

{
ġmn (t), ḣmn (t)

}
at a specific time. Additionally, we mention that in various figures only

results in the interval [2003, 2009] are shown, instead of the actual model span of approximately
[2002, 2010]. This is due to the instability of models at the vicinity of the first and the final knot.

Figure 2: The effect of changing knot-spacing from one year to half year on time-series of the time derivatives of{
g0

1 , g0
2 , g0

4
}
for RAR2-regularized models. Blue curves: model prediction of one year knot spacing. Black curves: model

predictions of half-year knot spacing. Green circles: a fit of degree 8 Fourier series to the half-year spaced model, used
in 4.2.1 for an estimation for the periods of the signals.
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3 Data
In the following we shall describe the data used in building the main field models. Raw data cannot be
used directly in the computations since they are containing many contributions that are not desired
to be included in the model. Hence one needs to perform some selections on the data set itself before
applying the modelling machinery.

3.1 Data from CHAMP
The data set provided is taken from the satellite CHAMP. The dataset constitutes 16 arrays of length
68077. It includes an array of time in the unit of md2000 (days after 1st January 2000) and spans a
period of 8.7 years with a temporal resolution of 10 minutes. The spatial representation is in geocentric
spherical coordinates (r, θ, φ), given in units of km and degree. The three components (Br, Bθ, Bφ) of
the observed field are given in units of nT.
The data set also includes field components of the following contributions:

• CHAOS-6 predictions of the crustal field.

• CHAOS-6 predictions of the external field.

This amounts to removing the modelled part of the field which is not related to the core. Subtracting
these from the observed data then yields the corrected field16:

Bcorr = Bobs −Blith −Bext (29)

This data set will be the source of the models that shall be built17. We remind that the models built in
what follows are by no means aiming at replacing existing models, but rather trying to address some
specific problems that modellers face today18. When modellers build models (such as the CHAOS
models) they would use as many available data as possible, but in our case the choice of 68077 would
allow to test some hypotheses without the need to perform immensely time-requiring computations.

3.1.1 Initial Selections

Besides the corrections due to the lithospheric and external field there are more selections on the data
that are done. They are listed here:

• Data taken from dark areas, i.e. when the Sun is 10° below the horizon. This minimizes distur-
bances from the ionosphere that intensifies when directly exposed to solar radiation.

• |dRC/dt| < 2 nT/hr. The RC index has been mentioned earlier in the introduction. This
condition is associated with magnetically quiet times [Finlay et al., 2017], i.e. a condition on the
field due to the magnetospheric ring current.

• The index Kp of the global geomagnetic activity. The constraint here is Kp≤2° as adopted by
the CHAOS models.

• Outliers (greater than 500 nT) from the CHAOS-6 models are removed in any vector component.

These are prior selections with documented effects [Finlay et al., 2017]. The following subsection
discusses further selections that will be the center of our work.

16Corrected within the framework of the available models. This surely does not correct for other unmodelled signals
in the satellite altitude from e.g. atmospheric currents

17From now on data will mean the corrected data in the sense of equation (29).
18The nature of these problems will be investigated in further details in the next section.
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3.2 Data Selections
To which extent is it possible to exclude unwanted signals by means of further data selections? This
is one of the questions that we shall attempt to address in this project. Data selections are indeed
very important in field modelling and is used in most available models today to handle some of the
more rapidly-varying current systems in the ionosphere and magnetosphere. The disturbances from
these external signals and potentially their induced currents inhibits the quality of probing the physical
properties of the Earth’s interior, so the success of core field models are significantly dependent on
how to handle these unwanted contributions.
As an initial step the available data has been filtered based on some of the solar-driven disturbances
and indices for geomagnetic quiet times, as discussed earlier. This has been done beforehand, but
this selection (although important) is not adequate as we shall see. In what follows we shall discuss
data-selection criteria based on data from the interplanetary magnetic field (IMF) and satellite-based
auroral electrojet (AE) indices.

3.2.1 Interplanetary Magnetic Field (IMF)

The Sun forms a strong magnetic field that extends throughout the Solar system. The magnetic field
is carried into space by the electrically conducting plasma of the solar wind. As mentioned earlier,
the IMF interacts with the Earth’s magnetosphere causing disturbances in the data set. The Low
Resolution OMNI (LRO) data set19, however, provides additional options for data selection based on
the IMF. The LRO data set includes updated compilation of hourly-averaged, near-Earth components
of the IMF and solar wind speed. The data set is obtained from several spacecrafts in geocentric or
L1 (Lagrange point) orbits. The components of IMF are given in Geocentric Solar Magnetospheric
(GSM) orthogonal coordinates (Bx, By, Bz) where Bx and By are parallel to the ecliptic, while Bz is
perpendicular to the ecliptic. In particular, we shall consider certain criteria on the magnitude and
sign of the Bz and the By components of the IMF. Additionally, we shall consider a quantity that is
derived from the IMF and information on the solar wind speed, namely the merging electric field at
the magnetopause, denoted Em. Although the sunlit data are excluded from our data set, observations
from the night-side may also be influenced by the IMF [Friis-Christensen et al., 2017].
The LRO data set is given in a temporal resolution of 1 min in unit of (MD2000). The data set also
includes the Bz, By components of the IMF and the speed of the solar wind. The measurements are
done in the L1 point between the Earth and the Sun. In order to perform selections on the data set
from CHAMP, we match the times of the two arrays and for each point in t we take an average for the
past two hours. The following is a short description of the criteria based on the IMF:

• Bz: This component of the IMF is an important factor for auroral activity as discussed in
[Kauristie et al., 2017]. The component Bz amounts to a north-south direction relative to the
GSM system, and when this component is pointing southward (i.e. Bz < 0) it will connect to
the Earth’s magnetosphere which in the GSM system is pointing northward. Hence when Bz < 0
the solar wind particles have a substantial chance of entering the magnetosphere and guided by
the Earth’s field lines they continue their path towards the lower part of the atmosphere. We
shall set a condition that removes data where Bz < 0 for an average of past two hours.

• By: Recent work (Christensen, et. al 2017) shows that a condition on the By component of
the field has an effect on the ionospheric currents. It is indicated that (in night-time) By has
a negative effect in the northern polar region for By > 0 and correspondingly in the southern
polar region for By < 0. These will equivalently be a condition that shall be tested.

19Available at: ftp://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/

ftp://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/
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• Em: This represents the merging electric field at the magnetopause which characterizes mag-
netic reconnection rate at the magnetopasue on dayside. An expression of Em has been de-
rived in [Kan and Lee, 1979] and revised in [Newell et al., 2007]. In the spirit of CHAOS-6
[Finlay et al., 2016] we shall use the revised expression of Em, given by:

Em = 0.33v4/3B
2/3
t sin8/3(|Θ|/2) (30)

where v is the solar wind speed, Bt =
√
B2
y +B2

z and Θ = arctan(By/Bz). A condition that
removes data where Em < 0.8 mV/m will be implemented20.

3.2.2 Satellite-based Auroral Electrojet (AE) Indices

Electrojets are current systems travelling in the ionosphere at an altitude of 90-150 km (E-region).
The electrojets are divided in equatorial electrojets (EEJ) and the auroral electrojet (AE), placed in
the vicinity of the polar circles. There are indices that describe the activity of the AE, and we shall
test the application of recent satellite-based auroral indices [Aakjær et al., 2016] to exclude data that
are disturbed by auroral electrojet currents as indicated by the. The data includes:

• Time array describing times of the first data point along an orbit, in unit of (md2000).

• maximum and minimum values of the current density along an orbit given by the start time of
the orbit, denoted Jaur,max and Jaur,min, respectively. These are measured in A/km.

• Integrated absolute value of the current along the orbit, denoted JL1. This is measured in A.

This additional criterion has been included for testing satellite-based AE indices, and selections
based on these indices require the determination of an appropriate threshold. One way of estimating
such a threshold is by performing several models as the threshold is varied. One could choose to
consider the quantiles of the given indices, e.g. 25%, 50% and 75%, and then choose the quantiles
as thresholds, where for each choice some model characteristics are considered and compared. Our
choice is to use the median as threshold, as it is shown that a combination of the AE indices and other
selections offer an improvement in the statistics of the model (see the discussion in 4.3.1).
There is no physical ground for such a determination of the threshold, and the choice has by no means
been determined by an extensive investigation, in part due to the computational cost of the task.
However, the availability of the satellite-based AE indices allows us to perform simple tests in our
framework, and is indeed motivated by the belief that many of the disturbances that we shall meet
are polar/auroral driven.

Nr. Name of Observatory Latitude Longitude Country

1. Niemengk (NGK) 52.07°N 12.68°E Germany

2. Hermanus (HER) 34.43°N 19.23°E South Africa

3. Kakioka (KAK) 36.23°N 140.18°E Japan

4. Macquarie Island (MCQ) 54.5°S 158.95°E Australia

Table 1: Geographical locations of the ground observatories that shall be used for comparison with model predictions.

The thresholds of JL1, Jmax and Jmin are given by 581140 A, 126.2 A/km and -129.9 A/km, re-
spectively, as determined by the median of the data set.

20The values of E∗
m = Em/0.33 are calculated in advance in the given data set on IMF, hence the condition becomes

E∗
m < 0.80/0.33.
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Number of data Intersections with Em
Em 46148

⋃
N 61203

Bz 34972 Em ∩Bz 33196
By 15892 Em ∩By 12720
JL1 25903 Em ∩ JL1 17881
Jmax 23943 Em ∩ Jmax 16718
Jmin 24329 Em ∩ Jmin 16383

Table 2: The criteria to be tested on different models together with the number of data removed from each contribution.
∩ denotes intersection, while

⋃
N denotes the union of all criteria. The number of our given data set from CHAMP is

68077.

Figure 3: Histograms showing the distribution of the different data selection based on the IMF and the auroral indices.
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4 Results and Discussion
The aim of this section is twofold. First we shall attempt to characterize the oscillations in the models
regularized with RAR2. It is of great interest to know the behaviour of these signals with regard
to their temporal and geographical distribution. A proper understanding of the signals may allow
us to investigate their origin and place modellers in better position to dealing with them. Next we
attempt to address the question posed earlier: whether and to which degree it is possible to contain
the unwanted signals by means of data selection based on knowledge and available data/indices of
current systems in the ionosphere and magnetosphere. The attempt made here is rather modest, both
in the selection criteria and in the number of data used to obtain the models. Furthermore, in this
section models where all three components (Br, Bθ, Bφ) are used in the inversion are denoted Type I
models, whereas models where (Bθ, Bφ) are excluded from polar latitudes in the inversion are denoted
Type II models. We shall be using both types of models in the analysis below. Furthermore, some of
the figures that will be referred to in this section are placed in the appendix. This is done in order to
make the section more readable.
Before proceeding to the results, we give a brief description of the different series of models that have
been built during the course of this project.

4.1 Model Series
Although we shall focus on the results of one series of models in the project, the path that was taken
to arrive at this series includes several other series of models. Here an outline of these model-series
together with some comments on their outcome is given, after which they shall not be considered
further in greater detail. The aim here has not been different to our general setting: test how data
selection affects signals in model predictions.
In our framework, the compexity of the model time-dependence can be controlled either changing the
knot spacing or in the choice of regularization21. All four possibilities have been considered and a
series of models have been built in order to characterize the model solutions:

• R-regularized models of one year knot spacing.

• R-regularized models of half year knot spacing.

• RAR2-regularized models of one year knot spacing.

• RAR2-regularized models of half year knot spacing.

Where R and RAR2 denote the two regularization matrices introduced in 2.6.1 and 2.6.3, respectively.
As mentioned in the sections on regularization, R-regularized models are subject to smoothing con-
ditions to ensure a realistic model in terms of convergence in spatial and time domain. The first two
series of models listed above utilize such a regularization by equation (27). However, R-regularized
models are not optimal for testing our objective, i.e. the effect of data selections. One problem in
R-regularization is finding an appropriate smoothing parameter λ that serves our purpose. On one
extreme, unregularized models (i.e. λ→ 0) exhibit signals with very high amplitudes such that infer-
ence based on data selection is very difficult. On the other extreme, smoothed models (i.e. λ → ∞)
suppress the actual signals that we are interested to investigate.
This leaves RAR2-regularized models as an alternative, where the "roughness" of the models (see 2.6.1)
is not strongly penalized. Choosing models of one year knot spacing of has its own disadvantage, as
they conceal some of the periodic signals present in the time-series, as seen in figure (2). Furthermore,
they are of limited use due to their poor resolution. Hence we have made the choice of considering

21Of course, specific data selections, as we shall see, also offer a variety of models, but here we distinguish various
models in the modelling framework and various models in the context of which choice of data to be used in the models.
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RAR2-regularized models of half year knot spacing to perform our desired analysis.
In the remainder of this section, the models discussed will be RAR2-regularized models of half year
knot spacing. The models will either be of type I or type II, i.e. based on the field components used
at polar latitudes as described in the beginning of this section.

4.2 Characterizing the Oscillations
4.2.1 The Amplitudes

When model solutions are obtained by equation (28), a certain behaviour is seen in the model char-
acteristics, e.g. the time series of the time-derivative of the Gauss coefficients22. An example of this
behavior is seen in the models of half year knots as the black curves in figure (2) of the coefficients{
g0

1 , g
0
2 , g

0
4
}
.

At first sight one clearly notices the periodic behaviour of these specific signals. In particular, the coef-
ficients g0

2 and g0
4 exhibit dominance in a one-year periodicity. To investigate the periodicity property

further we may fit Fourier series to the time-series (green marker in figure (2) of the form:

f(t) = a0 +
8∑

n=1
[an cos(ntω) + bn sin(ntω)] (31)

Where an, bn are the Fourier coefficients and ω is the angular frequency, related to the signal’s period T
by T = 2π/ω. The signal is expanded to degree 8, and by considering the magnitude of the coefficients
an, bn one can infer which period is "dominant" in the signal. The expansion is determined numerically
by fit(t, g, ’fourier8’), and in table (3) we find the magnitude of the dominant terms in the
Fourier expansion and hence the corresponding dominant period. The period of the signals for g0

2 and
g0

4 is shown to be approximately 1 yr (as can also be read off in figure (2) above).

ġ0
n ω T dominant term(s) all other terms ω∗ of dominant

term(s)
T ∗ of dominant

term(s)

ġ0
2 0.8933 7.0340 yr a7 = 5.779,

b7 = 2.246
< |1.261| ω∗ = 7ω T ∗ = 7/T

= 0.995 yr

ġ0
4 0.8947 7.0227 yr b7 = 7.02 < |0.7118| ω∗ = 7ω T ∗ = 7/T

= 0.997 yr

Table 3: Angular frequency ω(ω∗) and period T (T ∗) of the 8th-degree Fourier series fit to the time series of ġ0
2 and

ġ0
4 (green circles in figure (2)). The fit yields the Fourier coefficients in equation (31), where the contribution of the
dominant terms is given together with an upper bound to the absolute value of the remaining terms. This gives an
estimation of the period of the dominant term, given by T ∗.

Figures of the time series show a clear disturbance in temporal dependence as carried by {gmn (t), hmn (t)}.
However, not all Gauss coefficients exhibit a clear disturbance signal in their time-derivatives, such as
the one-year periodicity of ġ0

2 and ġ0
4 . In figure (5) a group of

{
ġmn (t), ḣmn (t)

}
is selected from the first

35 coefficients, together with predictions of CHAOS-6 models. The upper 9 coefficients in the figure
exhibit an oscillatory behaviour (including ġ0

2 and ġ0
4) to some degree. The lower 9 coefficients exhibit

a less clear pattern, and all the coefficients are generally following the trend of CHAOS-6 predictions.
Hence we notice a difference in how the coefficients are affected by the signals.
Furthermore, models of type I produce predictions where the amplitudes of the signals in the time
series are higher than ones obtained through models of type II. This agrees with the assertion made

22One could make time-series of the coefficients themselves, but the oscillations are more clear in the time derivatives,
hence we restrict our results to time-derivatives, both when presenting coefficients and when presenting field components.
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earlier that (θ, φ)-components are more vulnerable in polar latitudes. This will be discussed in greater
detail below, see e.g. figure (A.1) of the appendix.

4.2.2 Observatory Examples

Besides the temporal behaviour, one may also be interested in the geographical distribution of the
signals, i.e. how do the signals change in amplitude as we vary the spatial coordinates (r, θ, φ). One
way of investigating this is by considering Ḃ at observatory locations. The advantage of testing models
at observatory locations is the availability of well-processed data that can be compared with model
predictions. In figure (6) the three-component secular variation of the field is shown at HER, KAK,
NGK and MCQ. The geographical locations of the observatories is show in table (1).

An oscillatory behaviour in model predictions is again seen at these observatory locations23. At
HER and KAK, having a latitude of 34.43°N and 36°N respectively, we see weaker amplitudes in
∂Br/∂t compared to those seen in NGK and MCQ that lie at 52.07°N and 54.4°S, respectively. In
particular, the MCQ observatory is an interesting case, where observatory measurements themselves
show an unclear pattern. This indicates the presence of a strong disturbance source at this observatory
location.

4.2.3 Maps of the Signals

By using the CHAOS-6 model as a reference, the signals can be characterized by a more global approach
by producing maps of Ḃ at a certain altitude. We choose to consider the radial part ∂Br/∂t and to
produce a map at the Earth’s surface. By making a grid of points at the Earth’s surface where the
values of Ḃ are evaluated using the model and CHAOS-6, the two contributions are subtracted from
each other such that the leftover signals from the oscillations in model prediction are clearly seen.
These maps where model predictions are subtracted from CHAOS-6 predictions are made both in
type I models and in type II models. The former is shown in figure (4) while the latter is shown in
figure (A.2) of the appendix. First and foremost we notice the difference in the amplitudes of the two
maps. Model of type I have considerably stronger signals, at least in polar regions and mid-latitudes.
The signals are also clearly present at both polar regions, where in the type I model there is a clear
distinction between polar regions and lower/higher latitudes, while such a distinction is less clear in
the type II model. Another interesting observation is how the signals appear as latitudal bands in some
of the examples shown in the figures. This shows that the signals possess some latitudal dependence.

4.3 Data Selections
The previous subsection gives an idea of the noise problem in satellite data when core field models are
built. The data contains complicated unmodeled signals that manifest themselves as disturbances (in
some cases as oscillations) in model predictions, where the amplitudes of the signals are larger in higher
latitudes. As mentioned earlier, modellers attempt to carefully exclude data that are believed to be
disturbed for improved model solutions. The initial selections discussed in (3.1.1) are an example of
such a selection, while using models of type II is another example24. In this subsection we shall extend
this by testing whether choices on data selections based on criteria on the IMF and satellite-based AE
indices (see 3.2) can improve cleaning the data from unmodelled signals.
The procedure of implementing the selections is described in (3.2). Before proceeding to presenting
the results, a few comments should be made about the selections. The criteria listed in table (2) shows

23In particular, the radial components. Oscillations in (Bθ, Bφ)-components are considerably damped due to their
exclusion at higher latitudes in this case (i.e. type II).

24In fact, the CHAOS-6 models uses the magnitude of the field at higher latitudes [Finlay et al., 2016]. The utilization
of type II models is only a simplified way to minimize some of the disturbances at the expense of removing data that
might include important information.
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Figure 4: Maps showing the difference between CHAOS-6 and type I model predictions in ∂Br/∂t evaluated at different
times. The map is evaluated at the Earth’s surface r = 6371.2 km. Note the difference in the scale of the colorbar in
comparison to figure (A.2).
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Figure 5: Time derivatives of various coefficients as obtained by a type II model with no additional selections. Blue
curves: CHAOS-6 predictions; black curves: model predictions.
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Figure 6: Type II RAR2-regularized model predictions of the SV components at HER and KAK. Black dots: monthly
mean ground observatory values; blue curves: CHAOS-6 predictions; red curves: model predictions. Note the difference
in signal amplitudes in ∂Br/∂t of HER and KAK compared to NGK and MCQ.

the number of data affected by the respective criterion. By choosing a specific criterion we remove
all of the associated data. These selections remove approximately 23% to 91% of the original satellite
data set that has a length of 68077, depending on the selection combination. This is a considerable
reduction in the number of data to be used in obtaining model solutions. The number of data has an
important effect on the quality of the model, so a combination involving a removal of a large percentage
of the data may risk yielding a poor model.
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The criterion that removes the biggest number of data by itself is Em, removing about 68% of the
data set. Another important detail about Em is the fact that it is highly intersective with the other
criteria as can be seen from table (2). This makes an independent testing almost impossible in the
given data set. The focus will hence be aimed towards testing different combinations of models rather
then testing selections against each other.
The analysis of data-selection effects shall be restricted to the following investigations:

• Utilizing model solutions of type I and type II, models are built where different combinations
of criteria are chosen from table (2). The selections are chosen such that the removal does not
leave the number of data to be less than approximately 11000 in order to avoid building fragile
models.

• In order to make a quantitative assessment of the obtained models, values of the root mean square
of the residuals (RMS) are calculated. In our case, the weighted RMS values of the residuals can
be calculated by using:

RMS =
√

1
N

(d−Λm)TW(d−Λm) (32)

Where N is the number of data and W is the Huber weight matrix. Due to the strong dependence
of the residuals on the latitude, the values of the RMS will be separated into polar25 and non-polar
regions.

• Time series of selected
{
ġmn (t), ḣmn (t)

}
will be considered. A number of coefficients have been

chosen from the lowest 35 model coefficients26 without selections and evaluated at the period
2003-2009. These are shown in figure (5). Some of the coefficients exhibit a clear oscillatory
pattern, while others show an unclear disturbance. In the mentioned figure an attempt has been
made to include examples from both groups. In particular, the coefficients that are showing clear
periodicity (some of the upper 9 examples in the figure) will be chosen in order to be assessed
against data selections, while some of the other coefficients (the lower 9 in the figure) that possess
a random pattern will not be analyzed against data selection.

• Finally, we would like to investigate how data selections affect SV components of the field, in
particular Br. Instead of restricting to observatory locations (which will yield a very restricted
geographical description), we consider maps of differences between model and CHAOS-6 predic-
tion in Br at polar regions. This is done with and without selections for comparison. The polar
regions are chosen due to the strong signals in their vicinity and since the effect of data selections
in lower latitudes are not easily detected in our case.

4.3.1 Effects on Statistics

Table (4) shows the models built using type I (upper table) and type II models (lower table). Each
model is characterized by a data selection, number of data and RMS of the residual in field components
at polar and non-polar regions. We give some remarks on these results:

• General remarks: Type I and type II models yield different values of RMS, as one may expect.
The RMS misift in Br component is smaller in type I than in II in polar regions. It is expected
that when only one component (i.e. Br) is used in the inversion to yield 3-component predictions
of the field, the model predictions may be less accurate. The advantage, on the other hand, is to
remove unwanted contributions from the (Bθ, Bφ)-components. However, in non-polar regions,

25<35° and >125° in co-latitude.
26i.e.

{
g0

1 , g
1
1 , h

1
1, . . . , h

5
5

}
.
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Field Model Selection N
Polar [nT] Nonpolar [nT]

Br Bθ Bφ Br Bθ Bφ

FM_type1_01 None 61383 10.097 17.353 18.082 4.291 4.337 3.240
FM_type1_02 Em 19635 9.974 17.443 18.250 3.962 4.213 3.136
FM_type1_03 Bz 29854 9.869 17.104 17.852 3.880 4.127 3.076
FM_type1_04 By 46787 10.112 17.351 17.930 4.311 4.457 3.298
FM_type1_05 Em, Bz 18089 9.964 17.425 18.181 3.925 4.162 3.119
FM_type1_06 Em, JL1 11613 10.144 17.740 18.198 4.069 4.312 3.125
FM_type1_07 JL1, Jmax, Jmin 30402 10.097 17.353 18.082 4.291 4.337 3.240

Field Model Selection N
Polar [nT] Nonpolar [nT]

Br Br Bθ Bφ

FM_type2_01 None 61383 12.304 3.152 3.663 2.976
FM_type2_02 Em 19635 12.247 3.039 3.651 2.981
FM_type2_03 Bz 29854 12.226 3.006 3.582 2.935
FM_type2_04 By 46787 12.331 3.199 3.704 2.979
FM_type2_05 Em, Bz 15223 12.285 3.056 3.680 2.971
FM_type2_06 Em, JL1 11613 12.508 3.085 3.683 3.015
FM_type2_07 JL1, Jmax, Jmin 14328 13.307 3.130 3.832 3.225

Table 4: Tables presenting different models built with specified selection criteria, where N is the number of data used
in obtaining the model solution, together with RMS misfit values of the residuals subdivided into polar and non-polar
regions. Upper table: models of type I; lower table: models of type II (as described in the beginning of this section).

the RMS values in all three components are generally less in type II compared to type I. Indeed,
it is an interesting fact that the RMS values of the residuals are lower in type II than in type I
at non-polar regions, although the type II models are only excluding data from polar latitudes.

• The changes in RMS misfit from model to model are generally on a small scale. Furthermore,
some models reduce the value of RMS misfit in some components will increasing the value in
other components. The Bz criterion seems to improve the RMS value in both types of models. In
the case of Em and {Em, JL1} some components seem to improve, while By and {JL1, Jmax, Jmin}
does not seem to have an improvement. The {Em, Bz} and {Em, JL1} conditions in upper table
show a small improvements in the non-polar regions, while no clear improvements can be detected
in the corresponding lower table. For polar regions, improvements in the radial components are
also seen for Em, Bz and {Em, Bz} for both types of models.

4.3.2 Effects on Coefficients

Besides model misfit statistics, it is of interest to consider the time-dependence in model coefficients.
The time series to be presented here are

{
ġ0

2 , ġ
0
4 , ḣ

1
4
}
. These are chosen due to their clear periodic

signal as can be seen in figure (5), where in particular
{
ġ0

2 , ġ
0
4
}
exhibit a dominant one year periodicity

as seen in table (3).
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The effects of the selections based on Em, Bz, {Em, JL1} and {JL1, Jmax, Jmin} on
{
ġ0

2 , ġ
0
4 , ḣ

1
4
}
is seen

in figure (7) and (8). An immediate observation is the fact that type II models have lower amplitudes
than type I models, as can also be seen in the world maps mentioned earlier. Within each of these two
types the tests are performed, where the following points summarize the observations:

• In type II models, some of the signals get disturbed after a selection is chosen. This can be
seen in e.g. h1

4 in figure (7) and (8). This effect is not shown in the case of type I models
(with the exception of the period between 2003-2004). The structure of the signal is generally
maintained after performing the selections in this case, where the amplitudes are altered (with
few exceptions). This is possibly a sign of instability in the models of type II due to the removal
of (Bθ, Bφ)-components of the data at polar regions.

• Some of the data selections do seem to reduce the amplitudes of the signals. In the case of type
II models exceptions seem to be more common, where selections change the signal structure in
some time periods. The selections of Em and Bz show a reduction in amplitudes, similarly with
the Bz selection.

• The satellite-based EJ index JL1 to have a positive contribution when combined with Em. This
is most clearly seen in the type II models as the green lines in figure (7), while making a choice
based on all three auroral selections yield a smaller contribution in comparison as seen in the
green lines of figure (8).

Furthermore, there is another clear difference between type I and type II models in the derivatives of
the coefficients. Figure (A.1) shows the derivatives of the upper nine coefficients that were introduced
in figure (5). The effect of the transition from type I model to type II model is very clear in some
of the coefficients, such as g0

4 , while the effect is less clear in others. The coefficient g0
2 even shows a

total reversal in the signal. The difference between the two types have also been observed in the maps,
where they show lower amplitudes (as a difference to CHAOS-6) in type II models27. There is hence
an advantage in excluding the (Bθ, Bφ)-components at polar regions28.
As a last comment in this connection, it is worth noting that the time-variation in some of the mentioned
coefficient-derivatives, such as the lowest 9 in figure (5), may in some cases be difficult to separate in
core-related variations and external-field-related variation (or even a third effect), as it is well known
that there exists rapidly changing core-related events such as geomagnetic jerks. However, the fact
that data selections have lowered the amplitudes of some the signals seen in

{
ġ0

2 , ġ
0
4 , ḣ

1
4
}
is arguably

an evidence that these signals have an external origin, i.e. related to current systems.

4.3.3 Effects on Polar regions

Finally, we test the effects of data selection based on Em on the polar region by considering maps
of ∂Br/∂t restricted to the polar regions and evaluated at the Earth’s surface. This choice has been
made due to dependence of the disturbance signals on the latitude, with the strongest disturbance
localized in polar regions. The effect of data selections on specific locations are hard to investigate,
hence we don not consider examples at observatory locations, although we have seen how mid-latitude
observatories such as NGK and MCQ exhibit stronger disturbances than HER and KAK which are
lying closer to the equator.
The maps, as before, are produced by taking the difference between model predictions and the pre-
dictions of CHAOS-6. One important detail when making comparison based on such maps is the fact
that one considers a snap shot of the SV component at a specific time. If a data selection reduces
some of the negative effects of a signal at one given time then one cannot conclude that this is a

27Note the difference in the scale of the colormaps when considering figure (A.2) and (4)
28Or even better, deal with them differently in order to cope with the disturbances they give rise to, as already done

in the CHAOS models.
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(a) Time series of
{
ġ0

2 , ġ
0
4 , ḣ

1
4

}
for type I models based on different selections. Blue curves: CHAOS-6

predictions; black curves: FM_type1_01; red curves: FM_type1_02 ; green curves: FM_type1_06.

(b) Time series of
{
ġ0

2 , ġ
0
4 , ḣ

1
4

}
for type II models based on different selections. Blue curves: CHAOS-6

predictions; black curves: FM_type2_01; red curves: FM_type2_02 ; green curves: FM_type2_06.

Figure 7

general improvement. We make the following choice: the polar regions are considered where ∂Br/∂t
is evaluated at times where the signals amplitude is in the vicinity of a maximum or a minimum. By
taking the interval time between each image to be a half-year29, maps spanning from 2003.25-2008.75
are shown in the series of figures (A.3), (A.4) and (A.5)30. This is done for type II model where the
signals are more clear, and as a selection the Em criterion is used. It is underlined that the aim here
is not to give a quantitative description of the improvements, but rather give a qualitative example of
how the disturbance signals are prominent in polar regions, and that a detectable effect can be shown
by an example of data selection (in this case Em).
As observed in the maps, at several moments the signal amplitudes are lowered substantially after the
selection. This confirms the assertion that polar regions are quite vulnerable to disturbances.

4.4 Comments on Results
In this section an attempt has been made to investigate some of the disturbance signals identified when
building RAR2-regularized models with a half year knot spacing. As stressed earlier, the motivation
for this investigation is to address some of the problems modellers face when building high resolu-

29At polar regions a dominant period of one year is shown in the maps. We have also seen a one-year periodicity in
the signals that appeared in the time-series of ġ0

2 and ġ0
4 .30Note that the scale of the colorbar has been chosen to show the effects of the polar disturbances rather than lower

latitudes.
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(a) Time series of
{
ġ0

2 , ġ
0
4 , ḣ

1
4

}
for type I models based on different selections. Blue curves: CHAOS-6

predictions; black curves: FM_type1_01; red curves: FM_type1_03 ; green curves: FM_type1_07.

(b) Time series of
{
ġ0

2 , ġ
0
4 , ḣ

1
4

}
for type II models based on different selections. Blue curves: CHAOS-6

predictions; black curves: FM_type2_01; red curves: FM_type2_03 ; green curves: FM_type2_07.

Figure 8

tion core field models [Finlay et al., 2017]. Data selection comprises an extremely important part in
field modelling based on data and knowledge on the physics of the ionosphere and magnetosphere.
Addressing the unmodelled signals can in principle be done either be excluding (i.e. by performing
appropriate data selections) the affected data or providing additional constraints (i.e. regularization)
on the models based on assumptions made on the core dynamics. The attempt in this project has been
to use a weaker temporal regularization and to focus on characterizing the effects of data selections.
This section is finalized with a few remarks on the results. It has been shown how the the disturbances
in the model predictions are localized in the polar region. This is no surprise; the polar regions are
home to auroral currents in the polar ionosphere that are known to cause problems in field modelling,
as documented in [Finlay et al., 2017] and [Friis-Christensen et al., 2017]. We do not wish to delve into
a detailed account of the current systems, but merely mention that the results, expectedly, indicate
that polar disturbances are quite clear in our internal models.
Indeed, the fact that data selections based on IMF and AE indices reduce some of the disturbances is
a strong indication that these disturbances are solar-related. It also indicates that such data selections
may have a role in future improvement schemes on field models. In particular, a more sophisticated
approach in finding selection-thresholds of the satellite-based AE indices [Aakjær et al., 2016] may
constitute a further work in this connection.
Within the framework of this project, data selections of several kinds have been shown to exhibit some
effects on the characteristics that we have investigated. But there is also an interest in knowing to
which degree it is possible to eliminate the unmodelled signals by means of the data selections similar
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to the ones that we have considered? This is a rather difficult question to address, at least based on
the results above. As stressed earlier, data selections must be in the recipe of any field model, and
the results of this section have shown how a removal of selected data can improve reducing the am-
plitudes of some of the signals. However, the attempt here is arguably incomplete and unsatisfactory
for several reasons. The big reduction in the number of data can cause defects in the model, so an
increase in data number may be a help. In this connection, SWARM, with its improved precision and
resolution, offers a great opportunity for modellers to understand and possibly make better models
of the disturbances. Additionally, the higher disturbances in the type I models must be addressed
more efficiently before further investigations, such as the method implemented in the CHAOS-6 model
that we have mentioned earlier, rather than adopting a type II model. Another method to deal with
the polar disturbances could be accomplished by an estimation of identified polar disturbances and
incorporating them in model parametrization as done by [Olsen et al., 2016] in the SIFMPlus model.
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5 Appendix

A
Figures

Figure A.1: Time-derivatives of the first 9 coefficients in figure (5). Blue curves: CHAOS-6 model; dashed black curves:
type I model with no additional selection; solid black curves: type II model with no additional selection.
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Figure A.2: Maps showing the difference between CHAOS-6 and type II model predictions in ∂Br/∂t evaluated at
different times. The map is evaluated at the Earth’s surface r = 6371.2 km. Note the difference in the scale of the
colorbar in comparison to figure (4).



A
FIGURES 33

Figure A.3: Maps showing the difference between CHAOS-6 and type II model predictions in ∂Br/∂t at polar regions,
spanning 2003.25 to 2004.75. The map is evaluated at the Earth’s surface r = 6371.2 km.
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Figure A.4: Maps showing the difference between CHAOS-6 and type II model predictions in ∂Br/∂t at polar regions,
spanning 2005.25 to 2006.75. The map is evaluated at the Earth’s surface r = 6371.2 km.
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Figure A.5: Maps showing the difference between CHAOS-6 and type II model predictions in ∂Br/∂t at polar regions,
spanning 2007.25 to 2008.75 for model. The map is evaluated at the Earth’s surface r = 6371.2 km.
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B
MATLAB code

Λ Matrix:

1 % Desc r ip t i on :
2 % Model matrix ( lambda )
3 % input : p o s i t i o n s vector , time and expansion degree N
4 % output : model matr i ce s Lambda_i , i = r , theta , phi ,
5 % and R, r e g u l a r i z a t i o n matrix .
6 % computed as eq . (19)
7

8 f unc t i on [G_1, G_2, G_3, R] = Giant_G( t , r , theta , phi , N)
9

10 % ang l e s in rad ians and d i s t anc e in un i t s o f Earth rad iu s .
11 theta_rad = theta . / 180 . ∗ p i ;
12 phi_rad = phi . / 180 . ∗ p i ;
13 r_a = r . / 6371 ;
14

15 % Olsen , design_SHA
16 [G_r, G_theta , G_phi ] = design_SHA(r_a , theta_rad , phi_rad , N) ;
17 %
18

19 G_gh_1 = [ ] ; G_gh_2 = [ ] ; G_gh_3 = [ ] ;
20

21 f o r j = 1 :N∗(N+2)
22 G_gh_1 = [G_gh_1, spd iags (G_r ( : , j ) , 0 , numel (G_r ( : , j ) ) , . . .
23 numel (G_r ( : , j ) ) ) ] ;
24 G_gh_2 = [G_gh_2, spd iags (G_theta ( : , j ) , 0 , numel (G_theta ( : , j ) ) , . . .
25 numel (G_theta ( : , j ) ) ) ] ;
26 G_gh_3 = [G_gh_3, spd iags (G_phi ( : , j ) , 0 , numel (G_phi ( : , j ) ) , . . .
27 numel (G_phi ( : , j ) ) ) ] ;
28 end
29

30 G_gh = [G_gh_1, G_gh_2, G_gh_3 ] ; % s p a t i a l part o f lambda
31

32 % unit o f time (MD2000)
33

34 t = 2000+t /365 . 25 ;
35 sp_order = 4 ; % sp l i n e order
36 delta_t = 0 . 5 ; % knot spac ing
37 knots = [ 2 0 02 : de lta_t : 2 0 1 0 ] ’ ;
38 knots = augknt ( knots , sp_order ) ;
39 G_ab_0 = spco l ( knots , sp_order , t , ’ sp ’ , ’ no ’ ) ;
40 ACell = repmat ({G_ab_0} , 1 , N∗(N+2) ) ;
41 G_ab = blkd iag ( ACell { : } ) ; % temporal part o f lambda
42

43 % r e gu l a r i z a t i o n ( not AR2−r e g u l a r i z a t i o n ) .
44 co l l_t = spco l ( knots , sp_order , [ knots (1 ) : de lta_t : knots ( end ) ] ’ , ’ sp ’ ) ;
45 co l l_2 = d i f f ( co l l_t , 2) /( de lta_t /365 .25) ^2 ;
46 R_time = col l_2 ’ ∗ co l l_2 ∗( delta_t /365 .25) ;
47 BCell = repmat ({R_time} , 1 , N∗(N+2) ) ;
48 R = blkd iag ( BCell { : } ) ; % the r e g u l a r i z a t i o n matrix
49

50 % the f i n a l matr i ce s
51 G_1 = G_gh_1∗G_ab;
52 G_2 = G_gh_2∗G_ab;
53 G_3 = G_gh_3∗G_ab;
54

55 end
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Models (type II):

1 %% Desc r ip t i on
2

3 % Scr i p t f o r gene ra t ing models that in c lude a l l data ,
4 % toge the r with s e l e c t i o n opt ions .
5

6 %% Load data s e t
7

8 c l e a r
9 data = load ( ’CHAMP_10min_dark_quiet_Ali_Bvect . dat . txt ’ ) ;

10

11 %% Def ine the data ve c t o r s from datase t
12

13 B_r = data ( : , 1 4 ) ;
14 B_theta = data ( : , 1 5 ) ;
15 B_phi = data ( : , 1 6 ) ;
16 r = data ( : , 2 ) ;
17 theta = data ( : , 3 ) ;
18 phi = data ( : , 4 ) ;
19 t = data ( : , 1 ) ;
20

21 tau = t ; % th i s w i l l be used l a t e r
22 %% Sampling data randomly
23

24 k = 1 ;
25 numb = 0.5∗ l ength ( data ) ; % sampling number , max = length ( data ) ;
26 i = ze ro s (numb, 1 ) ;
27 f o r n = 1 : l ength ( i )
28 i ( k ) = n∗ f l o o r ( l ength ( data ) /numb) ; % index f o r s e l e c t i o n
29 k = k + 1 ;
30 end
31 % The random s e l e c t i o n
32 B_r = B_r( i ) ;
33 B_theta = B_theta ( i ) ;
34 B_phi = B_phi ( i ) ;
35 r = r ( i ) ;
36 theta = theta ( i ) ;
37 phi = phi ( i ) ;
38 t = t ( i ) ;
39

40 %% Se l e c t i n g data on chosen c r i t e r i a ( e . g . IMF )
41

42 load ( ’ i nd i c e s_ ind i v i dua l_r ev i s ed .mat ’ ) % IMF s e l e c t i o n s
43 load ( ’ Auroral . mat ’ ) % J_L1 s e l e c t i o n
44 load ( ’Auroral_max .mat ’ ) % J_max s e l e c t i o n
45 load ( ’ Auroral_min .mat ’ ) % J_min s e l e c t i o n
46

47 %% The data s e l e c t i o n (IMF / AE i nd i c e s )
48

49 J = union (J_max, J_min) ; % a combination o f s e l e c t i o n s
50

51 % removal o f data
52 B_r( J ) = [ ] ;
53 B_theta ( J ) = [ ] ;
54 B_phi ( J ) = [ ] ;
55 r ( J ) = [ ] ;
56 theta ( J ) = [ ] ;
57 phi ( J ) = [ ] ;
58 t ( J ) = [ ] ;
59 %% Removal o f sy s t emat i c o u t l i e r s
60
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61 N = 16 ;
62 [G_1, G_2, G_3] = Giant_G( t , r , theta , phi , N) ; % Gamma matr i ce s
63 G = [G_1; G_2; G_3 ] ;
64 B = [B_r ; B_theta ; B_phi ] ;
65 GtG = G’∗G;
66 GtB = G’∗B;
67 m = GtG\GtB ; % inv e r s i o n (model s o l u t i o n )
68

69 % de f i n i n g r e s i d u a l s
70 res_r = abs (B_r−G_1∗m) ;
71 res_theta = abs (B_theta−G_2∗m) ;
72 res_phi = abs (B_phi−G_3∗m) ;
73

74 % ou t l i e r s are de f ined as abs ( re s_i ) >1000 , i = r , theta , phi .
75 f o r j=length (B_r) :−1:1
76 i f res_r ( j )>1000 | | res_theta ( j )>1000 | | res_phi ( j )>1000
77 B_r( j ) = [ ] ; B_theta ( j ) = [ ] ; B_phi ( j ) = [ ] ;
78 t ( j ) = [ ] ; r ( j ) = [ ] ; theta ( j ) = [ ] ; phi ( j ) = [ ] ;
79 end
80 end
81

82 %% Re−bu i l d i ng model
83

84 N = 16 ;
85 [G_1, G_2, G_3, R] = Giant_G( t , r , theta , phi , N) ;
86 G = [G_1; G_2; G_3 ] ;
87 B = [B_r ; B_theta ; B_phi ] ;
88 GtG = G’∗G;
89 GtB = G’∗B;
90

91 %% Regu la r i z a t i on cho i c e
92

93 % R_AR2:
94 load ( ’R_AR2_0. 5 . mat ’ )
95 alphasq2=1; % smoothing parameter
96 m = (GtG+alphasq2 ∗R_AR2) \GtB ; % r e gu l a r i z e d model
97

98 % c l e a r i n g workspace from d e f i n i t i o n s made p r ev i ou s l y
99 c l e a r v a r s −except B G m N t tau R_AR2 alphasq2

100

101 %% Robust e s t imat i on (Huber weights )
102

103 e = B−G∗m;
104 sigma = rms ( e ) ;
105 w = ones ( l ength (B) ,1 ) ; % i n i t i a l weights
106 c =1.5 ;
107 N_it = 6 ; % i t e r a t i o n number
108 f o r i =1:N_it
109 wB = w.∗B;
110 t i c
111 WG = bsxfun (@times ,G, sq r t (w) ) ;
112 GtWG = WG. ’ ∗WG;
113 GtWB = G’∗wB;
114 m = (GtWG + alphasq2 ∗R_AR2) \(GtWB) ;
115 ep s i l o n = (B−G∗m)/sigma ;
116 w = min( c . / abs ( e p s i l o n ) , 1) ;
117 toc
118 end
119

120 %% pp−form o f model parameters
121

122 sp_order = 4 ; % sp l i n e order
123 delta_t = 0 . 5 ; % knot spac ing
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124 knots = [ 2 0 02 : de lta_t : 2 0 1 0 ] ’ ;
125 knots = augknt ( knots , sp_order ) ;
126

127 N_knots = length ( knots ) − sp_order ; % number o f knots
128 N_coeff_SHA_spline = N∗(N+2) ; % number o f SH c o e f f i c i e n t s per knot
129 N_coef f_spl ine = N_coeff_SHA_spline∗N_knots ;
130

131 c o e f s = reshape (m( 1 : N_coef f_spl ine ) , N_knots , N_coeff_SHA_spline ) ;
132 pp = fn2fm ( spmak( knots ’ , coe f s ’ ) , ’ pp ’ ) ; % the model pp−form
133

134 %% Savings
135

136 [ ismem , index ] = ismember ( t , tau ) ; % This i s used in model s t a t i s t i c s
137 save ( ’ FM_final_1 .mat ’ , ’ pp ’ , ’m’ , ’w ’ , ’ index ’ )

List of scripts:
1. attempt_selection.m

2. Model_Generator.m

3. Model_Polar.m

4. design_SHA.m (*)

5. Giant_G.m

6. Oscillations.m

7. plot_CMB_field_edited.m (**)

8. predictions.m

9. residuals.m

10. statistics.m

11. statistics_polar.m

12. synth_grid.m (*)

13. synth_values.m (*)

(*) denotes files that are not part of the author’s work but have been used in the project.
(**) denotes files that are of type (*) but additionally have been modified by the author.
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