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Abstract

The lack of reliability in the Global Positioning System (GPS) in indoor environments has
sparked interest and research in new technologies. This thesis introduces such a technology in
the form of an inexpensive indoor positioning system. It uses a GoPro Black camera and RGB
LED lights. Optical wireless (OW) positioning is performed with the use of angle-of-arrival
(AOA) data to estimate accurate positions in 3D-space. Based on problems and limitations
faced in prior research, a new approach is developed to enable beacon identification of LED
lights. In a 1 m2 working area the OW positioning system demonstrates an accuracy of 1.8 cm.
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1 Introduction

Global Positioning System (GPS) technology is easily accessible and frequently applied in ev-
eryday situations such as personal navigation. It is also an important government tool used
in the military for surveillance and other purposes. However, GPS is not always suited for
applications where high accuracy is needed or in indoor environments due to the absence of
line of sight (LOS) channels and attenuation of signals due to windows, walls, ceilings, etc.
GPS-enabled smartphones usually has a position accuracy on the meter-level [1] , depending
on the location and the environment of the user. Solutions for an accurate indoor positioning
system (IPS) have been developed from a different field, wireless communications. The type
of IPS used depends on the application itself where accuracy, data cost, power consumption,
and price are factors that need to be evaluated before building the system. Potential applica-
tions include automated drone control in an indoor environment and personal localization in
large buildings such as universities, hospitals, supermarkets, and airports. The two main IPS
systems are radio frequency (RF) positioning systems and optical wireless (OW) positioning
systems. In many scenarios RF positioning systems and OW positioning systems can be used
to accomplish the same task, but depending on the application one may be preferred over the
other. In this thesis an IPS is created with the help of OW technologies and is found to have
an accuracy on the scale of centimeters.

1.1 Indoor Positioning Solutions

The two most common systems used to implement indoor positioning are RF and OW sys-
tems. RF systems typically consist of technologies such as Wi-fi, Bluetooth, or Ultrawideband
(UWB). OW systems typically use visible light or IR as the transmitted signal and a pho-
todiode or an image sensor as receivers. The position of the receiver for RF and OW based
systems is estimated using one of the following three methods: received signal strength (RSS),
time-difference-of-arrival (TDOA) or time-of-arrival (TOA), and angle-of-arrival (AOA). De-
pending on the application, these methods can either be used alone or combined, because each
has advantages and disadvantages.
For positioning in 3D with TOA or TDOA, the system requires at least four reference points
to carry out positioning [2]. For TOA, the propagation time between each transmitter and the
receiver is proportional to the distance between that transmitter and the receiver. When the
propagation time between each transmitter and the receiver is measured, the distance between
them can be estimated. TOA works best if the signals are perfectly synchronized with a time
stamp labeled in the transmitted signal to determined distance traveled. This can be a very
expensive approach. For instance, GPS uses atomic clocks to accomplish precise timing over
a far distance. For TDOA, the relative distances to the transmitters are calculated by the
difference in time between when the receivers receive each signal, not the absolute arrival time
as in TOA.
Positioning with RSS is approached by inspecting the attenuation of signals from the transmit-
ters. Signal attenuation is calculated by the path loss due to propagation. Signal attenuation
due to non-LOS scenarios leads to less accurate positioning than with LOS. However, LOS
channels between transmitters and receivers might be difficult to find in indoor environments.
For positioning in 3D with AOA, the system requires at least three reference points to carry
out positioning. AOA bases its positioning on the incident angles that a signal arrives at, with
each signal coming from different transmitters. Assuming that the positions of the transmitters
are known, the position of the receiver can be calculated with the AOAs via triangulation.
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1.1.1 Radio Frequency Systems

RF positioning systems typically use RSS and TDOA or TOA to estimate position. Most RF
positioning system operate in non-LOS environments with multipath propagation or transmis-
sion through walls. Examples of non-LOS systems are Bluetooth, Wi-fi and UWB. UWB has
high precision, typically with centimeter-level [3] accuracy, but it is expensive both in price and
data. Wi-fi and Bluetooth are cheaper solutions but are typically less accurate compared to
UWB [4,5]. They depend on the signal strength of the transmitter and are ,therefore, hampered
by unexpected signal attenuation.

1.1.2 Optical Wireless Systems

OW systems rely exclusively on LOS and typically need more transmitters than RF systems to
cover the same area. However, optical transmitters are usually inexpensive LEDs and having
LOS signals at all times improves the accuracy of the positioning. As such, OW systems typ-
ically have accuracy on the scale of centimeters [2, 6]. OW can make use of all three different
methods mentioned above. For RSS, TOA, and TDOA systems, a photodiode is used as the
receiver, while AOA uses an image sensor as its receiver. An OW AOA based system is the
preferred solution for this project. OW can be easily implemented using off-the-shelf products
(i.e., smartphones, compact cameras, LEDs) as an additional application for these products.
It is therefore, cheap and accessible. Philips has already implemented a OW positioning sys-
tem in a supermarket for customers to locate themselves using their front-facing camera on a
Smartphone and mounted lights on the ceiling. However, Philips’ system does not only use the
camera and the lights (OW), but also Bluetooth (RF) to estimate position and its accuracy
is on the scale of meters [7]. To keep the system as cheap and simple as possible (without
compromising accuracy) the system constructed in this thesis exclusively uses OW technology
to perform positioning.
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1.2 Project

The project idea was inspired by Mark Bergen’s Master’s thesis “Characterisations and Rec-
ommendations for an Angle-of-Arrival-based Optical Wireless Positioning System” [8]. The
present thesis focuses on some of the limitations and problems faced in [8], specifically how
to maximize the number of beacons from which measurements can be made using commercial
cameras. The motivation for the system is to realize a high-resolution indoor positioning system
in a practical and precise manner. The AOA OW system consists of several optical transmit-
ters and an optical receiver. The optical receiver should be able to detect the relative angle to
the different transmitters. The optical transmitters are referred to as optical beacons and are
RGB-LED lights. The optical receiver is a fully operational camera. Using the measured AOA
of each beacon, the position of the camera can be calculated using the least-squares method.
Although photodiodes are cheaper than image sensors, most cameras have a wide field of view
(FOV), have smaller positioning errors [8] compared to photodiodes and are able to detect
colours.
As illustrated in Figure 1 the beacons are mounted in a square geometry creating a coordinate
system parallel to the xy-plane. The camera is held still in the horizontal plane below the plane
of the beacons. In the figure, z is the distance between the camera and the blue plane of the
beacons.

Figure 1: System setup with the nine beacons mounted on the blue area marked with white
dots. The camera operates in the gray area of the xy-plane ( Figure 4.1 from [1]).
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2 Beacon Identification

In order to carry out AOA based positioning, the optical beacons need to be identified. Identifi-
cation can be accomplished using several methods including frequency and colour identification,
as well as geometric pattern recognition. In this thesis, frequency is identified based on the
Fourier transform of images from the image sensor and colour is identified based on the RGB
pixels on the image sensor. The image processing is done in MATLAB®.

2.1 Motivation

To estimate the position of the camera, the camera must uniquely identify each beacon within
the frame captured by the image sensor. Based on the pixel locations of the beacons on the
image sensor and the known coordinates of the beacons, the AOAs can be calculated and po-
sitioning can be carried out.
In [8], different colours and frequencies were used to identify the beacons. In this way a beacon
can flash with an unique combination of colour and frequency and the image sensor can identify
these. Geometry can also be used to identify beacons in such a way that beacons are laid out
in a specific pattern and thereby identified based on the geometry seen by the image sensor.
With this method, several beacons need to be in the frame at the same time and the layout of
the whole system will depend on the geometric patterns.
This thesis will continue with colour and frequency identification as in [8] with further improve-
ments to avoid key limitations.

2.2 Theory

Colour can be recognized since the camera stores a value for each RGB component of each
image sensor pixel. Using a processing tool like MATLAB®, the video file can be processed
and the frequencies corresponding to each beacon can be found using the Fourier transform.
The frequency bandwidth depends on the sampling rate, in other words the frame rate, of the
camera, which is commonly measured in frames per second (fps). The image sensor used in [8]
had a frame rate of 187 fps. To avoid aliasing, [8] stayed below the Nyquist Frequency, fNyquist,
which is equal to half the sampling rate. With the chosen image sensor the fNyquist was 93.5Hz.
To avoid flickering seen by the human eye and shifting in colour, the frequency bandwidth as
well as the spacing between two frequencies, must be above the flicker frequency fFlicker. The
fFlicker is normally taken to be between around 60 Hz for the human eye [9]. Using a large DC
component and a small modulated AC signal, [8] was able to get a smaller fFlicker and it was
taken to be 35 Hz. With fFlicker= 35 Hz and fNyquist= 93.5 Hz the bandwidth was 58.5 Hz.
It was also noted in [8] that some colours are difficult to distinguish on the image sensor.
Between the three elementary colours, green tends to interfere with both red and blue while
red and blue do not interfere with each other. Green will, therefore, cause the most interference
with the other colours and will not be used in this work. The interference ratio found in [8]
can be seen in Table 1. Hence, red and blue were chosen for colour identification.

Table 1: Summary of colour interference ratios (Table 3.2 from [8]).
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With the frequencies and colours limited to two each there are distinct combinations for
up to nine beacons. In this case, the image sensor is superior to the photodiode since the
photodiode views the signals as one summed signal. It can not differentiate the colour which
is modulated by a frequency. The different combination of colours and frequencies from [8] for
each beacon are shown in Table 2.

Table 2: Identifier frequency look-up table (Table 3.3 from[8]).

However, in addition to an appropriate frame rate, the camera must have a wide FOV. The
camera should be able to capture as many beacons in the frame as possible. Wider FOV causes
more distortion in the picture. However, with the help of software this can be eliminated so
that it does not have an impact on the positioning accuracy.
Increasing the number of beacons decreases the positioning error of the system, but the im-
provement in positioning diminishes as more beacons are added to the system. Therefore,
adding more beacons beyond a certain point is not a logical approach when considering price,
efficiency, and complexity of the system. However, more beacons can improve the accuracy in
other ways. With nine beacons orientated in a square layout, the image sensor will still, in
certain scenarios, have difficulty estimating, AOA. In a scenario where the camera is placed
directly below a beacon in one of the four corners of the xy-plane the image sensor used in [8]
had difficulties identifying the beacon in the corner diagonal to the camera. This is due to the
large incident polar angle. Having more beacons is a solution to this problem in the sense that
the system can be expanded and have fewer corner beacons compared to the total number of
beacons, hence reducing challenging scenarios. With more beacons, the area of the system can
be increased without effecting positioning error.
Wider frequency bandwidth expands the total number of beacons exponentially due to a larger
set of unique frequency combinations. Finding a camera with a high frame rate would result
in a wider bandwidth, but with commercial cameras frame rate is a limitation. Therefore the
approach chosen is to investigate the frequency bandwidth, more precisely to see if a camera
can effectively recognize a frequency above the fNyquist. Most smartphones and point-and-shoot
cameras have a small frame rate in comparison to the frame rate used in [8]. Smartphones typ-
ically have a frame rate of 25-60 fps. Action cameras, however, have frame rates up to 240 fps,
which is greater than the one used in [8].
When operating with sampling frequencies above fNyquist, ie., with undersampling, aliasing will
occur. However, aliasing does not necessarily result in the inability to recognize the actual
frequency from the beacons. The Nyquist rate is the lower bound for the sampling rate where
aliasing does not appear. The Fourier transform mirrors everything around fNyquist. This
means that frequencies above and under fNyquist will be flipped across fNyquist. If the frame
rate is 25 fps, indicating that fNyquist= 12.5 Hz, a beacon flashing on and off at 10 Hz will be
observed as 10 Hz and 15 Hz at the image sensor. The image sensor has no way to differentiate
them. This does not imply that frequencies above fNyquist cannot be recognized, but they will
appear with several copies in the frequency spectrum which take the form of harmonics and
folded harmonics. Furthermore, it is not only around fNyquist that a signal will be mirrored.
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Everything around fNyquist ·N , where N is an positive integer, will be mirrored. Therefore you
can divide the frequency spectrum of the Fourier transform in sections of length fNyquist.

2.3 Algorithm

The algorithm for the image processing is written in MATLAB®. The MATLAB® script
loads a MP4 file from the camera and processes it frame by frame. To locate the beacons, it
first finds the brightest image in the first ten frames to make sure that all LEDs are on. A
threshold value is set to turn pixels with a value smaller than the threshold to zero (black/off).
This makes the center pixel of the beacons easier to find, since the brightest pixels are the
only ones remaining. The script then scans through each row of pixels to find a non-zero pixel.
When it hits a non-zero pixel, it finds its non-zero neighbours and logs their coordinates and
turns them off. The same process is repeated with the non-zero neighbours. When there are
no more non-zero neighbours, the mean of the logged coordinates is used as the center of a
beacon. After the beacon location coordinates are now estimated, the scan continues until it
reaches the final pixel. With the pixel location of the beacons, a Fourier transform is performed
on each beacon found in the scan. The Fourier transform goes through every frame of the MP4
file. The Fourier transform is then plotted to show peaks in the frequency domain.

2.4 Experiments

Several cameras were tested including a smartphone camera and two different action cameras.
The test setup consisted of two RGB LEDs and a function generator. The camera records the
LEDs which are power at a specific frequency from the function generator. The curtains around
the test table were closed to eliminate as much ambient light as possible. The video footage
was then processed in MATLAB®. The LEDs were powered by a 0 V to 5 V square wave with
a 50% duty-cycle and were not powered by any other DC signal such as in [8]. This causes the
fFlicker to be higher than the one mentioned before. However, fFlicker can be neglected for this
chapter since the focus is only on frequency recognition, but the fFlicker must be considered
when the system is implemented later on.
The tested cameras were all able to recognize different colours, but responded differently to
frequencies. Each camera differs in resolution, pixel size and frame rate. The first camera
tested was the smartphone Motorola E2, with a frame rate of 25 fps. It was able to recognize
frequencies below the fNyquist (12.5 Hz), but nothing above. The second camera tested was the
SJCAM M20 action camera. It has several resolution and frame rate settings including 2560
x 1440 pixels at 30 fps, 1920 x 1080 pixels at 60 fps, 1280 x 720 pixels at 120 fps and VGA
quality (640 x 480 pixels) at 240 fps. Independent of the different settings, it was not able to
recognize frequencies greater than 15 Hz which is fNyquist for 30 fps. The last camera tested
was the GoPro Black 3. It has a similar resolution and frame rate setting as the SJCAM, but
the image quality is much better than the SJCAM in low light circumstances. This is most
likely due to the greater pixel size on the image sensor compared to the SJCAM. While they
both use a Sony Exmor CMOS image sensor, the SJCAM uses the IMX206 and the GoPro uses
the IMX117. The relevant specifications for both image sensors are shown in Table 3.

Table 3: Image sensors [10].

Model number Number of effective pixels Sensor size(diagonal) Unit cell size
IMX117 12MP 7.81 mm 1.55 µm
IMX206 16MP 7.77 mm 1.34 µm

The IMX 117 is a slightly bigger sensor and has fewer effective pixels than the IMX 206.
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This causes the unit cell size to be greater on the IMX 117. Sensitivity to light is dependent
on the size of the cell. A small cell size has low light sensitivity since the total area where the
light rays hit is small [11]. The image quality also depends on the signal to noise ratio (SNR)
which consists of photon noise, dark current noise (current produced during absence of light),
read noise (noise caused by the internal amplifier in the read out circuitry) and quantization
error (noise from analog to digital conversion) [12]. When viewing the SJCAM footage frame
by frame it appears that the pixels where the LED is framed do not have enough time to
discharge. The pixels are only slightly dimmed and are only occasionally off, even though the
LED is flashing on and off with a frequency below the fNyquist for 60, 120 and 240 fps.
The GoPro on the other hand performs surprisingly well compared to the other cameras. It
has no problem recognizing frequencies up to fNyquist with 60 fps, 120 fps and 240 fps. This
means that frequencies can be recognized up to 120 Hz with 240 fps. The GoPro also manages
to identify frequencies above 120 Hz. The amplitudes of these peaks in the Fourier transform
are smaller than those from the testing of frequencies below fNyquist, but they are still highly
identified peaks in the plot and can be seen in Figure 2.

Figure 2: Comparison of the Fourier transform with an LED operating at 100 Hz (a) and at
300 Hz (b). The 300 Hz signal is folded down to 180 Hz.

Experiments with two different LEDs operating at different frequencies were also conducted.
This was done in order to calculate the ratio between the peak amplitudes of the frequencies.
In most cases, higher frequencies resulted in lower amplitudes, but when comparing 400 Hz and
280 Hz, 400 Hz had a higher amplitude. Since both frequencies are operating above the frame
rate, it is difficult to predict the magnitude of the correct frequency in the plot. However, this
can be neglected as long as the correct frequencies have a greater magnitude than the noise
floor which is clearly seen in Figure 3. Here 280 Hz is folded down to 200 Hz and 400 Hz is
folded down to 160 Hz.
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Figure 3: Plot of the Fourier transform with one LED operating at 280 Hz (a) and another
at 400 Hz (b). Note that the scales are not equal for the plots.

To determine the frequency bandwidth for beacon identification, several video recordings
of LEDs modulated at different frequencies were made. The attenuation of the signal used to
modulate a LED is expected to be proportional to the frequency used. In order to do a legitimate
comparison of the ratio between peaks in the Fourier transforms, the camera was mounted in
a fixed position and each recording was exactly 10 seconds. In Figure 4 the amplitude of the
signals vs frequency is plotted.

Figure 4: Intensity vs frequency in the Fourier transforms of several recordings using different
frequencies.

Figure 4 shows that the amplitude is decreasing as higher frequencies are being used. How-
ever, the plot also shows that the signal attenuates in a wave form. The amplitude is significantly
low when close to the frame rate of the camera (or a multiple of the frame rate). This makes
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sense, since the exact frequency is more difficult to identify when it is close to the frame rate.
Such a signal like that appears in the image sensor as a combination of a DC component and
a weak AC component, since the LED is usually in the same state (on or off) in each frame.
Even though frequencies up to 700 Hz are identified, we choose not to operate at frequencies
above 300 Hz. In Figure 4 only one single frequency is in use. When multiple signals are
modulating a LED at the same time, the noise floor is increased and the higher frequencies are
more difficult to identify. From the experiments, it can be concluded that the beacons are not
limited by fNyquist. Depending on the architecture of the image sensor, higher frequencies can
be identified. To operate with higher frequencies, additional information must be provided.
For instance, looking for a 414 Hz signal with a fNyquist= 120 Hz, the processing tool must
be informed of the frequency range the signal is located in. For 414 Hz the range is between
fNyquist · 3 = 360 Hz and fNyquist · 4 = 480 Hz. Then the correct frequency can be found with
the Fourier transform.
Not being bounded by fNyquist leads to a much wider frequency band which means more fre-
quencies to choose from. If we assume that frequencies can be recognized up to 300 Hz and
assume a fflicker of 40 Hz, we get roughly 7 unique frequencies, which implies a very high set of
unique frequency combinations. However, harmonics, folded frequencies and folded harmonics
will be present in the Fourier transform. Therefore the frequencies must be carefully chosen so
that they can all be uniquely identified after folding. Modulating a LED with a large number
of signals may lead to interference between the different signals and will also result in a large
look-up table making the system inefficient. For this thesis, only three signals with different
frequencies are used to modulate the LEDs.
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3 Beacon Drive Circuitry

The beacons are driven by square wave AC signals with arbitrary frequencies. This is imple-
mented in the simplest manner possible with a microcontroller. With op-amps and an external
power supply, the LEDs receive the right amount of power to emit enough light for the image
sensor to pick up the frequency-modulated signal. The brightness of each RGB component can
be adjusted to maintain white balance and power balance between different LEDs.

3.1 Microcontroller as Function Generator

Instead of using a dedicated function generator as in Chapter 2, a microcontroller was used.
The Arduino Uno is an of-the-shelf microcontroller that can generate three unique pulse-width
modulated (PWM) signals. To experiment with multiple frequencies, signals are summed to-
gether with the help of an op-amp. Three carefully chosen frequencies with a 50% duty-cycle
are generated from the PWM output of the Arduino. The PWM pins vary from 0 V to 5 V
with a peak current of 20 mA. The op-amps are not only used to combine signals, but to also
power the LEDs. With three different frequencies summed together the LED is recorded and
the video is processed in MATLAB®.
The PWM output from the Arduino is set to a fixed value for all six PWM pins using the
analogwrite function. The analogwrite function does not generate an analog output, it just
toggles the pin between high and low with a certain frequency. The board uses three different
timers from the internal system clock to generate the signal, which means that one timer is
used for two pins. Using bitwise operations, the clock value can be changed which result in a
different PWM frequency than the default. The different frequencies in Hz of the PWM pins
are shown in Table 4-6.

Table 4: Pins 5 and 6: controlled by Timer 0 in fast PWM mode (cycle length = 256).

Table 5: Pins 9 and 10: controlled by Timer 1 in phase-correct PWM mode (cycle length =
510).
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Table 6: Pins 11 and 3: controlled by Timer 2 in phase-correct PWM mode (cycle length =
510).

Even with the bitwise operation on the timers, the signals are limited to certain frequencies.
Looking at the values from Tables 4-6, 30.6 Hz, 61 Hz and 122.6 Hz are the lowest frequency
values and are chosen for testing with one LED. The Fourier Transform of the LED is plotted
in Figure 5.

Figure 5: Fourier Transform of a LED modulated with a 30.6 Hz, 61 Hz and 122.6 Hz signal
in the red component.

The figure clearly shows peaks from the different signals and they are therefore recognizable.
The choice of frequencies in Figure 5 is not an ideal set of frequencies since they are all harmonics
of each other. The 61Hz peak is the 2nd harmonic of 30.6 Hz and the 122.6 Hz peak is the 4th
harmonic of 30.6 Hz and the 2nd harmonic of 61 Hz. From Table 4, 5 and 6 it is clear that
the frequencies are exclusively harmonics of each other and this is due to the bitwise division
of the internal clock. The reason why harmonics should be avoided is that it may be difficult
to differentiate whether a peak frequency is a harmonic of a signal or an actual signal. Since
this is inevitable with clock division, another method is considered.
The Arduino is reprogrammed with an infinite loop that executes continuously. Within this
loop the Arduino iterates x number of times with a delay before it toggles a pin with the
digitalWrite function. DigitalWrite makes a pin high or low, in other words 0V or 5V. The
number of times depends on the desired frequency of a PWM pin. The number can be different
for all three PWM pins. The period, T , is equal to the number of iterations times the delay
times 2. The multiplication of 2 is because T is the amount of time going from 0 V to 5 V back
to 0 V. When the delay of the loop is set to 50 microseconds the frequency of a pin is

1

x · 50 · 10−6 · 2
. (1)

With this method, an arbitrary frequency can be chosen given that the frequency is a mul-
tiple of the delay of the loop. Hence non-harmonic frequencies can be generated from the board.
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3.2 LED Circuitry

The test setup for modulating a LED with three different frequency signals is shown in Figure
6. The three PWM signals are summed together at the non-inverting input of the LM741
op-amp. All signals are voltage divided to bring the voltage down from 5 V to 3.125 V. The
voltage needed for each RGB component of the LED is different, but the LEDs have usable
brightness around 2.8-3.4 V. The op-amp is powered by a dual rail power supply decoupled
with two capacitors. The op-amp has unity gain and is used to power the LEDs.

Figure 6: Circuit design of three PWM signals from the Arduino summed together with an
op-amp.

The circuit in Figure 6 works well for testing if the GoPro can recognize three signals in
one LED. However, it is not an optimal approach to modulate the LEDs. Since the RGB
components in the LEDs have different values for forward voltage, the voltage division should
be different for each component to produce white light (equal level of intensity).
Figure 7 shows the schematic of new LED circuitry that is integrated with the nine mounted
LEDs to easily adjust colour brightness. The different colours have different voltage outputs
because of the difference in forward voltage. This can be seen in Figure 8. The green component
is modulated by a DC value since it is not part of the frequency identification.
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Figure 7: Circuit design of LED.

Figure 8: Voltage levels for RGB outputs of LED.

Adding an extra op-amp to the circuit allows the design to have one op-amp to work as a
buffer amplifier to take the load off the Arduino and another op-amp to do the voltage scaling.
Using op-amps to power the LEDs is cruical when using the Arduino as a function generator.
The Arduino can only output a maximum of 20 mA per pin. If a frequency were to be used in
nine different LEDs in both red and blue this would mean 1.11 mA per component which is not
enough to power the LED. Additionally, if more powerful LEDs were to be used in the future
to enhance signal power, some type of driver would be required. Figure 9 shows how much
current is being supplied to each RGB component from the output of the op-amp, while Figure
10 shows the current output from the Arduino. Note that the current level from the Arduino
is on the scale of microamps which make it feasible to supply both red and blue components
to all nine LEDs.
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Figure 9: Current output from the op-amp.

Figure 10: Current output from the Arduino.

The circuitry used in [8] used op-amps to sum frequencies and potentiometers to adjust the
voltage of the signals being applied to the LEDs. However, it was designed in such a way that
if the voltage level of a RGB component with a given frequency combination was adjusted it
affected all LEDs receiving that specific combination of frequencies. This also meant that adding
more frequency combinations required more potentiometers. In the new circuitry created for
this work, each of the three signals applied to the RGB components of each LED is adjustable
by its own potentiometer. The redesign requires more op-amps than in [8] since each LED
needs six op-amps (two for each RGB component), but adjusting the brightness of a single
LED is simply accomplished.
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4 Positioning

The objective of the system is to position the optical receiver as accurate as possible. The esti-
mated position is with respect to the chosen coordinate system in 3D-space. For the algorithm
to work the GoPro must be placed parallel to the LED-plane and parallel to the x and y axes.
The camera must remain in its initial position throughout the recording and placed within an
1 by 1 meter coordinate system. The coordinates range from -50 to 50 centimetres along both
the x and y axes. The LEDs are mounted with 25 centimetre spacing in both axes. The specific
coordinates of the LEDs are known and with the help of the beacon identification described
in chapter 2, the different LEDs can be identified. The video recording is post processed in
MATLAB® where the position is estimated based on AOA measurements.

4.1 AOA Estimation

The AOAs are the relative angles between the receiver and each beacon. Nine beacons yield
nine different AOAs. Each AOA has two components: azimuthal angle and polar angle. The
azimuthal angle is the angle about the vertical axis, while the polar angle is the angle down
from the positive vertical axis. The pixel coordinates of each beacon on the image sensor are
used to find the AOAs. The center of the image sensor is set to the origin of the pixel coordinate
system. Since the camera is looking up in the positive direction of the z axis, the x axis will be
mirrored on the image sensor with respect to the coordinate system and is taken into account
when using trigonometric formulas to calculate azimuthal angles.
The azimuthal and polar angles for the ith beacon are calculated using the following formulas:

φi = arctan(
y − yi
x− xi

), (2)

θi = arctan(
ri

|z − zi|
). (3)

Here x and y are the true coordinate components of the camera, and xi and yi are the
coordinates of the ith beacon. In addition, ri is the distance between the camera and the ith
beacon, and it is defined by:

ri =
√

(x− xi)2 + (y − yi)2. (4)

The true AOAs are estimated to derive the error in the estimation of AOAs and positioning.
On the image sensor, the AOAs can be calculated in a somewhat similar fashion as the true
AOAs in (1) and (2), estimated to

φis = arctan(
yis
xis

), (5)

θis = k ·
√

(xis)2 + (yis)2. (6)

In these equations, xis and yis are the coordinates of the beacon on the image sensor with
respect to the center pixel, and k is a scaling factor with units of °/pixel. The scaling factor
is different for every image sensor and depends on the architecture of the sensor. The value of
k is estimated by finding the mean value of the ratio between the estimated polar angle and
the true polar angle for the data collected. The more data collected, the more accurate the
estimation of k will be. It is estimated to be 0.0025 for the GoPro.
Knowing the scaling factor, the estimated azimuthal and polar angles are then calculated. In
Figure 11 the error in the estimated angles is plotted as a function of the true angles.
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(a) (b)

(c) (d)

Figure 11: Estimated azimuthal error vs true azimuthal angle is plotted in (a). Estimated azimuthal
error vs true polar angle is plotted in (b). Estimated polar error vs true azimuthal angle is plotted in
(c). Estimated polar error vs true polar angle is plotted in (d).

In the plots of Figure 11 there seems to be some unwanted correlation between the estimated
angle and the true azimuthal and polar angles. Both polar error vs azimuthal angle and
azimuthal error vs azimuthal angle have the shape of a sinusoidal wave. For both cases the
distribution should be random with mean of 0. This systematic pattern implies that the
coordinates for the beacons on the image sensor are off by a certain number of pixels. Since
the coordinates are with respect to the center pixel, the center pixel is assumed to not be the
true center of the image sensor. This is not a problem for most applications with the GoPro
since it is incorrectly centered with a small number of pixels compared to the total number of
pixels, but AOA calculations require high accuracy and are hereby causing an issue. Therefore,
different pixels around the origin were considered in order to find a more suitable center point
for the image sensor. Judging from plots in Figure 11, -3 and 8 away from the center pixel
in the x and y axes, respectively, is assumed to be the center pixel. The plots in Figure 12,
in which (-3, 8) is used as the image sensor center, look significantly better with seemingly no
correlation in polar error vs azimuthal angle and azimuthal error vs azimuthal angle.
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(a) (b)

(c) (d)

Figure 12: Estimated azimuthal error vs true azimuthal angle is plotted in (a). Estimated azimuthal
error vs true polar angle is plotted in (b). Estimated polar error vs true azimuthal angle is plotted in
(c). Estimated polar error vs true polar angle is plotted in (d).

4.2 Position Estimation

With the estimated AOAs and the location of the beacons, the position can be estimated
using the least-squares method. The algorithm starts from a given position (at the origin
if nothing else is given) and calculates the AOAs corresponding to that position. It then
calculates the difference between the correct AOAs and the calculated AOAs and turns this
into a position error. If this position error is bigger than a certain acceptance threshold, it adds
the position error to the previous position creating a new position estimate and iterates again.
When the difference is bellow the acceptance threshold the algorithm stops and outputs the
estimated position. In Figure 13, the true positions and the estimated positions are plotted.
The magnitude of the mean error in 3D-space is 1.8 cm. All nine beacons were in the frame for
each position estimate. The estimations are based on video recordings with the GoPro Black.
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Figure 13: True position (circles) vs estimated position (crosses).

As seen in Figure 13 the (0, 0) position has a high position error. This is because the
camera is placed directly under a beacon. Having the camera under a beacon causes a high
azimuthal error since the azimuthal angle is undefined at that point. Therefore placing the
camera directly under a beacon should be avoided.
The FOV is not wide enough for all beacons to be present when the GoPro is placed at ±40
cm from the origin in both axis. However, when the displacement from one axis is small the
GoPro can be placed up to ±80 cm and still have the nine beacons in the frame. By looking
at the plot in Figure 13, estimations further from the origin seem to have a higher error than
those closer to the origin. This is because polar angle increases as the camera moves away from
the beacons. This causes a more significant polar error, as can be seen in Figure 12 (d), where
polar error starts to increase at about 25 degrees of polar angle.

4.3 Discussion

The positioning can only be carried out when the camera is held still and the data collected
is post processed, i.e., not processed in real time. This makes the system inadequate for most
applications mentioned in the introduction. However, with the work done in this thesis, these
features can easily be implemented in future work. Having the ability to move the camera
can be accomplished by having an algorithm that continuously looks for neighbor pixels of a
beacon in the last frame as it performs the Fourier transform. Another approach would be to
use the internal accelerometer of the camera to predict movements and, therefore, predict the
location of the beacons in the next frame. When it comes to real time processing, the GoPro
allows real time streaming from the camera to a smartphone. This live stream can be processed
quickly by the algorithm, but since the quality and the frame rate is compromised the beacon
recognition would most likely not work. The system would be better off recording video in a
fixed interval and sending it directly over the internet between the GoPro and the processing
tool. This would cause a delay in the estimation, but frame rate and quality would not be
compromised.
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5 Conclusion

This chapter summarizes the work done during the project as well as briefly discusses recom-
mendations for future work.

5.1 Summary and Conclusions

In Chapter 2 the ability of the AOA OW IPS to operate with a large number of beacons using a
high frame rate action camera was demostrated. The total number of beacons was a limitation
in [8], but by using the undersampling technique this limitation was overcome. Without this
limitation, the system can be expanded resulting in a more beneficial solution for applications
demanding a larger area.
In Chapter 3 the circuitry from [8] was redesigned to simplify the system by using a micro
controller instead of a function generator and to adjust the brightness of the beacons in a
simpler manner.
In Chapter 4 position estimation as well as the relationship between the errors and true values
of the AOAs were described. It was shown that the IPS has an accuracy on the scale of
centimeters.
The objective of this project was to create an IPS using “off the shelf” components.
By using a GoPro Black camera and RGB LEDs, we have successfully completed this task.
This shows that an IPS can be created as a sub-application of technologies already in use,
making the system cost effective. The thesis also demostrates that undersampling can be used
to recognize frequencies with an image sensor above its Nyquist frequency and even above its
frame rate. As seen with experiments with different image sensors, this ability does not only
depend on the frame rate, but is also highly dependent on the internal architecture and design
of the sensor itself (size, SNR etc.). This usually results in a more expensive image sensor than
those typically found in a smartphone camera, but still within the price range of a smartphone.

5.2 Recommendation for Future Work

The IPS can estimate positions with good accuracy, but there are still some obvious limitations
to the system. As discussed in Chapter 4.3 the camera has to be held still during video recording
for the beacon identification to work and the position estimation does not occur in real time.
Another limitation is that the camera cannot be tilted. It can be translated in any direction
in the three axes but it can not be rotated. Even though the IPS benefits from a wide FOV, a
tilted camera can have more beacons in the frame than a camera that lies flat. It is also more
ideal to allow rotation when the camera is being mounted on a moving object.
A potential solution to the above issues is a gyroscope. The GoPro Black has an internal
gyroscope from which data can be logged. With the data from the gyroscope the rotation
of the camera can be estimated. Here again, if the camera is changing rotation during the
recording it is crucial to have a time stamp to match the logged data from the gyroscope with
the video footage.
If the system were to be expanded, beacon identification should be solved in an efficient way.
Having unique combinations for every LED is not efficient for a system with a large number
of LEDs. Another approach is to divide the system up in cells in the same quadratic fashion
as with the nine LEDs. If only one LED is being used to recognize the cell, it is possible
to reuse a frequency combination within different cells. For instance, if the center LED has a
unique frequency combination to recognize the cell, all eight neighbour LEDs can have frequency
combinations that are repeated for every cell. In this way, the system can have many LEDs
without using a large number of unique frequency combinations. This will make the system
more efficient since the frequency lookup table will be significantly smaller.
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Appendices

MATLAB® Program

Beacon Identification

%This program identifies nine beacons based on their given frequency.

%It uses several external functions including the function for AOA

%calculations and positioning estimation.

%

%

% June 15, 2017

% Ferdinand Schaal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Load in video footage from MP4 file.

obj = VideoReader(’filename.MP4’);

video = obj.read();

%Finds the brightest frame of the first ten frames

%this frame will be used to find the pixel coordinates of the beacons.

frame=1;

for cframe=2:10

if mean2(video(:,:,:,cframe))>mean2(video(:,:,:,frame))

frame=cframe;

end

end

%Filter out every pixel below the mean value of 200 (255 is the highest

%possible value) to eliminate ambient light.

threshold=200;

for c = 1:obj.Width

for r = 1:obj.Height

if (sum(video(r,c,:,frame)))/3 < threshold

video(r,c,:,frame)=0;

end

end

end

%Scans through rows for non-zero pixels to find beacons.

%Constructs matrix P that logs data about pixels that are non-zero.

n=1;

P=[];

next= 1;

nr=1;

for r= 1:obj.Height
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for c = 1:obj.Width

if sum(video(r,c,:,frame))/3 ~= 0

P(n,:)=[r c sum(video(r,c,:,frame))/3] ;

video(r,c,:,frame)=0;

%Goes through every connected/neighbour pixels.

%uses function try in case neighbour pixel exceeds the frame.

while 1

try

if sum(video(P(next,1)-1,P(next,2),:,frame))/3 ~= 0

n=n+1;

P(n,:)=[P(next,1)-1 P(next,2) sum(video(P(next,1)-1

,P(next,2),:,frame))/3];

video(P(next,1)-1,P(next,2),:,frame)= 0;

end

catch

end

try

if sum(video(P(next,1),P(next,2)-1,:,frame))/3 ~= 0

n=n+1;

P(n,:)=[P(next,1) P(next,2)-1 sum(video(P(next,1)

,P(next,2)-1,:,frame))/3];

video(P(next,1), P(next,2)-1,:,frame)=0;

end

catch

end

try

if sum(video(P(next,1)+1, P(next,2),:,frame))/3 ~= 0

n=n+1;

P(n,:)=[P(next,1)+1 P(next,2) sum(video(P(next,1)+1

,P(next,2),:,frame))/3];

video(P(next,2)+1, P(next,2),:,frame)=0;

end

catch

end

try

if sum(video(P(next,1), P(next,2)+1,:,frame))/3 ~= 0

n=n+1;

P(n,:)=[P(next,1) P(next,2)+1 sum(video(P(next,1)

,P(next,2)+1,:,frame))/3];

video(P(next,1), P(next,2)+1,:,frame)=0;

end

catch

end

try

if sum(video(P(next,1)+1, P(next,2)+1,:,frame))/3 ~= 0
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n=n+1;

P(n,:)=[P(next,1)+1 P(next,2)+1 sum(video(P(next,1)

+1, P(next,2)+1,:,frame))/3];

video(P(next,1)+1, P(next,2)+1,:,frame)=0;

end

catch

end

try

if sum(video(P(next,1)-1, P(next,2)+1,:,frame))/3 ~= 0

n=n+1;

P(n,:)=[P(next,1)-1 P(next,2)+1 sum(video(P(next,1)

-1, P(next,2)+1,:,frame))/3];

video(P(next,1)-1, P(next,2)+1,:,frame)=0;

end

catch

end

try

if sum(video(P(next,1)-1, P(next,2)-1,:,frame))/3 ~= 0

n=n+1;

P(n,:)=[P(next,1)-1 P(next,2)-1 sum(video(P(next,1)

-1, P(next,2)-1,:,frame))/3];

video(P(next,1)-1, P(next,2)-1,:,frame)=0;

end

catch

end

try

if sum(video(P(next,1)+1, P(next,2)-1,:,frame))/3 ~= 0

n=n+1;

P(n,:)=[P(next,1)+1 P(next,2)-1 sum(video(P(next,1)

+1, P(next,2)-1,:,frame))/3];

video(P(next,1)+1, P(next,2)-1,:,frame)=0;

end

catch

end

if next<n

next=next+1;

else

n=1;

next=1;

%Erase duplicated rows in P matrix.

C = unique(P,’rows’);
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%Guessing that the beacon is the %mean coordinate value

%of the non-zero pixels.

row(nr)=round(mean(C(:,1)));

col(nr)=round(mean(C(:,2)));

nr=nr+1;

P=[];

break

end

end

end

end

end

%Number of frames approx.

%Length of row is equal to the number of beacons in the frame.

%Constructs up to nine empty matrixes(depending on size of row).

for i=1:length(row)

if i==1

A=[];

end

if i==2

B=[];

end

if i==3

C=[];

end

if i==4

D=[];

end

if i==5

E=[];

end

if i==6

F=[];

end

if i==7

G=[];

end

if i==8

H=[];

end

if i==9

I=[];

end

end

%numFrames is equal to 9 seconds of video with 240fps.
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numFrames = 2160;

N=numFrames-720;

RGBcolour=[1,3];

Fs=obj.FrameRate;

%Stores intensity value for each beacon through the mp4 file for red

%and bluecomponent separately.

%Uses try function in case the matrix for a beacon doesn’t exist.

for idx = 1:numel(RGBcolour)

j = RGBcolour(idx);

i=720;

while i<numFrames

try

A(idx, i-719) = video(row(1),col(1),j,i);

catch

end

try

B(j, i) = video(row(2),col(2),j,i);

catch

end

try

C(j, i) = video(row(3),col(3),j,i);

catch

end

try

D(j, i) = video(row(4),col(4),j,i);

catch

end

try

E(j, i) = video(row(5),col(5),j,i);

catch

end

try

F(j, i) = video(row(6),col(6),j,i);

catch

end

try

G(j, i) = video(row(7),col(7),j,i);

catch

end

try

H(j, i) = video(row(8),col(8),j,i);

catch

end

try

I(j, i) = video(row(9),col(9),j,i);
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catch

end

i=i+1;

end

end

%Specify used frequencies.

f1=49;

f2=75.5;

f3=110;

%Calls function FrequencyFinder to find frequency and colour of beacons.

try

LED_A=FrequencyFinder(A,N,Fs,RGBcolour,f1,f2,f3);

catch

end

try

LED_B=FrequencyFinder(B,N,Fs,RGBcolour,f1,f2,f3);

catch

end

try

LED_C=FrequencyFinder(C,N,Fs,RGBcolour,f1,f2,f3);

catch

end

try

LED_D=FrequencyFinder(D,N,Fs,RGBcolour,f1,f2,f3);

catch

end

try

LED_E=FrequencyFinder(F,N,Fs,RGBcolour,f1,f2,f3);

catch

end

try

LED_F=FrequencyFinder(F,N,Fs,RGBcolour,f1,f2,f3);

catch

end

try

LED_G=FrequencyFinder(G,N,Fs,RGBcolour,f1,f2,f3);

catch

end

try

LED_H=FrequencyFinder(H,N,Fs,RGBcolour,f1,f2,f3);

catch

end

try

LED_I=FrequencyFinder(I,N,Fs,RGBcolour,f1,f2,f3);

catch

end

%Look-up table to specify frequency combination used in different beacons.

beacon_1=[f1, 1; f1,3];
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beacon_2=[f1, 1; f2,3];

beacon_3=[f1, 1; f3,3];

beacon_4=[f2, 1; f1,3];

beacon_5=[f2, 1; f2,3];

beacon_6=[f2, 1; f3,3];

beacon_7=[f3, 1; f1,3];

beacon_8=[f3, 1; f2,3];

beacon_9=[f3, 1; f3,3];

%Constructs matrix that will store the pixel coordinates of the beacons

%recognized.

beacons_is=[];

%Calls function convert to round up/down frequencies.

%Calls function FindBeacon to match the beacon identified with the look-up

%table.

try

LED_A=convert(LED_A,f1,f2,f3);

beacons_is=FindBeacon(LED_A,beacon_1,beacon_2,beacon_3,beacon_4,

beacon_5,beacon_6,beacon_7,beacon_8,beacon_9,row(1),col(1),beacons_is);

catch

end

try

LED_B=convert(LED_B,f1,f2,f3);

beacons_is=FindBeacon(LED_B,beacon_1,beacon_2,beacon_3,beacon_4,

beacon_5,beacon_6,beacon_7,beacon_8,beacon_9,row(2),col(2),beacons_is);

catch

end

try

LED_C=convert(LED_C,f1,f2,f3);

beacons_is=FindBeacon(LED_C,beacon_1,beacon_2,beacon_3,beacon_4,

beacon_5,beacon_6,beacon_7,beacon_8,beacon_9,row(3),col(3),beacons_is);

catch

end

try

LED_D=convert(LED_D,f1,f2,f3);

beacons_is=FindBeacon(LED_D,beacon_1,beacon_2,beacon_3,beacon_4,

beacon_5,beacon_6,beacon_7,beacon_8,beacon_9,row(4),col(4),beacons_is);

catch

end

try

LED_E=convert(LED_E,f1,f2,f3);

beacons_is=FindBeacon(LED_E,beacon_1,beacon_2,beacon_3,beacon_4,

beacon_5,beacon_6,beacon_7,beacon_8,beacon_9,row(5),col(5),beacons_is);

catch

end

try

LED_F=convert(LED_F,f1,f2,f3);

beacons_is=FindBeacon(LED_F,beacon_1,beacon_2,beacon_3,beacon_4,

beacon_5,beacon_6,beacon_7,beacon_8,beacon_9,row(6),col(6),beacons_is);

catch
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end

try

LED_G=convert(LED_G,f1,f2,f3);

beacons_is=FindBeacon(LED_G,beacon_1,beacon_2,beacon_3,beacon_4,

beacon_5,beacon_6,beacon_7,beacon_8,beacon_9,row(7),col(7),beacons_is);

catch

end

try

LED_H=convert(LED_H,f1,f2,f3);

beacons_is=FindBeacon(LED_H,beacon_1,beacon_2,beacon_3,beacon_4,

beacon_5,beacon_6,beacon_7,beacon_8,beacon_9,row(8),col(8),beacons_is)

catch

end

try

LED_I=convert(LED_I,f1,f2,f3);

beacons_is=FindBeacon(LED_I,beacon_1,beacon_2,beacon_3,beacon_4,

beacon_5,beacon_6,beacon_7,beacon_8,beacon_9,row(9),col(9),beacons_is)

catch

end

%Calls function aoa to calculate AOA and estimate position.

AOAAppendix(beacons_is)

Function FrequencyFinder

%Function to identify frequency and colour combination

function [LED_Combination]=FrequencyFinder(LED,N,Fs,RGBcolour)

k=0;

%Goes through red and blue FFT.

for idx = 1:numel(RGBcolour);

j = RGBcolour(idx);

%Finds peaks in FFT for the beacon.

[pks,hz] = findpeaks(abs(fft(LED(idx,:))),Fs/N*(0:N-1));

%Only inspecting peaks around f1,

indesiredrange = hz > f1-2 & hz < f1+2;

pks_subset = pks(indesiredrange);

hz_subset = hz(indesiredrange);

max_value(1)=max(pks_subset);

index = find(pks_subset == max_value(1));

LED_Combination(1+k,:)=[hz_subset(index(1)),j];

%Only inspecting peaks around f2.

indesiredrange = hz > f2-2 & hz < f2+2;

pks_subset = pks(indesiredrange);

hz_subset = hz(indesiredrange);

max_value(2)=max(pks_subset);

index = find(pks_subset == max_value(2));

LED_Combination(2+k,:)=[hz_subset(index(1)),j];
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%Only inspecting peaks around f3.

indesiredrange = hz > f3-2 & hz < f3+2;

pks_subset = pks(indesiredrange);

hz_subset = hz(indesiredrange);

max_value(3)=max(pks_subset);

index = find(pks_subset == max_value(3));

LED_Combination(3+k,:)=[hz_subset(index(1)),j];

%Sorts the amplitudes in ascending order.

sorted_max_value=sort(max_value);

%Checks if the mean amplitude for the peaks are less than 1000,

%this means that the colour is not in use.

if mean(max_value)<1000

%Values delted since they’re not in use.

LED_Combination((1:3)+k,:)=[];

end

%Checks if the lowest amplitude is less than half of the highest

%amplitude.

if 2< sorted_max_value(3)/ sorted_max_value(1)

%Deletes combination since the frequency is not in use.

LED_Combination((find(max_value== sorted_max_value(1)))+k,:)=[];

end

%Checks if the second lowest amplitude is less

%than half of the highest amplitude.

if 2< sorted_max_value(3)/ sorted_max_value(2)

%Deletes combination since the frequency is not in use.

LED_Combination((find(max_value== sorted_max_value(2)))+k,:)=[];

end

k=size(LED_Combination,1);

end

end
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Function Convert

%function to round up/down frequencies to f1,f2 or f3

function LED=convert(LED,f1,f2,f3)

for i=1:size(LED,1)

if LED(i,1)>f1-2 && LED(i,1)<f1+2

LED(i,1)=f1;

end

if LED(i,1)>f2-2 && LED(i,1)<f2+2

LED(i,1)=f2;

end

if LED(i,1)>f3-2 && LED(i,1)<f3+2

LED(i,1)=f3;

end

end

end
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Function FindBeacon

%Function to find the correct beacon coordinates for the found beacon.

function beacons_is=FindBeacon(LED,beacon_1,beacon_2,beacon_3,beacon_4

,beacon_5,beacon_6,beacon_7,beacon_8,beacon_9,row,col,beacons_is)

%Compare beacon found with the look-up table until the correct is

%found.

%Checks if number of frequencies are equal.

if size(LED,1)==size(beacon_1,1)

equal_rows=0;

for i=1:size(LED,1)

for j=1:size(beacon_1,1)

%Counts number of equal row between the matrixes.

if all(LED(i,:)==beacon_1(j,:))

equal_rows=equal_rows+1;

end

end

end

%Checks if al rows are equal.

if equal_rows==size(LED,1)

beacons_is(1,1)=col;

beacons_is(1,2)=row;

return

end

end

%Itterates through every beacon from look-up table until identified.

if size(LED,1)==size(beacon_2,1)

equal_rows=0;

for i=1:size(LED,1)

for j=1:size(beacon_2,1)

if all(LED(i,:)==beacon_2(j,:))

equal_rows=equal_rows+1;

end

end

end

if equal_rows==size(LED,1)

beacons_is(2,1)=col;

beacons_is(2,2)=row;

return

end

end

if size(LED,1)==size(beacon_3,1)

equal_rows=0;

for i=1:size(LED,1)

for j=1:size(beacon_3,1)

if all(LED(i,:)==beacon_3(j,:))

equal_rows=equal_rows+1;

end
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end

end

if equal_rows==size(LED,1)

beacons_is(3,1)=col;

beacons_is(3,2)=row;

return

end

end

if size(LED,1)==size(beacon_4,1)

equal_rows=0;

for i=1:size(LED,1)

for j=1:size(beacon_4,1)

if all(LED(i,:)==beacon_4(j,:))

equal_rows=equal_rows+1;

end

end

end

if equal_rows==size(LED,1)

beacons_is(4,1)=col;

beacons_is(4,2)=row;

return

end

end

if size(LED,1)==size(beacon_5,1)

equal_rows=0;

for i=1:size(LED,1)

for j=1:size(beacon_5,1)

if all(LED(i,:)==beacon_5(j,:))

equal_rows=equal_rows+1;

end

end

end

if equal_rows==size(LED,1)

beacons_is(5,1)=col;

beacons_is(5,2)=row;

return

end

end

if size(LED,1)==size(beacon_6,1)

equal_rows=0;

for i=1:size(LED,1)

for j=1:size(beacon_6,1)

if all(LED(i,:)==beacon_6(j,:))

equal_rows=equal_rows+1;

end

end

end
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if equal_rows==size(LED,1)

beacons_is(6,1)=col;

beacons_is(6,2)=row;

return

end

end

if size(LED,1)==size(beacon_7,1)

equal_rows=0;

for i=1:size(LED,1)

for j=1:size(beacon_7,1)

if all(LED(i,:)==beacon_7(j,:))

equal_rows=equal_rows+1;

end

end

end

if equal_rows==size(LED,1)

beacons_is(7,1)=col;

beacons_is(7,2)=row;

return

end

end

if size(LED,1)==size(beacon_8,1)

equal_rows=0;

for i=1:size(LED,1)

for j=1:size(beacon_8,1)

if all(LED(i,:)==beacon_8(j,:))

equal_rows=equal_rows+1;

end

end

end

if equal_rows==size(LED,1)

beacons_is(8,1)=col;

beacons_is(8,2)=row;

return

end

end

if size(LED,1)==size(beacon_9,1)

equal_rows=0;

for i=1:size(LED,1)

for j=1:size(beacon_9,1)

if all(LED(i,:)==beacon_9(j,:))

equal_rows=equal_rows+1;

end

end

end

if equal_rows==size(LED,1)

beacons_is(9,1)=col;
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beacons_is(9,2)=row;

return

end

end

end
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AOA

%Calculates AOA

%assumes that all nine beacons are present.

%This can easily be modified if wanted.

function pos_final=AOAAppendix(beacons_is)

%True position of camera in x,y and z axes in cm. Only used for error calculation.

x_camera=[];

y_camera=[];

z_camera=[];

%Position of beacons(fixed values).

beacons = [-50,50,120;

0,50,120;

50,50,120;

-50,0,120;

0,0,120;

50,0,120;

0,-50,120;

50,-50,120];

x_beacon=beacons(:,1)’;

y_beacon=beacons(:,2)’;

%k is already calculated with a for loop (derived below.

k=393.435;

%Calculation of true azimuthal angle.

azimuthal=[];

for i=1:length(x_beacon)

azimuthal(i)=(180/3.14)*atan2((x_camera-x_beacon(i)),

(y_camera-y_beacon(i)));

end

%Calculation of true polar angle.

polar=[];

for i=1:length(x_beacon)

polar(i)=(180/3.14)*atan2(sqrt((x_camera-x_beacon(i))^2

+(y_camera-y_beacon(i))^2),z_camera);

end

%Beacons coordinates inserted into two seperate arrays.

x_imagesensor=beacons_is(:,1)’;

y_imagesensor=beacons_is(:,2)’;

%Make that coordinate in reference to the center pixel of the frame.

%With the adjusment of the center pixel discussed in chapter 4.2

for i=1:length(x_imagesensor)

x_imagesensor(i)=x_imagesensor(i)-424+3;
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y_imagesensor(i)=-(y_imagesensor(i)-240+8);

end

%Estimation of aximuthal angle.

azimuthal_is=[];

for i=1:length(x_beacon)

azimuthal_is(1,i)=-(180/3.14)*atan2(-(x_imagesensor(1,i))

,-(y_imagesensor(1,i)));

end

%Estimation of polar angle.

polar_is=[];

for i=1:length(x_beacon)

polar_is(1,i)=((180/3.14)*sqrt(y_imagesensor(1,i)^2

+x_imagesensor(1,i)^2)/k);

end

%Calcultaion of polar error.

polar_error=[];

for j=1:length(x_beacon)

polar_error(j)=polar_is(j)-polar(j);

end

%Calculation of azimuthal error.

azimuthal_error=[];

for j=1:length(x_beacon)

azimuthal_error(j)=azimuthal_is(j)-azimuthal(j);

end

%Inserting AOAs in array and converts to radians.

AOA= [degtorad(azimuthal_is);degtorad(polar_is)];

%Calls function AOA2xyz to permorm position estimation.

[pos_final, n_itt] = AOA2xyz(beacons, AOA);

end

Estimation of Scaling Factor

%Estimation of scaling factor, k.

%Only calculated once.

k=0;

for j=1:length(x_camera)

for i=1:8

k=k+polar_is(j,i)/polar(j,i);

end

end

k=(k)/(9*length(x_camera));
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Positioning Algorithm

% [pos, n_itter] = AOA2xyz(beacons,AOA,xp,tol,max_itter)

%

% This code locates a position in 3D space using AoA given the beacon

% coordinates (beacons) and their corresponding AOA values (AOA).

%

% The function can also be given an initial position (xp), a desired accuracy

% (tol), and the maximum number of itterations before it automatically

% shuts off (max_itter).

%

% The function outputs the position (pos) in xyz and the number of itterations

% used to find that solution (n_itter).

%

% October 19, 2015

% Mark Bergen

%

% Note:

% The starting point must be in the plane of the beacons otherwise the

% solution may become unstable.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [pos,n_itter] = AOA2xyz(beacons,AOA,varargin)

switch nargin

case 2

tol = 1e-3;

max_itter = 50;

xp = [-30 30 0];

case 3

tol = 1e-3;

max_itter = 50;

xp = varargin{1};

case 4

max_itter = 50;

tol = varargin{2};

xp = varargin{1};

case 5

max_itter = varargin{3};

tol = varargin{2};

xp = varargin{1};

end

% The beacon vector needs to be either nx3 or 3xn where n is the number of

% beacons being used. Each set of 3 values corresponds to the xyz

% coordinates of a beacon.

B = beacons; % Beacons to be used in Simulation

s_B = size(B);
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if(s_B(1) == 3) % make ’B’ an nx3 vector

B = B’;

end

s_B = size(B);

% The AOA matrix must be either an nx2 or 2xn vector where n is the number

% of beacons. Each set of 2 values corresponds to the phi and theta values

% for that beacon. The order of beacons used must be the same for B and

% AOA.

s_AOA = size(AOA); % Make AOA and nx2 vector

if(s_AOA(1)<s_AOA(2))

AOA = AOA’;

end

for i = 1:length(AOA)

if AOA(i,1)<-pi

AOA(i,1) = AOA(i,1) + 2*pi;

elseif AOA(i,1)>=pi

AOA(i,1) = AOA(i,1) - 2*pi;

end

end

% Other Definitions

H = zeros(s_B(1)*2,3);

wo = zeros(s_B(1)*2,1);

err = 1;

n_itter = 0;

while err > tol

k = 0;

for ib = 1:s_B(1)

%ib=1;

r = sqrt((xp(1)-B(ib,1))^2+(xp(2)-B(ib,2))^2);

R = sqrt((xp(1)-B(ib,1))^2+(xp(2)-B(ib,2))^2 + (xp(3)-B(ib,3))^2);

phi(ib) = atan2((xp(1)-B(ib,1)),(xp(2)-B(ib,2)));

theta(ib) = atan2(r,abs(xp(3)-B(ib,3)));

k = k+1;

wo(k) = AOA(ib,1) - phi(ib);

if wo(k) > pi % Makes it so that wo < pi

wo(k) = wo(k)-2*pi;

end

if wo(k) < -pi % Makes it so that wo > -pi

wo(k) = wo(k)+2*pi;

end
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H(k,:) = [-(xp(2)-B(ib,2))/r^2;(xp(1)-B(ib,1))/r^2;0]; % Phi DOP

k = k+1;

H(k,1) = abs(B(ib,3)-xp(3))*-(xp(1)-B(ib,1))/(r*R^2); % Theta DOP

H(k,2) = abs(B(ib,3)-xp(3))*-(xp(2)-B(ib,2))/(r*R^2);

H(k,3) = -r/(R^2);

wo(k) = AOA(ib,2) - theta(ib);

if wo(k) > pi/2 % Makes it so that wo < pi/2

wo(k) = wo(k)-pi;

end

if wo(k) < -pi/2 % Makes it so that wo > -pi/2

wo(k) = wo(k)+pi;

end

end

Cl = eye(max(size(H)));

delta = -inv(H’/Cl*H)*H’/Cl*wo;

xp = xp + delta’;

err = max(abs(wo));

n_itter = n_itter+1;

if(n_itter >= max_itter)

break

end

end

pos = xp;

43



Arduino Program

//Arduino code.

//Uses pin 5,9 and 11 to generate three different PWM signals.

int led_1= 5;

int led_2= 9;

int led_3= 11;

void setup() {

// initialize digital pins as outputs

pinMode(led_1, OUTPUT);

pinMode(led_2, OUTPUT);

pinMode(led_3, OUTPUT);

digitalWrite(led_1, LOW);

digitalWrite(led_2, LOW);

digitalWrite(led_3, LOW);

}

// the loop function runs over and over again

int x= 0;

int y= 0;

int z= 0;

void loop() {

if(x==f1) //set specific value for f1 depending on frequency desired

{digitalWrite(led_1, !digitalRead(led_1));

x=0;}

if(y==f2) //set specific value for f1 depending on frequency desired

{digitalWrite(led_2, !digitalRead(led_2));

y=0;}

if(z==f3) //set specific value for f1 depending on frequency desired

{digitalWrite(led_3, !digitalRead(led_3));

z=0;}

x++;

y++;

z++;

delay(1);

}
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