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Abstract

The topic of this thesis is ”McXtrace simulation of x-rat telescope and mirror
deformation”. The overall aim of this project is provide a model capable of simulating a
deformation on reflecting surfaces in the ray-tracing program McXtrace, for use mainly
in optical apertures as those seen in x-ray telescopes such as the ATHENA satellite.

The underlying context is to provide an usable application to determine the effect
of a level magnitude of deformation upon a high precision x-ray reflector module. To
answer this question I present a simple algorithm to account for the effect of a large scale
deformation and a similar more complicated algorithm, which rely on different intersec-
tion methods. The deformation is divided into 2 different scales, which are handled by
separate routines.

In order to properly test the implemented algorithm I conduct extensive simula-
tion using both models of the intermediate deformation using various reflective tables
with different roughness values.

Following a successful implementation of the described algorithm, I simulate a
more advanced instrument which approximates the shape of the ATHENA telescope in
order to determine the effect of the deformation upon the light collecting efficiency of
the optical module.

From this ATHENA model I determine that the photon distribution follows a
linear pattern of cohesion with respect to the level of deformation, which is unaffected
by the level of roughness.



Chapter 1

Introduction

Properly studying the cosmos requires the possibility to view the universe throughout the
entire range of the electromagnetic spectrum. Designing instruments that are capable of
operating in the high energy section of the electromagnetic spectrum is an arduous task.

1.1 X-ray telescopes

X-ray telescopes require a great amount of resources and development, and it is therefore
essential for us to properly consider the possible flaws that might have an impact on the
overall accuracy of the instrument before entering the construction phase.

A great deal of the precision of an x-ray telescope hinges on the accompanying
optical module which focuses the incident x-ray photons onto the narrow diameter of the
detector module.

This thesis will focus on the composition of the most popular variant, the Wolter
type I model design, which consists of two series of circular con-focal mirrors mounted
around a central spoke. The shape of the first series of mirrors is a parabolic shape and
the second a hyperbolic shape. Photons incident on both surfaces will be directed to the
focal point of the instrument which is separated from the mirrors at a distance known as
the focal length.

To focus the higher energy x-ray photons it is necessary to employ a special sort
of multilayered coating on the surface of the reflector (mirror) to match the specific
wavelength of the photon and the incident grazing angle.

If we consider only the optical module we can determine several different pos-
sible errors that may impact the instrument: most important are the mirrors in the in-
strument. The Wolter I model requires that all mirrors are focused onto a single point
and thus any deviation upon the surface of the mirrors will change the direction of the
incident photons.
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Figure 1.1: Wolter type I model, where parallel travellingphotons reflect off a set of paraboloid
and hyperboloid mirrors towards a common focal point (1)

1.2 The ATHENA satellite

In this project I choose to work specifically with the ATHENA mission. The ATHENA
satellite is an x-ray telescope which implements the commonly used model of the Wolter
Type I geometry in order to focus the incident photons.

The accuracy of a x-ray optics determines the resolution of the telescope in gen-
eral. Any inaccuracies in the reflected photons will transmit a blur to the viewed image
which determines how efficiently the telescope can discriminate between different x-ray
sources in stellar space.

1.2.1 Goals

The primary goal of the project is to build a stable model for the deformation aspect
of the x-ray mirror which is both universally applicable and computationally efficient.
This will allow it to be used for the myriad instrument configurations used to model the
x-ray satellite ATHENA or similar projects. The second goal of the project is a thorough
study of the results that are obtained by the use of the previously described model, I
wish to investigate whether a relation between the reflection intensity and the level of
deformation can be determined. Further I wish to study at which level of deformation
a critical error margin for the instrument is reached, which can then be compared with
figures for the actual deformation on the ATHENA optical module.

It is important to clarify that this project focuses on modelling the effect of pertur-
bations only upon the model shape. Therefore, there will be no considerations of other
focusing disruptive effects such as dirt materials on the lens or flaws inside the material
volume. The analysis will be restricted to the surface interface.
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In order to test this I will need to construct a detailed instrument space with con-
trolled variables, which will approximate the expected shape of the ATHENA optical
module in order to properly replicate the working parameters of the mission. The devel-
oped algorithm will be implemented in this instrument which simulates the geometry of
the ATHENA telescope and in such a way that the direct scattering effect of the defor-
mation is examined.
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Chapter 2

Theory

In this chapter I will discuss the underlying theory behind the general x-ray photon prop-
agation and the mechanics in x-ray reflection. In addition to this I will extrapolate the
principal mechanics of the x-ray focusing telescope so that the governing parameters of
the ATHENA telescope can be better understood. The ray tracing software is based on
the laws of reflection and electromagnetism. Therefore the electromagnetic equations
directly effects the functions of the software.

2.1 Photon scattering

The most fundamental structure is of course the photon, which can be described in sev-
eral different terms. The direction of the photon is described as being perpendicular
to the electric field E. When dealing with advanced x-ray interactions the photon will
mainly be described in terms of the wave equation. The regular plane wave equation of
a photon is as follows.(2)

E(r, t) = E0e−i(ωt− k ∗ r) (2.1)

In terms of quantum mechanics I would describe a monochromatic beam of elec-
tromagnetic radiation as being composed of photons which have an intrinsic energy h̄ω

with an velocity of h̄k, with the intensity of the beam being described by the density of
the photons contained in it, or rather the amount of photons passing through an area per
unit of time. The relationship between the photon energy and wavelength is given by the
following equation.

λ [Å] =
hc
ε

=
12.398
ε[KeV ]

(2.2)

When the photon interacts with matter there are 2 possible outcomes, the photon is either
scattered or absorbed by the atom.(2)
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There are 2 different conditions under which an x-ray photon may be reflected
from a surface, the first is if the photon strikes the surface at a sufficiently shallow grazing
incidence angle and the second is if constructive interference occurs as a result of several
layers interacting as described in by Bragg’s law.

For x-ray wavelengths the real part of the index of refraction will always be less
than one, thus I can describe the index of refraction as following.(3)

n = 1−δ − iβ (2.3)

δ =
N0ρre

A2π
λ

2 f1 (2.4)

β =
N0ρre

A2π
λ

2 f2 (2.5)

Where N0 is avogadros number, re is the classic electron radius, Z is the atomic
number and A is the atomic weight and ρ is the mass density for the material. f1and f2arethecomplexatomicscattering f actor

where f1 and f2 are the atomic scattering factors for the material, ρ is the ma-
terial density, A0 is Avogadro’s number, r0 is the electron radius, and λ is the photon
wavelength.

There is a certain limit of the grazing angle where after the reflectivity of the
surface drops rapidly, this value is known as the critical angle. The critical angle is
derived from Snell’s law. (4)

αcrit =
√

2δ (2.6)

2.1.1 Refraction

Refraction of light can be viewed as an event which is dependent both upon the properties
of the photon and the properties of the surface material of the interface where the material
intersects the photon path of propagation.

First consider the refractive index of the material. The refractive index is a di-
mensionless value which is used to describe the propagation of electromagnetic waves
through the medium. The refractive index is defined by equation 2.6.

When dealing with the high energy portion of the electromagnetic spectrum,
where we find x-ray photons, we experience that the refractive index is less than one.
The refractive index of the material is used to calculate whether or not the photons are
refracted or reflected off the surface.

The refraction angle of a photon into a material of a different optical density is
given as a function of the incident angle and the 2 indexes of refraction for the materials
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related by Snell’s law

sinθ1

sinθ2
=

n2

n1
(2.7)

Where θ1, θ2 are the angles of the incident and the refracted photon respectively
and n1 and n2 are the corresponding indices of refraction.

The most essential parameters for the x-ray telescope is the focal length and the
grazing incidence angle. At a certain radius from the center point these two parameters
are related by the following equation. (4)

α =
1
4

tan−1 r0

Z0
(2.8)

Where α is the graze angle, r0 is the radius of the point from center and Z0 is the
focal length.

2.1.2 Fresnel equations

The reflectivity of the surface is determined based on a set of physical rules called
the Fresnel equations. The Fresnel diffraction equations are an approximation of the
Kirchhoff-Fresnel diffraction, which is vital a function in the area of x-ray spectroscopy.

The Wave vector of the incident photon is denoted as Ki and its amplitude as ai,
conversely the wave vector and the the amplitude of the reflected photon are kr and ar
and for the transmitted photon kT and aT . The Fresnel equations are given as. (2)

r =
aR

aT
=

α−α ′

α +α ′
(2.9)

t =
aT

aI
=

2α

α +α ′
(2.10)

R = |r|2 (2.11)

T = |t|2 (2.12)

Where r is the amplitude reflectivity and t is the transmitivity. R is the intensity
reflectivity. α is the grazing incidence angle.

2.1.3 Absorption

If the photon that interacts with an atom is absorbed then the energy is transferred to the
atom and it becomes ionized. This event is referred to as photoelectric absorption. The
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Figure 2.1: Parameters of a periodic multilayer coating: (5)

value of the absorption for a material is given by the linear absorption coefficient µ . I
define the value of µ by the equation µ ∗dz which is the attenuation of a photon through
an infinitesimal sheet of thickness dz at a distance of z from the material surface.

µ can be determined from the absorption cross section σa from the following
equation. (2)

µ = ρσa =
ρmNA

A
σa (2.13)

Where ρa and ρm are the atomic number density and the mass density respectively, NA is
Avogadro’s number and A is the atomic mass number. The absorption cross section is a
variable which is dependant on the wavelength of the incident photon and is proportional
to 1/ε3. The photoelectric cross section varies with the atomic number Z of the absorbent
material roughly equivalent to Z4.

2.1.4 Bragg’s law

As was specified in equation 2.8, the critical angle is a function of the x-ray wavelength
and the refractive index of the surface material, but there is a special method that can be
used to construct positive interference on the incident x-ray photons.

Bragg’s law is a result of Laue diffraction, where the angles of the coherent and
incoherent scattering are given. For the purposes of deriving Bragg’s law I consider The
rays of the incident photons to always be in phase, and their wave vectors to be parallel
to each other.

The θ physical equation representing Bragg’s law is very simple and is given by
the following. (3)

n∗λ = 2∗d ∗ sinθ (2.14)

where λ is the wavelength of the photon, n is a variable integer, d is the uniform distance
between each of the multilayer apertures as shown in figure 2.1 and θ is the angle of the
incident photon.
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2.2 Raytracing

A test of the optical module of the x-ray telescope, can be done by performing simu-
lations of the x-ray interactions in a virtual space, through a type of physics simulation
software which is referred to as a ray-tracing program.

Ray tracing is following the path of a set number of moving particles which in-
teract with a particular scene. The interactions of the particles in the scene are generally
described in the form of intersections, which is to say that the coordinates of the particle
coincide with the location of a object boundary contained within the scene.
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Chapter 3

Method

This chapter describes the methods with which I created the model to account for the
surface deformation.

3.0.1 Monte Carlo

Monte Carlo is a type of simulation in which the program collects data by repeated
random sampling, thus in effect using the random nature of those simulations to obtain an
empirical result. Monte Carlo methods are generally used in relatively complex systems
with a large amount of variables that cannot be completely accounted for. Thus the
solution is found by sampling enough times over randomly distributed simulations so
that a consistent result is determined.

3.1 McXtrace

The program I used in this project is the x-ray raytracing package McXtrace. The dif-
ference between McXtrace and other similar ray tracers is the added concept of weight
for each photon. This is an added variable for each photon which changes with the in-
cidence of the photon. The weight of each photon starts at a specified value and if the
photon does not intersect with any geometry in the instrument the weight will remain
unchanged. If the photon reflects off a surface, the current weight of the photon will be
multiplied by the calculated reflectivity of the mirror. (6)

Physically the weight factor P is the probability that the ray is transmitted through
the instrument. Thus I can append this to the chance of the ray being sampled by the
Monte Carlo method and I can focus only on the most relevant rays in the instrument.

Once the photon has completed a full propagation of the instrument space then
I can summarize the weight factor of the photon as the product of all incident contribu-
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tions, where the multiplication factor of the specified component is denoted by π j.

P = pn = p0

n

∏
j=1

π j

Since I know that π j ⊂ [0,1] then the weight factor must decrease after each
incidence event.

3.2 Deformation

This section is focused on the development of the deformation algorithm which is used
in the thesis. The algorithm development has been one of the core project goals and
constitutes a majority of the theoretical and practical work in the thesis.

The most integral function of the deformation algorithm is the ability to accu-
rately replicate the level and shape of deformation that I might expect to find in the
reflector surface, thus altering the light reflecting properties of the surface to align with
the deformation parameters.

What is meant by the deformation in this context is the distance of the mirror at
any specific point from the ideal shape of the surface. In reality I expect that no mirror
surface will be perfectly ideal, and thus it becomes necessary to take into account the
perturbation of the surface and what effect it will have for the entire instrument.

An approximation which is made in this project, concerns how the shape of this
deformation is estimated. Since there is no complete knowledge regarding all cause of
the deformation, it will not be possible to create an accurate geometric model of the
shape. Thus this project will approximate that the deformation is randomly distributed
within a certain height difference range from the ideal surface plane. The other geometric
properties of the deformation will be discussed later.

3.2.1 Deformation shape

In order to model the deformation, it becomes necessary to make a number of assump-
tions regarding its shape. However the algorithm will be designed so that it will be
adaptable to any level of deformation size.

To describe this deformation I detirmened that the simplest option would be to
randomly generate points within a range of maximum deformation from the surface.
This would allow for quick generation of grids to describe the surface. I would therefore
be able to investigate which range of perturbation gives a physically cohesive result of
the surface reflectivity and scattering angles.
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Another reason behind this choice was that proper simulation requires an aggre-
gate amount of simulations performed with shapes and orders of magnitude. Therefore
it is necessary for me to be able to generate a large amount of deformation grids in a
short amount of time.

The grid consists of a set of points of equal distance in the x and z plane, the only
variable parameter is therefore the height in the y plane. The surface height is generated
by first choosing a maximum deformation height difference (∆hmax) between each point.
I start generating the height for one point in the corner of the grid ∆hmax

∆h⊂ [−∆hmax ; ∆hmax]

P0,0(x) = 0
P0,0(z) = 0
P0,0(y) = 0±∆h

(3.1)

The system then iterates through the points in the grid, I denote the horizon posi-
tion as i and the vertical position as j. The deformation height of the next point is found
as a randomly generated number within a range of maximum ∆hmax from the previously
generated points.

Pi, j(x) = i
Pi, j(z) = j
Pi, j(y)⊂ [ ||Pi, j(y)−Pi−1, j(y)||< ∆hmax ; ||Pi, j(y)−Pi, j−1(y)||< ∆hmax ]

(3.2)

Figure 3.1 shows an example of the deformed surface, the size of the indices
being shown is in terms of meter. There are several different orders of size that I can
choose to work with and it can be difficult to relate the correlation length of the grid
to an actual physical parameter. Therefore I have decided a range of deformation sizes
based on tests of which brought a noticeable change to the scattering and the reflectivity
of a test instrument, without completely obstructing the reflected photons.

An unavoidable hazard of using a randomly generated shape of deformation is
that certain areas attain unreasonable geometric shapes compared to the geometry that
would result from actual perturbation of the surface. Some of this is alleviated by the
inclusion of < ∆hmax check in the grid generation, but it is not enough to completely
removing the risk of such a deviation.

3.2.2 The instrument

As previously explained the McXtrace software operates by loading a main instrument
file with all components. The instrument contains all the information that needs to be
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Figure 3.1: Surface grid generated by the described by the proces described in equation 3.2.
Generated using a 100 x 100 point grid with ∆hmax = 1e-6

processed in the experiment. Designing a instrument file that accurately relates the ex-
perimental information is vital to ensure that the developed algorithms are functioning
properly.

In figure 3.2 we can observe the structure of a simple instrument file. The pho-
ton travels in along the z-axis and reflects first of the green mirror component and the
blue, finally being recorded in the teal monitor surface. The photon interacts with each
component in the order they are listed. For the instrument in figure 3.2 it would look
approximately like the following:

1. Source of the x-rays: at the origin point of the instrument

2. Green mirror in the xz plane: placed at distance from origin along z-axis, rotated
around x-axis.

3. Blue mirror in the xz plane : placed at distance from green mirror along z-axis
compared to green mirror rotated around x-axis.

4. Teal monitor in the xy plane: placed at distance from blue mirror along z-axis
rotation same as blue mirror

12



Figure 3.2: Visualization of an instrument containing 2 mirror (green and blue) compontns
reflecting a photon unto a monitor surface (teal). viewed from the y and z axis (above) and
the x and z axis (below)

3.3 Surface normal perturbation

A main part of the algorithm for any reflector component is determining the reflected
wave-vector of the photon and determining the reflectance of the incident. The im-
plemented algorithm shares the same method of reflection calculation as the standard
reflector surface in McXtrace. The main difference lies in determining the normal vector
to the surface.

First the intersection between the flat surface plane and the photon is determined.
If an intersection occurs the photon is propagated to the surface of the reflector plane.
Then the nearest comparable point in the grid is determined with regards to the position
on the mirror. The program determines 2 points that are adjacent to the first point. Then
it creates two vectors spanning between the first and second and the first and third point.
The cross product of these two vector gives the values for the new surface normal.
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Figure 3.3: Photon wavevector ki reflects off nondeformed surface (a) and ki reflecting off a
deformed surface with surface normal perturbation (b)

v1 = P1−P2

v2 = P1−P3

n′ = v1× v2

(3.3)

Once the surface normal has been determined then the wave vector k’ of the
reflected photon can be determined, with the follwing method.

k′ = ki −2(ki · n′) n′ (3.4)

Using the original and reflected wave-vector the angle of the incident is deter-
mined and using the angle and the energy of the photon as a reference frame I can de-
termine the reflectivity by the nearest corresponding point on the generated reflectivity
grid.
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3.3.1 .OFF file

The .off file format is a specialized format for computing 3d objects as a sum of points
and vertices interconnecting the defined points.

Implementing such a solution requires a script which is capable of automatically
reading the surface deformation matrix into the .off file format as it would be unfeasible
to do the task by hand in a reasonable time frame. The points themselves would be
relatively easy to implement as both the x and the z positions are distributed evenly,
leaving only the height on the y-axis as the unknown.

My algorithm computes the random grid into an .off file by splitting the the sur-
face of the grid into a number of triangles, in this way the calculation is reminiscent
of the previous method of surface normal calculation. I thus have a grid defined by set
amount of smaller triangular surfaces.

In this algorithm I determine the point in the grid nearest to the photon intersec-
tion with the mirror plane, and then determine two points which are adjacent to the first
point. By doing this I can get a rough estimate of the normal of the surface at that point
by taking the vector cross product of the two vectors that connect these points. This
cross product determines the surface normal which I can use to calculate the reflected
angle of the photon.

3.3.2 Perturbation size

One of my main goals for the program was to establish a relationship between the level
of deformation on the mirror surface and the intensity measured in the instrument. How-
ever, accurately establishing this relationship requires the aggregate of a large number
of test runs with the instrument for different levels of deformation, since the surface is
stochastically generated.

The first step to accurately model the deformation was to determine the order of
magnitude for the deformation where the greatest variation in the intensity was found.
This can be found analytically by applying the simulation algorithm over different de-
formation grids and seeing which δhmax in the grid resulted in the greatest change in
intensity. Thus I also had to scale down the level of δhmax height for each deformation
in the order that made sense.

3.4 Roughness Modelling

The first order of magnitude that I wish to simulate is the micro scale level, which I
model by the roughness level of the surface . This process is handled separately from
the other areas of the algorithm due to the fineness of the operation.
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Figure 3.4: Example of a singe petal of the ATHENA telescope, showing the rows of mirrors
with corresponding mirror modules

3.4.1 IMD

The tool which will be used for modelling the micro scale deformation as roughness is
the software IMD, which is capable of modelling the optical properties of a multilayer
film.

In IMD I describe the surface as a series of layers composed of different materials
with varying depths. More relevant to the project is the fact that I can also model the
material roughness of each layer of material. Using this information IMD can process
a reflectivity table which gives the reflectivity value for an angle and a corresponding
photon energy.

In order to calculate the reflectivity I need to construct a model of the surface as
depth graded multilayer. I will attempt to replicate the coding of some of the ATHENA
satellite, therefore the materials of the surface will be composed of a substrate of SiO, a
layer of B4C, and a layer of Ir with depths of 100 Å and 80 Å respectively.

The IMD program uses the Fresnel equations from earlier in the theory section
and also applies the knowledge from the Bragg equation, in order to calculate the reflec-
tivity of the surface.

3.5 ATHENA instrument

Following the successful implementation of the deformation algorithm, with 2 different
variants I develop a more complex simulation environment. For the practical approach to
the subject I implemented the use of said algorithms for a more advanced instrument file.
As outlined in the project goals, the background for this thesis is to simulate the effect
of the deformation upon the ATHENA satellite, therefore I need to create an instrument
which can simulate the functionality that we expect in its optical formation.

In order to simplify the process, I made a number of approximations towards
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Figure 3.5: SIngle mirror module of the ATHENA telescope, with 70 layers of mirrors divided
chamber walls into pores (7)

the shape of the ATHENA telescope. The ATHENA telescope is based upon the optical
model of the Wolter I type x-ray telescope, meaning that it consists of layers of parabolic
mirrors followed by layers of hyperbolic mirrors which are all curved around a central
spoke. Since my algorithms are developed exclusively as an extension of a flat plane
mirror I will be basing my model upon the conical approximation of the Wolter I model,
where the mirror curves are replaced by a flat mirror layer, sharing the same general
angle as the previous curved component.

In a Wolter design we designate the angle of the parabolic mirror as equal to α

defined by Eq. 2.9 in chapter 2. The hyperbolic mirror is equal to 3 * α .

3.5.1 ATHENA design

The general optical layout of the ATHENA instrument is that of several thousand optical
pores that focus reflect the light towards the focal point. These optical pores are divided
into blocks of mirror modules containing each 2 times 34 layers of mirrors, which are
then divided into pores by separating chamber walls. Simulating the entire instrument
is therefore unreasonable. Since the instrument is divided into 6 petals which are indi-
vidually symmetric to another the simulation can be restricted to a portion of the entire
instrument size without any significant effect upon the photon distribution.

Each line of mirror modules is divided into rows and the entire instrument con-
sists of 20 such rows. The total number of mirror layers constitute ca. 2800 layers. I opt
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Figure 3.6: Surface grid for a deformation which is only along the z-axis

to create an approximate instrument that represents each module of the row with a single
mirror, In doing this, exact knowledge of the positions and rotations is still retained from
the instrument specifications.(8)

The exact rotation of each component is modelled according to the laws of re-
flection from the Wolter Type I telescope. Using the conical approximation I can infer
that the angle of the parabolic mirror with respect to the axis of propagation is equal
to α defined in Eq. 2.9, while the angle of the hyperbolic mirror is defined as 3 * α .
The positioning of the mirror can then be easily obtained from knowledge of the mirror
dimensions and radius of the mirror component, since the distance to the focal point is a
known constant. I impose a restriction on the simulation of the instrument to a 2d plane
which is again due to the fact that my algorithm is based on a flat mirror and thus cannot
be curved around a central spoke. Even with these approximations the behavior of the
instrument should still match with those of the ATHENA telescope.

By incurring this restriction to the dimensions of the instrument, I can opt to use
a deformation grid, which is deformed along one axis. Therefore I can alter the form of
equation 3.3 to the following shape.

Pi, j(x) = i
Pi, j(z) = j
Pi, j(y) = Pi−1, j(y)±∆h

(3.5)

The combination of large amount of mirrors allows the use of differently gener-
ated deformation grids with the same parameters, for each of the components used in the
instrument and thus limiting the uncertainty that is relevant to the use of stochastically
generated surfaces.
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Chapter 4

Results

This chapter will be split into 3 different parts that cover different iterations of the pro-
gram.

4.1 ATHENA instrument results

Results obtained in this section are derived from simulations through a simplified model
of the ATHENA telescope described earlier. The instrument contains 40 different mirror
components which will each use a differently generated surface to ensure that the effect
of the deformation is random.

4.1.1 Roughness

The first aspect of the deformation that I wish to model is the micro scale. I will model
the deformation which is in the microscale level as roughness. This is implemented
through the IMD program to generate tables for the reflectivity.

For the ATHENA instrument I would expect to find a roughness average of 4.5
Å based on current knowledge of produced mirrors. In order to test the more extreme
cases I will vary the roughness in the range of ⊂ [0− 20Å] and determine if there is a
linear correlation between the roughness and the resulting reflectivity.

The first result shows the intensity measured at the focal point of the ATHENA
instrument varying only the levels of roughness. The mirror components used in this
test are non deformed so ∆hmax = 0. From figure 4.1 it can be seen that the intensity
decreases linearly as a function of the roughness magnitude.

Next I test whether the association still applies in the case of a deformed mirror.
Therefore I will repeat the previous test with a uniform ∆hmax = 1e−6.
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Figure 4.1: Intensity of the instrument given at different levels of surface roughness, performed
from flat non-deformed mirror components

From figure 4.2 I can see that the shape of the intensity variance is almost iden-
tical to that of Figure 4.1. There is a slight change in the slope of the curve at different
levels of deformation. Therefore I make the assumption that I can vary the levels of
roughness and deformation independently of each other throughout the tests carried out
with the ATHENA instrument.

While varying the ∆hmax for the simulations, I keep the level of the roughness at
4.5 Å as this would be the expected average of the roughness for the ATHENA mirrors.

4.1.2 Intensity from deformation height

In figure 4.3 I have performed extensive testing of the ATHENA instrument with various
surface deformation heights. These simulations were done with a monitor of the size 5 *
5 cm. As can be observed, the loss in intensity follows the level of deformation and the
change in intensity follows a potential function given as.

Intensity ∝ 0.00003∗∆h−0.2
max 1e−7m (4.1)

which is in terms of meters can be rewritten to.

Intensity ∝ 300∗∆h−0.2
max m (4.2)

I assume that the drop in intensity variation may be caused by the limited size of
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Figure 4.2: Intensity of the instrument given at different levels of surface roughness, performed
from an ATHENA insturment with a ∆hmax = 1e−6 size mirror deformation

the detector area which doesn’t account for the total amount of reflected photons.

4.2 Scattering

The method by which we measure the angular resolution of an x-ray telescope is the
Half Power Diameter (HPD) of the instrument. HPD designates the size of the circular
area in which half of the focused photons are located. In the ATHENA instrument the
focal point is the zero point of the y-axis.

I assume that due to the nature of roughness and the method by which I generate
the roughness in this instrument the value of the roughness will not have any impact
upon the scattering angle of the photons. Based on this, it becomes meaningless to
include different values of roughness when determining the scatter for different levels of
deformation.

I measure the scattering of the photons in terms of the HPD, which is defined as
the area with half the total photon density.

Similar to the result seen for the intensity we see an association between the
scattering that approaches a linear level which proceeds to flatten out (Figure 4.4). In this
case however, the drop is more sudden and for the first half of the tests the relationship
can be seen as appriximately linear.

From Figure 4.5 i can observe that the HPD follows the height deformation by
the folllowing equation
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Figure 4.3: Intensity as a function of roughness for simple instrument performed with a rough-
ness of 4.5 Å

HPD(m) ∝ 0.0032∗∆h−0.2
max 1e−7m (4.3)

I choose to investigate the scattering in more detail by viewing the distribution of
the photons along the y-axis.

Figure 4.6 shows that for an instrument with no deformation the photons are
focused in the center point of the detector, which is the focal point of the instrument.

Figure 4.7 shows that a minimal level of deformation creates an area of scattered
photons closely along the center point of the detector, decreasing the height of the central
peak slightly

Figure 4.8 shows that for a greater level of deformation there is still a central
peak, and the rest of the photons are scattered in a wide area around the focal point, this
lends credence to the theory that the measured HPD stops increasing at a certain point
due to the photons being scattered outside of the capturing area of the detector.
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Figure 4.4: Scattering of the photons as given by HPD in the ATHENA telescope with a detector
size of 0.5 * 0.5 m

4.2.1 OFF structure intersection

As I would expect from initial testing of the off intersection algorithm, it is very time
consuming when applied to an advanced simulation. The ATHENA test instrument in-
cludes a total of 40 different mirror components and for the simulation of the instrument
to run the intersection needs to be checked for all of the components. I found that the
average run time for a regular single incidence instrument averaged around 2 minutes,
which would mean that I expect the run time of the ATHENA instrument to be about 80
minutes for the off intersection algorithm.

After testing the simulation I found that the necessary time for the simulation is
ca. 90 minutes, so I will use only a small sample size of OFF intersection routines for
comparison as the time frame of this project does not allow for averaging values of this
algorithm.

I perform a limited number of sampled testing to compare the result of the off
structure intersection and the surface normal change tests to see whether the values are
similar. There will very likely be a large amount of uncertainty for the off intersection
results as I can only apply them once for each value, as such they will be used as a point
of comparison for the normal surface algorithm rather than a full fledged description of
the surface.

One of the most interesting results of the simulation with the off intersection is
the scattering of the peaks. At ∆hmax = 1e-7 m I observe a distribution of photons that is
somewhat similar to the one found in figure 4.6

Figure 4.9 shows a central peak at the center point of the monitor and 2 symmet-
rically scattered peaks of lower intensity, which is different from the scattering found
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Figure 4.5: Scattering of the photons as given by HPD in the ATHENA telescope with a detector
size of 0.5 * 0.5 m, from ∆hmax = 0 to ∆hmax = 2e−6

for the similar instrument as the scattered photons are not distributed smoothly along the
y-axis.

At a level of ∆hmax = 1e-6 m I find the following result(Figure 4.1). Similar to
figure 4.9 I find a that the position of the symmetrical scattered peaks remain the same
while increasing in intensity and the central peak conversely losing intensity. Very few
of the photons are spread beyond these peaks.

24



Figure 4.6: Positions and photon weight of the photons on the detector at focal point measured
along the y-axis for a global deformation level of 0

Figure 4.7: Positions and photon weight of the photons on the detector at focal point measured
along the y-axis for a global deformation level of ∆hmax = 1e−6 1e-7
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Figure 4.8: Positions and photon weight of the photons on the detector at focal point measured
along the y-axis for a global deformation level of ∆hmax = 1e−6 = 1e-6

Figure 4.9: Scattering results from a position sensitive monitor of size 0.5 *0.5 m measuring the
amount of incident photons along the y-axis ∆hmax = 1e-6 m
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Figure 4.10: Scattering results from a position sensitive monitor of size 0.5 *0.5 m measuring
the amount of incident photons along the y-axis ∆hmax = 4e-6m
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Chapter 5

Discussion

This chapter concerns the interpretation of the results, and discussion of the potential
flaws of the developed methods.

5.1 Deformation algorithms

The development of the algorithms to model the deformation was a key part of the goals
for this thesis and analyzing the results it is clear that the difference in how they function
greatly impact the simulation of the surface deformation

5.1.1 Normal incidence

The normal incidence angle algorithm was the primary code used to model the deforma-
tion in the project due to its efficiency compared to other tested alterations.

The scattering of the results from this algorithm provided a smooth scattering
along an area that expanded with the size of the deformation. Unexpectedly, the detector
measured a central peak that suffered little aberration with the increasing deformation
size.

A possible source of errors for the algorithm is the fact that the manner of which
the deformation grid is generated is not a true random surface but rather generated in a
manner that closely approximates the shape of such a surface, with the specified surface
correlation between each point, with each point in the 2d grid being correlated with two
previous points and each point in the 1D version being generated from the previous.
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5.1.2 off intersection

This algorithm required 2 parts in order to function: the first part to convert the grid to a
3 dimensional .off file and a function to calculate intersection with each off vertices.

However checking the intersection for each triangular surface in the deformation
grid is a very inefficient process, which is the reason that it was only used sparingly in
the simulation of the ATHENA instrument.

The results of the off intersection provided very different results compared to the
simulations performed with the changed surface normal algorithm. This is likely due to
the manner in which the surface is treated, which causes the off intersection to condense
the stream of scattered photons into key areas of higher density compared to the smooth
scattering found in the other result.

5.2 ATHENA instrument

The work done on constructing a virtual segment of the ATHENA instrument constitutes
the application of developed software to a relevant scenario. This has provided a better
grasp at the efficiency of which the algorithm can be applied outside of test cases.

There is a significant distance in terms of work when making an instrument for
simulation of physically relevant scenario and a test instrument for investigating the
functionality of specific system components. The ATHENA instrument proved that algo-
rithms that were applicable in test cases are significantly less effective in a increasingly
advanced instrument simulation. This is the reason that the off intersection algorithm
could only be used sparingly for the instrument as the intersections would take too long
to determine, to be properly effective.

In test results for the ATHENA instrument I have managed to find associations
between the levels of deformation and the reflectivity and scattering. At higher levels
of deformation the effect of the deformation becomes less pronounced which may be
caused by the fact that the monitor area is only able to detect a subset of the scattered
photons due to its limited size.

The scattering results for the surface normal perturbation and the off intersection
model show a large degree of difference. It is possible that the measured scattering image
may be a result of how the program samples over the monitor results.

5.2.1 Future work

In the case of a longer time frame for the project I would have liked to create a more
complex version of the current algorithm and in the course of the project I have consid-
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ered several possibilities for how such a thing might be done. The first possibility which
was most strongly considered was modelling the deformed surface according to a point
set surface model.

In addition I would have liked to be able to run a larger number of tests especially
for the off intersection algorithm so I could better compare the results of the 2 simulation
models.

Given additional time it might have been possible for me to compare the results
of my simulations with physical test results from the ATHENA mirror modules, and
thereby test the accuracy of my results and determine which of the two deformation
models was the superior.
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Chapter 6

Conclusion

The main goal of this project was to provide a working model for the deformation upon a
reflector surface for use with the McXtrace software, and through this project I have de-
veloped a working program. While the program does makes several approximations on
the behavior of the photon it does provide results that are within the expected parameters.

What has been developed within the time frame of this Bachelor project is a
model which approximates the behavior of the deformed surface. However, the pro-
gram makes a large amount of approximations regarding the reflection interaction, most
prominently the assumption that no shadowing occurs for the surface normal perturba-
tion algorithm. The off intersection does however take the shadowing into account but
the application of the algorithm is too cumbersome for advanced instrument simulations.

The ATHENA telescope simulation has proven the efficiency of the algorithms
in an advanced simulation and has shown how the different deformation parameters will
effect the accuracy of the instrument.

The project found a relation between the level of deformation and the increased
spread and decreased intensity of the reflected photons, in the case of the ATHENA
instrument. I have expressed both of these relations in terms of of the following mathe-
matical equations.

For the intensity as a function of ∆hmax I find the following relation

Intensity ∝ 0.00003∗∆h−0.2
max (6.1)

ANd for the HPD I found a similar linear relation.

HPD(m) ∝ 0.0032∗∆h−0.2
max 1e−7m (6.2)

One of the most significant result of the project was the difference between the
simulation for the two deformation models, it is expected that the reflected photons of the
off intersection model would follow a less smooth scattering patterns, however instead
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all of the reflected photons are condensed into symmetric peaks despite all 40 mirrors
having different surfaces. The Surface normal perturbation scattered the photons over
an area that increases with the deformation size as would be expected, and yet it has a
central peak which is far too prominent over higher orders of magnitude for the defor-
mation.

I conclude that that the developed methods provide a functioning yet approxi-
mated means of measuring the effect of deformation upon x-ray reflector, specifically in
the case of multilayered Wolter I telescope optics.

.
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Appendix A

Appendix

The appendix includes the codes used for the project. They are split between matlab and
C code

A.1 Matlab

A.1.1 1D surface generation

.

s i z e 1 =100;
r e l =0.0000001∗ c o u n t ;
g= z e r o s ( s i z e 1 , s i z e 1 ) ;
f o r j =1 : s i z e 1
% T h i s h a n d l e s t h e f i r s t p o i n t g e n e r a t e d i n t t h e

m a t r i x
i f j == 1 ;

g ( : , j ) = − r e l +2∗ r e l ∗rand ( ) ;
whi le g ( : , j ) > r e l
g ( : , j ) =− r e l +2∗ r e l ∗rand ( ) ;
end ;

e l s e
g ( : , j ) =g ( : , j −1)− r e l +2∗ r e l ∗rand ( ) ;

whi le abs ( g ( : , j )−g ( : , j −1) ) > r e l
g ( : , j ) =g ( : , j −1)− r e l +2∗ r e l ∗rand ( ) ;
end ;

end
end ;
f i l e n a m e = s p r i n t f ( ’%ddg . t x t ’ , c o u n t ) ;
dlmwrite ( f i l e n a m e , g ) ;
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A.1.2 2D surface generation

s i z e 1 =100;
r e l = 0 . 0 0 0 0 0 1 ;

g= z e r o s ( s i z e 1 , s i z e 1 ) ;

f o r j =1 : s i z e 1 ;
f o r i =1 : s i z e 1 ;

% T h i s h a n d l e s t h e f i r s t p o i n t g e n e r a t e d i n t t h e
m a t r i x

i f i == 1 && j == 1 ;
g ( j , i ) = − r e l +2∗ r e l ∗rand ( ) ;
whi le g ( j , i ) > r e l
g ( j , i ) =− r e l +2∗ r e l ∗rand ( ) ;
end ;

% T h i s h a n d l e s t h e t h e t p o row o f t h e m a t r i x
e l s e i f i > 1 && j ==1;

g ( j , i ) =g ( j , i −1)− r e l +2∗ r e l ∗rand ( ) ;
whi le abs ( g ( j , i )−g ( j , i −1) ) > r e l
g ( j , i ) =g ( j , i −1)− r e l +2∗ r e l ∗rand ( ) ;
end ;

% T h i s h a n d l e s t h e f i r s t column o f each row
e l s e i f i == 1 && j > 1 ;

g ( j , i ) = g ( j −1, i )− r e l +2∗ r e l ∗rand ( ) ;
whi le abs ( g ( j , i )−g ( j −1, i ) ) > r e l
g ( j , i ) =g ( j −1, i )− r e l +2∗ r e l ∗rand ( ) ;
end

% T h i s h a n d l e s t h e r e m a i n i n g p o s i t i o n s
e l s e

g ( j , i ) =g ( j , i −1)− r e l +2∗ r e l ∗rand ( ) ;
whi le abs ( g ( j , i )−g ( j −1, i ) ) > r e l | | abs ( g ( j , i

)−g ( j , i −1) ) > r e l
g ( j , i ) =g ( j , i −1)− r e l +2∗ r e l ∗rand ( ) ;

end ;
end ;

end ;
end ;
f i l e n a m e = s p r i n t f ( ’%ddg . t x t ’ , c o u n t ) ;
dlmwrite ( f i l e n a m e , g ) ;

A.1.3 off file converter

This code was used for converting a surface grid into an .off file
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% T h i s i s t h e s c r i p t t o c o n v e r t t h e d e f o r m a t i o n f i l e s t o
o f f f i l e s

% t h i s i s a n e c e s s a r y s t e p i f we wish t o use
o f f i n t e r s e c t i o n t o p r o p e r l y

% model t h e shadow b e h a v i o r o f t h e i n c i d e n t p h o t o n s
f o r c o u n t =1:200
deform name = s p r i n t f ( ’%ddg . t x t ’ , c o u n t ) ;
o f f name = s p r i n t f ( ’ d e f o r m s u r f%d . o f f ’ , c o u n t ) ;
d e f f i l e = fopen ( of f name , ’w’ ) ;
d e f = dlmread ( deform name ) ;
% d e f f i l e = f o p e n ( ’ 5 x5 . OFF’ , ’w ’ ) ;
% d e f = dlmread ( deform name ) ;

[ l ength , w id th ] = s i z e ( d e f ) ;
format l ong ;

% Header o f t h e o f f f i l e
f p r i n t f ( d e f f i l e , ’OFF\n ’ ) ;

f p r i n t f ( d e f f i l e , ’%d %d %d \n ’ , l e n g t h ∗width , ( ( width −1) )
∗2∗ ( l ength −1) , 0 ) ;

% F i r s t p a r t o f t h e o f f f i l e w i t h t h e p o i n t p o s t i o n s
f o r j =1 : wid th ;

f o r i =1 : l e n g t h ;
i n d = d e f ( j , i ) ;
f p r i n t f ( d e f f i l e , ’%f %f %f \n ’ , ( j−wid th / 2 ) / ( wid th
∗10) , ind , ( i−l e n g t h ∗2) / ( l e n g t h ∗10) ) ;

end
end

% second p a r t o f t h e o f f f i l e w i t h t h e s u r f a c e d e f i n i t i o n s
f o r j =1 : width −1;

f o r i =1 : l ength −1;
c u r r e n t =( j −1)∗wid th + i ;
f p r i n t f ( d e f f i l e , ’%d %d %d %d \n ’ , 3 , c u r r e n t −1,

c u r r e n t , c u r r e n t +width −1) ;
f p r i n t f ( d e f f i l e , ’%d %d %d %d \n ’ , 3 , c u r r e n t ,

c u r r e n t +width −1, c u r r e n t + wid th ) ;
end

end
f c l o s e ( d e f f i l e ) ;
end

HPD calculate This code was used to calculate the HPD from the output of a position
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sensitive monitor

f i l e = fopen ( ’ HPD data . t x t ’ , ’w’ ) ;
format l ong ;

f i l e r e a d = s p r i n t f ( ’ s i n c u r v 2 / f i n a l p s d . d a t ’ , c o u n t ) ;
c = t e x t r e a d ( f i l e r e a d , ’ ’ ,−1 , ’ commen t s ty l e ’ , ’ s h e l l ’ ) ;
t o t = sum ( c ( : , 3 ) ) ;

s t a r t = l e n g t h ( c ( : , 1 ) ) / 2 ;
i = 0 ;
t i n = 0 ;

whi le t i n < t o t / 2
t i n = t i n + c ( s t a r t −i , 3 ) +c ( s t a r t +1+ i , 3 ) ;
i = i +1 ;

end
HPD = abs ( c ( 1 , 1 )−c ( i , 1 ) ) ;

f p r i n t f ( f i l e , ’%d\n ’ ,HPD) ;

f c l o s e ( f i l e ) ;

A.2 C code

A.2.1 ATHENA surface normal perturbation component

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Component : new deform
∗
∗ %I
∗
∗ W r i t t e n by : Toke b j o r n e r
∗ Date : MAY 2017
∗ V e r s i o n : 1 . 3
∗ R e l e a s e : McXtrace 1 . 4
∗ O r i g i n : DTU P h y s i c s
∗
∗ Deformed f l a t m i r r o r
∗
∗ %D
∗ a l t e r n a t i v e v e r s i o n of deform m i r r o r xz p l a n e
∗
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∗ %P
∗ I n p u t p a r a m e t e r s :++
∗ wid th [m] The wid th o f t h e m i r r o r
∗ l e n g t h [m] The l e n g t h of t h e m i r r o r
∗ R0 [ ] C o n s t a n t r e f l e c t i c i t y
∗ r e f l e c [ ] t e x t c o n t a i n i n g r e f l e c t i v i t i e s i n a 2D m a t r i x

b l o c k p a r a m e t e r i z e d by e ne rg y and g l a n c i n g ang le .
∗ deform [ ] t e x t f i l e c o n t a i n i n g t h e h e i g h t s o f t h e

deformed s u r f a c e
∗ g r i d n : number o f d e f o r m a t i o n gr id t h a t t h e u s e r w i s he s

t o use
∗ r e f l e c n : number o f r e f l e c t i v i t y t a b l e t h a t t h e u s e r

w i sh es t o use
∗
∗ Thi s i s an a l t e r n a t i v e v e r s i o n of t h e new deform . comp

which i s a b l e t o r e a d an o r d e r e d l i s t o f d e f o r m a t i o n
g r i d s o r r e f l e c t i v i t y t a b l e s

∗
∗ ( none )
∗ %E
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

DEFINE COMPONENT ATHENA deform
DEFINITION PARAMETERS ( do ub l e g r i d n =0 , d oub l e r e f l e c n =0)
SETTING PARAMETERS ( l e n g t h =1 , wid th =1 , R0=1)
OUTPUT PARAMETERS ( r e f l e c t a b l e )
/∗ X−r a y p a r a m e t e r s : ( x , y , z , kx , ky , kz , phi , t , Ex , Ey , Ez , p ) ∗ /
SHARE
%{
/ / # i n c l u d e ” r e a d t a b l e − l i b ”
/ / # i n c l u d e ” i n t e r o f f − l i b ”

%}

DECLARE
%{

do ub l e e min , e max , e s t e p , t h e t a m i n , t he t a max ,
t h e t a s t e p , l e n g t h s t e p , w i d t h s t e p ;

t T a b l e r e f l e c t a b l e , d e f o r m t a b l e , d e f o r m t a b l e 2 ;
i n t u s e r e f l e c t a b l e , u s e d e f t a b l e ;

%}

INITIALIZE%{
i f ( r e f l e c n ) {
c h a r r e f [ 1 0 0 ] ;
s n p r i n t f ( r e f , s i z e o f ( c h a r ) ∗100 ,” Ref l ecRoughnes%d . t x t ” ,
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r e f l e c n ) ;

Tab le Read (& r e f l e c t a b l e , r e f , 1 ) ;
t T a b l e ∗ t p=& r e f l e c t a b l e ;
e min = 0 . 5 ;
e max =20;
e s t e p = 0 . 5 ;
t h e t a m i n = 0 . 1 ;
t h e t a m a x =5;
t h e t a s t e p = 0 . 1 ;
u s e r e f l e c t a b l e =1;
} e l s e {

u s e r e f l e c t a b l e =0;
}

/ / s econd t a b l e r e a d f u n c t i o n t o i n t e r p r e t t h e
d e f o r m a t i o n m a t r i x i n t o a t a b l e f i l e

i f ( g r i d n ) {
c h a r d e f [ 1 0 0 ] ;
s n p r i n t f ( def , s i z e o f ( c h a r ) ∗100 ,”%ddg . t x t ” , g r i d n ) ;

Tab le Read (& d e f o r m t a b l e , def , 1 ) ;
t T a b l e ∗ t p 2=&d e f o r m t a b l e ;

/ / compute l e n g t h and wid th s t e p f o r d e f o r m a t i o n
m a t r i x

l e n g t h s t e p = l e n g t h / ( tp2−>rows ) ;
w i d t h s t e p = wid th / ( tp2−>columns ) ;

u s e d e f t a b l e =1;
} e l s e {

u s e d e f t a b l e =0;
}

%}

TRACE
%{

do ub l e l s m a l l ;
do ub l e k l ;

l s m a l l =DBL MAX;

p l a n e i n t e r s e c t (& kl , x , y , z , kx , ky , kz , 0 , 1 , 0 , 0 , 0 , 0 ) ;

PROP DL ( k l ) ;
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i f ( x<−wid th / 2 . 0 | | x>wid th / 2 . 0 | | z<−l e n g t h / 2 . 0 | | z>
l e n g t h / 2 . 0 ) {
RESTORE XRAY(INDEX CURRENT COMP, x , y , z , kx , ky , kz ,

phi , t , Ex , Ey , Ez , p ) ;
} e l s e {

do ub l e nx , ny , nz , R ;

i f ( u s e d e f t a b l e ) {
/ / Read t h e h e i g h t v a l u e s f o r t h e i n c i d e n t p o s i t i o n and 2

a d j a c e n t p o i n t s
do ub l e h e i g h t 1 = T a b l e V a l u e 2 d ( d e f o r m t a b l e , ( x +( wid th

/ 2 ) ) / w i d t h s t e p , ( z +( l e n g t h / 2 ) ) / l e n g t h s t e p ) ;
do ub l e h e i g h t 2 = T a b l e V a l u e 2 d ( d e f o r m t a b l e , ( ( x +( wid th

/ 2 )−w i d t h s t e p ) / w i d t h s t e p ) , ( z +( l e n g t h / 2 ) ) /
l e n g t h s t e p ) ;

do ub l e h e i g h t 3 = T a b l e V a l u e 2 d ( d e f o r m t a b l e , ( x +( wid th
/ 2 ) ) / w i d t h s t e p , ( ( z +( l e n g t h / 2 )− l e n g t h s t e p ) /
l e n g t h s t e p ) ) ;

/ / De f in e t h e 3 p o i n t s
do ub l e p1 [ ] = {x , h e i g h t 1 , z } ;
do ub l e p2 [ ] = {x−( w i d t h s t e p ) , h e i g h t 2 , z } ;
do ub l e p3 [ ] = {x , h e i g h t 3 , z−( l e n g t h s t e p ) } ;

/ / De f in e 2 v e c t o r s t h a t span t h e 3 p o i n t s
do ub l e vec1 [ 3 ] , vec2 [ 3 ] ;
vec1 [ 0 ] = p1 [0]−p2 [ 0 ] ;
vec1 [ 1 ] = p1 [1]−p2 [ 1 ] ;
vec1 [ 2 ] = p1 [2]−p2 [ 2 ] ;

vec2 [ 0 ] = p1 [0]−p3 [ 0 ] ;
vec2 [ 1 ] = p1 [1]−p3 [ 1 ] ;
vec2 [ 2 ] = p1 [2]−p3 [ 2 ] ;

/ / De te rmine t h e s u r f a c e normal by c a l c u l a t i n g t h e c r o s s /
p r o d u c t o f t h e 2 v e c t o r s

v e c p r o d ( nx , ny , nz , vec1 [ 0 ] , vec1 [ 1 ] , vec1 [ 2 ] , vec2 [ 0 ] , vec2
[ 1 ] , vec2 [ 2 ] ) ;

NORM( nx , ny , nz ) ;
} e l s e {

nx =0;
ny =1;
nz =0;

}
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do ub l e k i x =kx , k i y =ky , k i z =kz ;
do ub l e s= s c a l a r p r o d ( kx , ky , kz , nx , ny , nz ) ;

kx−=2∗ s ∗nx ;
ky−=2∗ s ∗ny ;
kz−=2∗ s ∗nz ;
SCATTER ;

i f ( u s e r e f l e c t a b l e ) {
do ub l e k= s q r t ( kx∗kx+ ky∗ky + kz∗kz ) ;
do ub l e t h e t a =RAD2DEG∗0 .5∗ acos ( s c a l a r p r o d ( kx ,

ky , kz , k ix , k iy , k i z ) / k / k ) ;
do ub l e e=K2E∗k ;
R= T a b l e V a l u e 2 d ( r e f l e c t a b l e , ( e−e min ) / e s t e p ,

( t h e t a−t h e t a m i n ) / t h e t a s t e p ) ;
} e l s e {
R=R0 ;

}
p∗=R ;

}

%}

MCDISPLAY
%{

magnify ( ” ” ) ;
l i n e (−wid th /2 .0 ,0 , − l e n g t h / 2 . 0 , wid th /2 .0 ,0 , − l e n g t h / 2 . 0 ) ;
l i n e (−wid th / 2 . 0 , 0 , l e n g t h / 2 . 0 , wid th / 2 . 0 , 0 , l e n g t h / 2 . 0 ) ;
l i n e (−wid th /2 .0 ,0 , − l e n g t h /2 .0 ,− wid th / 2 . 0 , 0 , l e n g t h / 2 . 0 ) ;
l i n e ( wid th /2 .0 ,0 , − l e n g t h / 2 . 0 , wid th / 2 . 0 , 0 , l e n g t h / 2 . 0 ) ;

%}

END

A.2.2 ATHENA off intersection component

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Component : o f f d e f o r m
∗
∗ %I
∗
∗ W r i t t e n by : Toke b j o r n e r
∗ Date : MAY 2017
∗ V e r s i o n : 1 . 3
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∗ R e l e a s e : McXtrace 1 . 4
∗ O r i g i n : DTU P h y s i c s
∗
∗ Deformed f l a t m i r r o r
∗
∗ %D
∗ m i r r o r f o r d e t a i l i n g t h e r e l f e c t i o n from . o f f f i l e
∗
∗ %P
∗ I n p u t p a r a m e t e r s :
∗ wid th [m] The wid th o f t h e m i r r o r
∗ l e n g t h [m] The l e n g t h of t h e m i r r o r
∗ R0 [ ] C o n s t a n t r e f l e c t i c i t y
∗ r e f l e c [ ] t e x t c o n t a i n i n g r e f l e c t i v i t i e s i n a 2D m a t r i x

b l o c k p a r a m e t e r i z e d by e ne rg y and g l a n c i n g ang le .
∗ deform [ ] t e x t f i l e c o n t a i n i n g t h e h e i g h t s o f t h e

deformed s u r f a c e
∗
∗ Thi s model i s based l a r g e l y upon t h e M i r r o r . com model o f

t h e f l a t m i r r o r i n t h e xz p l a n e
∗
∗ ( none )
∗ %E
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

DEFINE COMPONENT ATHENA off
DEFINITION PARAMETERS ( do ub l e r e f l e c n = 4 . 5 , d oub l e o f f n =0)
SETTING PARAMETERS ( l e n g t h =1 , wid th =1 , R0=1)
OUTPUT PARAMETERS ( r e f l e c t a b l e )
/∗ X−r a y p a r a m e t e r s : ( x , y , z , kx , ky , kz , phi , t , Ex , Ey , Ez , p ) ∗ /
SHARE
%{
/ / # i n c l u d e ” r e a d t a b l e − l i b ”
/ / # i n c l u d e ” i n t e r o f f − l i b ”
# i f n d e f INTEROFF LIB C
# i n c l u d e ” i n t e r o f f − l i b . c ”
# e n d i f

# i f n d e f INTEROFF LIB H
# i n c l u d e ” i n t e r o f f − l i b . h ”
# e n d i f
%}

DECLARE
%{
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do ub l e e min , e max , e s t e p , t h e t a m i n , t he t a max ,
t h e t a s t e p , l e n g t h s t e p , w i d t h s t e p ;

t T a b l e r e f l e c t a b l e ;
o f f s t r u c t d e f o r m o f f ;

%}

INITIALIZE%{
c h a r r e f [ 1 0 0 ] ;
s n p r i n t f ( r e f , s i z e o f ( c h a r ) ∗100 ,” Ref l ecRoughnes%d . t x t ” ,

r e f l e c n ) ;
Tab le Read (& r e f l e c t a b l e , r e f , 1 ) ;
t T a b l e ∗ t p=& r e f l e c t a b l e ;

e min = 0 . 5 ;
e max =20;
e s t e p = 0 . 5 ;
t h e t a m i n = 0 . 1 ;
t h e t a m a x =5;
t h e t a s t e p = 0 . 1 ;

/ / r e a d t h e o f f deform f i l e i n t o t h e component
c h a r o f f [ 1 0 0 ] ;
s n p r i n t f ( o f f , s i z e o f ( c h a r ) ∗100 ,” d e f o r m s u r f%d . o f f ” ,

o f f n ) ;
o f f i n i t ( o f f , width , 0 , l ength ,0 ,& d e f o r m o f f ) ;

%}

TRACE
%{

do ub l e l s m a l l ;
do ub l e kl , xn , yn , zn ;
Coords n0 , n3 ;
do ub l e l0 , l3 , k2 , l ;

/ / need t o p r o p a g a t e t o t h e o f f i n t e r s e c t i o n t h e r e f o r e i
need t o f i n d t h e i n t e r s e c t i o n l e n g t h

/ / o f f i n t e r s e c t on ly g i v e s t h e t ime of i n t e r s e c t

o f f x i n t e r s e c t (& l0 ,& l3 ,&n0 ,&n3 , x , y , z , kx , ky , kz ,
d e f o r m o f f ) ;

PROP DL ( l 0 ) ;

i f ( x<−wid th / 2 . 0 | | x>wid th / 2 . 0 | | z<−l e n g t h / 2 . 0 | | z>
l e n g t h / 2 . 0 ) {

/ / ABSORB;
RESTORE XRAY(INDEX CURRENT COMP, x , y , z , kx , ky , kz ,
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phi , t , Ex , Ey , Ez , p ) ;
} e l s e {

c o o r d s g e t ( n0 ,&xn ,&yn ,& zn ) ;
NORM( xn , yn , zn ) ;
do ub l e nx , ny , nz , R ;

/ / Th i s a c t i o n i s t o f l i p t h e s u r f a c e normal c o r r e s p o n d i n g
t o t h e d i r e c t i o n o f t h e r a y

i f ( kz>0 && zn<0 | | kz<0 && zn>0){
nx=xn ;
ny=yn ;
nz=zn ;

} e l s e {
nx=−xn ;
ny=−yn ;
nz=−zn ;

}

do ub l e k i x =kx , k i y =ky , k i z =kz ;
do ub l e s= s c a l a r p r o d ( kx , ky , kz , nx , ny , nz ) ;

kx−=2∗ s ∗nx ;
ky−=2∗ s ∗ny ;
kz−=2∗ s ∗nz ;

SCATTER ;

do ub l e k= s q r t ( kx∗kx+ ky∗ky + kz∗kz ) ;
do ub l e t h e t a =RAD2DEG∗0 .5∗ acos ( s c a l a r p r o d ( kx ,

ky , kz , k ix , k iy , k i z ) / k / k ) ;
do ub l e e=K2E∗k ;
R= T a b l e V a l u e 2 d ( r e f l e c t a b l e , ( e−e min ) / e s t e p ,

( t h e t a−t h e t a m i n ) / t h e t a s t e p ) ;
p∗=R ;

}
%}

MCDISPLAY
%{

magnify ( ” ” ) ;
l i n e (−wid th /2 .0 ,0 , − l e n g t h / 2 . 0 , wid th /2 .0 ,0 , − l e n g t h / 2 . 0 ) ;
l i n e (−wid th / 2 . 0 , 0 , l e n g t h / 2 . 0 , wid th / 2 . 0 , 0 , l e n g t h / 2 . 0 ) ;
l i n e (−wid th /2 .0 ,0 , − l e n g t h /2 .0 ,− wid th / 2 . 0 , 0 , l e n g t h / 2 . 0 ) ;
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l i n e ( wid th /2 .0 ,0 , − l e n g t h / 2 . 0 , wid th / 2 . 0 , 0 , l e n g t h / 2 . 0 ) ;

%}

END

A.2.3 ATHENA instrument file

/ / model o f s i n g l e row of a t h e n a s a t e l i t t e o p t i c a l module
DEFINE INSTRUMENT ATHENA test ( i n t N deform =0 , i n t N r e f l e c

=9 , i n t m i r r o r d i s t a n c e =5)
DECLARE
%{

i n t r e f l e c s ;
%}

INITIALIZE
%{

%}
TRACE
COMPONENT O r i g i n = P r o g r e s s b a r ( )

AT ( 0 , 0 , 0 ) ABSOLUTE
EXTEND
%{

r e f l e c s =0;
%}

COMPONENT s o u r c e = S o u r c e d i v (
xwid th =0 , y h e i g h t =3 , E0 =10 , dE = 2 , g a u s s = 1 , focus aw =0 ,

f o c u s a h =0)
AT ( 0 , 0 , 0 ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n
/ / s p l i t t h e o p t i c a l modules i n t o 20 rows c o n s i s t i n g each

of 2 a l i g n e d m i r r o r s
/ / t h e ang le of t h e f i r s t m i r r o r i s d e t e m r i n e d by a l p h a
/ / t h e ang le of t h e second m i r r o r i s d e t e r m i n e d by 3 ∗

a l p h a

/ / d e f i n e an arm component f o r each row t o a c t a s t h e
c e n t e r p o i n t o f t h e row , t h e m i r r o r p l a n e s w i l l t h e n be
p l a c e d a c c o r d i n g t o t h i s

/ / 1 row of t h e o p t i c a l module :
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COMPONENT Row1 = Arm ( )
AT ( 0 , 0 . 2 8 6 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 2 row of t h e o p t i c a l module :

COMPONENT Row2 = Arm ( )
AT ( 0 , 0 . 3 4 8 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 3 row of t h e o p t i c a l module :

COMPONENT Row3 = Arm ( )
AT ( 0 , 0 . 4 1 1 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 4 row of t h e o p t i c a l module :

COMPONENT Row4 = Arm ( )
AT ( 0 , 0 .473 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 5 row of t h e o p t i c a l module :

COMPONENT Row5 = Arm ( )
AT ( 0 , 0 . 5 3 5 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 6 row of t h e o p t i c a l module :

COMPONENT Row6 = Arm ( )
AT ( 0 , 0 . 5 9 7 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 7 row of t h e o p t i c a l module :

COMPONENT Row7 = Arm ( )
AT ( 0 , 0 . 6 5 9 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 8 row of t h e o p t i c a l module :

COMPONENT Row8 = Arm ( )
AT ( 0 , 0 . 7 2 2 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n
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/ / 9 row of t h e o p t i c a l module :

COMPONENT Row9 = Arm ( )
AT ( 0 , 0 .784 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 1 0 row of t h e o p t i c a l module :

COMPONENT Row10 = Arm ( )
AT ( 0 , 0 . 8 4 6 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 1 1 row of t h e o p t i c a l module :

COMPONENT Row11 = Arm ( )
AT ( 0 , 0 . 9 0 8 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 1 2 row of t h e o p t i c a l module :

COMPONENT Row12 = Arm ( )
AT ( 0 , 0 . 9 7 0 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 1 3 row of t h e o p t i c a l module :

COMPONENT Row13 = Arm ( )
AT ( 0 , 1 .032 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 1 4 row of t h e o p t i c a l module :

COMPONENT Row14 = Arm ( )
AT ( 0 , 1 . 0 9 5 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 1 5 row of t h e o p t i c a l module :

COMPONENT Row15 = Arm ( )
AT ( 0 , 1 . 1 5 7 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 1 6 row of t h e o p t i c a l module :

COMPONENT Row16 = Arm ( )
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AT ( 0 , 1 . 2 1 9 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 1 7 row of t h e o p t i c a l module :

COMPONENT Row17 = Arm ( )
AT ( 0 , 1 . 2 8 1 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 1 8 row of t h e o p t i c a l module :

COMPONENT Row18 = Arm ( )
AT ( 0 , 1 . 3 4 4 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 1 9 row of t h e o p t i c a l module :

COMPONENT Row19 = Arm ( )
AT ( 0 , 1 . 4 0 6 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / 2 0 row of t h e o p t i c a l module :
COMPONENT Row20 = Arm ( )
AT ( 0 , 1 .468 , m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

COMPONENT p a r a 1 = ATHENA deform (
wid th = 0 . 0 3 7 0 9 6 , l e n g t h = 0 . 1 0 1 5 0 4 , g r i d n = N deform ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 4 6 3 6 3 3 8 / 2 , −0 . 1 0 1 5 0 2 1 9 9 / 2 ) RELATIVE Row1
ROTATED ( 0 . 3 4 1 3 , 0 , 0 ) RELATIVE Row1
GROUP p a r a b o l i c EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT p a r a 2 = ATHENA deform (
wid th = 0 . 0 5 0 1 5 8 , l e n g t h = 0 . 0 8 3 3 8 8 , g r i d n = N deform +1 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 4 4 2 / 2 , −0 . 0 8 3 3 8 5 8 / 2 ) RELATIVE Row2
ROTATED ( 0 . 4 1 5 3 , 0 , 0 ) RELATIVE Row2
GROUP p a r a b o l i c
EXTEND
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%{
i f (SCATTERED) {

r e f l e c s += m c S c a t t e r e d ;
}

%}

COMPONENT p a r a 3 = ATHENA deform (
wid th = 0 . 0 4 9 8 3 8 , l e n g t h = 0 . 0 7 0 7 6 2 , g r i d n = N deform +2 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 5 6 5 5 / 2 , −0 . 0 7 0 7 5 9 4 / 2 ) RELATIVE Row3
ROTATED ( 0 . 4 9 0 4 0 3 4 , 0 , 0 ) RELATIVE Row3
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT p a r a 4 = ATHENA deform (
wid th = 0 . 0 4 9 6 1 3 , l e n g t h = 0 . 0 6 1 4 6 0 , g r i d n = N deform +3 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 5 3 1 4 / 2 , −0 . 0 6 1 4 5 7 / 2 ) RELATIVE Row4
ROTATED ( 0 . 5 6 4 3 1 0 0 3 0 4 0 2 6 1 0 , 0 , 0 ) RELATIVE Row4
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT p a r a 5 = ATHENA deform (
wid th = 0 . 0 8 9 6 3 6 , l e n g t h = 0 . 0 5 4 3 2 1 , g r i d n = N deform +4 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 5 0 4 / 2 , −0 . 0 5 4 3 1 7 6 / 2 ) RELATIVE Row5
ROTATED ( 0 . 6 3 8 1 8 6 , 0 , 0 ) RELATIVE Row5
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT p a r a 6 = ATHENA deform (
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wid th = 0 . 0 8 2 7 4 6 , l e n g t h = 0 . 0 4 8 6 7 1 , g r i d n = N deform +5 ,
r e f l e c n = N r e f l e c )

AT ( 0 , 0 . 0 0 0 6 0 4 8 3 1 / 2 , −0 . 0 4 8 6 6 7 2 / 2 ) RELATIVE Row6
ROTATED ( 0 . 7 1 2 0 2 9 2 , 0 , 0 ) RELATIVE Row6
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT p a r a 7 = ATHENA deform (
wid th = 0 . 0 7 7 5 1 , l e n g t h = 0 . 0 4 4 0 8 7 , g r i d n = N deform +6 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 4 6 5 1 / 2 , −0 . 0 4 4 0 8 2 9 / 2 ) RELATIVE Row7
ROTATED ( 0 .785833957320171 ,0 ,0 ) RELATIVE Row7
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT p a r a 8 = ATHENA deform (
wid th = 0 . 0 8 6 8 9 2 , l e n g t h = 0 . 0 4 0 2 9 4 , g r i d n = N deform +7 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 5 3 3 6 / 2 , −0 . 0 4 0 2 8 9 5 / 2 ) RELATIVE Row8
ROTATED ( 0 . 8 6 0 7 8 6 , 0 , 0 ) RELATIVE Row8
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT p a r a 9 = ATHENA deform (
wid th = 0 . 0 8 2 0 5 3 , l e n g t h = 0 . 0 3 7 1 0 4 , g r i d n = N deform +8 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 5 1 4 5 2 / 2 , −0 . 0 3 7 0 9 9 1 / 2 ) RELATIVE Row9
ROTATED ( 0 . 9 3 4 5 0 2 9 5 0 8 1 0 6 4 8 , 0 , 0 ) RELATIVE Row9
GROUP p a r a b o l i c
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EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT pa r a1 0 = ATHENA deform (
wid th = 0 . 0 9 0 2 0 5 , l e n g t h = 0 . 0 3 4 3 8 3 , g r i d n = N deform +9 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 5 8 7 3 7 3 / 2 , −0 . 0 3 3 3 7 7 8 2 / 2 ) RELATIVE Row10
ROTATED ( 1 . 0 0 8 1 7 0 0 3 6 2 6 2 1 4 5 , 0 , 0 ) RELATIVE Row10
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT pa r a1 1 = ATHENA deform (
wid th = 0 . 0 3 7 0 9 6 , l e n g t h = 0 . 0 3 2 0 3 6 , g r i d n = N deform +10 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 4 8 2 6 / 2 , −0 . 0 3 2 0 3 0 3 / 2 ) RELATIVE Row11
ROTATED ( 1 . 0 8 1 7 8 3 7 4 0 9 4 6 8 6 8 , 0 , 0 ) RELATIVE Row11
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT pa r a1 2 = ATHENA deform (
wid th = 0 . 0 9 2 7 8 2 , l e n g t h = 0 . 0 2 9 9 9 , g r i d n = N deform +11 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 4 6 9 2 / 2 , −0 . 0 2 9 9 8 3 9 / 2 ) RELATIVE Row12
ROTATED ( 1 . 1 5 5 3 4 0 2 3 8 8 0 5 2 9 3 , 0 , 0 ) RELATIVE Row12
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}
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COMPONENT pa r a1 3 = ATHENA deform (
wid th = 0 . 0 8 8 3 2 6 , l e n g t h = 0 . 0 2 8 1 9 1 , g r i d n = N deform +12 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 4 5 7 2 / 2 , −0 . 0 2 8 1 8 4 5 / 2 ) RELATIVE Row13
ROTATED ( 1 . 2 2 8 8 3 5 7 2 1 7 8 9 4 9 8 , 0 , 0 ) RELATIVE Row13
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT pa r a1 4 = ATHENA deform (
wid th = 0 . 0 8 8 3 2 6 , l e n g t h = 0 . 0 2 6 5 9 7 , g r i d n = N deform +13 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 5 0 1 6 / 2 , −0 . 0 2 6 5 9 0 1 / 2 ) RELATIVE Row14
ROTATED ( 1 . 3 0 3 4 5 0 2 1 4 9 8 7 0 5 2 , 0 , 0 ) RELATIVE Row14
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT pa r a1 5 = ATHENA deform (
wid th = 0 . 0 8 8 3 2 6 , l e n g t h = 0 . 0 2 5 1 7 5 , g r i d n = N deform +14 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 4 8 9 4 / 2 , −0 . 0 2 5 1 6 7 7 / 2 ) RELATIVE Row15
ROTATED ( 1 . 3 7 6 8 1 1 1 8 5 1 0 2 1 5 9 , 0 , 0 ) RELATIVE Row15
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT pa r a1 6 = ATHENA deform (
wid th = 0 . 0 8 8 3 2 6 , l e n g t h = 0 . 0 2 3 8 9 8 , g r i d n = N deform +15 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 4 7 7 / 2 , −0 . 0 2 3 8 9 0 3 / 2 ) RELATIVE Row16
ROTATED ( 1 . 4 5 0 0 9 9 7 7 5 4 6 2 3 4 4 , 0 , 0 ) RELATIVE Row16
GROUP p a r a b o l i c
EXTEND
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%{
i f (SCATTERED) {

r e f l e c s += m c S c a t t e r e d ;
}

%}

COMPONENT pa r a1 7 = ATHENA deform (
wid th = 0 . 0 8 8 3 2 6 , l e n g t h = 0 . 0 2 2 7 3 8 , g r i d n = N deform +16 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 4 6 7 2 / 2 , −0 . 0 2 2 7 3 8 / 2 ) RELATIVE Row17
ROTATED ( 1 . 5 2 3 3 1 2 2 6 1 8 1 0 4 0 9 , 0 , 0 ) RELATIVE Row17
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT pa r a1 8 = ATHENA deform (
wid th = 0 . 0 3 7 0 9 6 , l e n g t h = 0 . 0 2 1 7 , g r i d n = N deform +17 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 5 / 2 , −0 . 0 2 1 6 9 1 6 / 2 ) RELATIVE Row18
ROTATED ( 1 .597623828661746 ,0 ,0 ) RELATIVE Row18
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT pa r a1 9 = ATHENA deform (
wid th = 0 . 0 3 7 0 9 6 , l e n g t h = 0 . 0 2 0 7 4 8 , g r i d n = N deform +18 ,

r e f l e c n = N r e f l e c )
AT ( 0 , 0 . 0 0 0 6 0 4 8 9 9 / 2 , −0 . 0 2 0 7 3 9 2 / 2 ) RELATIVE Row19
ROTATED ( 1 .670671653378206 ,0 ,0 ) RELATIVE Row19
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT pa r a2 0 = ATHENA deform (
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wid th = 0 . 0 3 7 0 9 6 , l e n g t h = 0 . 0 1 9 8 7 6 , g r i d n = N deform +19 ,
r e f l e c n = N r e f l e c )

AT ( 0 , 0 . 0 0 0 6 0 4 7 7 6 / 2 , −0 . 0 1 9 8 6 6 8 / 2 ) RELATIVE Row20
ROTATED ( 1 .743632288719842 ,0 ,0 ) RELATIVE Row20
GROUP p a r a b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper1 = ATHENA deform (
wid th = 0 . 0 3 7 0 9 6 , l e n g t h = 0 . 1 0 1 5 0 4 , g r i d n = N deform +20 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 4 0 0 0 3 3 / 2 , 0 . 1 0 1 4 8 7 9 / 2 ) RELATIVE Row1
ROTATED ( 1 . 0 2 4 , 0 , 0 ) RELATIVE Row1
GROUP h y p e r b o l i c EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper2 = ATHENA deform (
wid th = 0 . 0 5 0 1 5 8 , l e n g t h = 0 . 0 8 3 3 8 8 , g r i d n = N deform +21 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 3 0 4 / 2 , 0 . 0 8 3 3 6 8 3 / 2 ) RELATIVE Row2
ROTATED ( 1 . 2 4 5 8 3 4 0 3 , 0 , 0 ) RELATIVE Row2
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper3 = ATHENA deform (
wid th = 0 . 0 4 9 8 3 8 , l e n g t h = 0 . 0 7 0 7 6 2 , g r i d n = N deform +22 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 6 7 9 / 2 , 0 . 0 7 0 7 3 8 7 / 2 ) RELATIVE Row3
ROTATED ( 1 . 4 7 1 2 1 0 2 4 , 0 , 0 ) RELATIVE Row3
GROUP h y p e r b o l i c
EXTEND
%{
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i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper4 = ATHENA deform (
wid th = 0 . 0 4 9 6 1 3 , l e n g t h = 0 . 0 6 1 4 6 0 , g r i d n = N deform +23 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 5 7 1 / 2 , 0 . 0 6 1 4 3 3 2 / 2 ) RELATIVE Row4
ROTATED ( 1 . 6 9 2 9 3 , 0 , 0 ) RELATIVE Row4
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper5 = ATHENA deform (
wid th = 0 . 0 8 9 6 3 6 , l e n g t h = 0 . 0 5 4 3 2 1 , g r i d n = N deform +24 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 4 8 2 / 2 , 0 . 0 5 4 2 9 0 7 / 2 ) RELATIVE Row5
ROTATED ( 1 . 9 1 4 5 5 9 7 9 , 0 , 0 ) RELATIVE Row5
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper6 = ATHENA deform (
wid th = 0 . 0 8 2 7 4 6 , l e n g t h = 0 . 0 4 8 6 7 1 , g r i d n = N deform +25 ,

r e f l e c n = N r e f l e c )
AT (0 ,−0.00181412 / 2 , 0 . 0 4 8 6 3 7 2 / 2 ) RELATIVE Row6
ROTATED ( 2 . 1 3 6 0 8 7 6 1 7 9 4 8 1 2 9 , 0 , 0 ) RELATIVE Row6
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
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%}

COMPONENT hyper7 = ATHENA deform (
wid th = 0 . 0 7 7 5 1 , l e n g t h = 0 . 0 4 4 0 8 7 , g r i d n = N deform +26 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 3 5 / 2 , 0 . 0 4 4 0 4 9 7 / 2 ) RELATIVE Row7
ROTATED ( 2 .357501871960515 ,0 ,0 ) RELATIVE Row7
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper8 = ATHENA deform (
wid th = 0 . 0 8 6 8 9 2 , l e n g t h = 0 . 0 4 0 2 9 4 , g r i d n = N deform +27 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 5 4 6 / 2 , 0 . 0 4 0 2 5 3 1 / 2 ) RELATIVE Row8
ROTATED ( 2 .582358982490732 ,0 ,0 ) RELATIVE Row8
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper9 = ATHENA deform (
wid th = 0 . 0 8 2 0 5 3 , l e n g t h = 0 . 0 3 7 1 0 4 , g r i d n = N deform +28 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 4 7 9 / 2 , 0 . 0 3 7 0 5 9 6 / 2 ) RELATIVE Row9
ROTATED ( 2 .803508852431944 ,0 ,0 ) RELATIVE Row9
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper10 = ATHENA deform (
wid th = 0 . 0 9 0 2 0 5 , l e n g t h = 0 . 0 3 4 3 8 3 , g r i d n = N deform +29 ,

r e f l e c n = N r e f l e c )
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AT ( 0 , −0 . 0 0 1 8 1 4 1 6 / 2 , 0 . 0 3 4 3 3 5 1 2 / 2 ) RELATIVE Row10
ROTATED ( 3 . 0 2 4 5 1 0 1 0 8 7 8 6 4 3 4 , 0 , 0 ) RELATIVE Row10
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper11 = ATHENA deform (
wid th = 0 . 0 3 7 0 9 6 , l e n g t h = 0 . 0 3 2 0 3 6 , g r i d n = N deform +30 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 3 6 2 / 2 , 0 . 0 3 1 9 8 4 6 / 2 ) RELATIVE Row11
ROTATED ( 3 . 2 4 5 3 5 1 2 2 2 8 4 0 6 0 4 , 0 , 0 ) RELATIVE Row11
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper12 = ATHENA deform (
wid th = 0 . 0 9 2 7 8 2 , l e n g t h = 0 . 0 2 9 9 9 , g r i d n = N deform +31 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 3 0 9 / 2 , 0 . 0 2 9 9 3 5 1 / 2 ) RELATIVE Row12
ROTATED ( 3 . 4 6 6 0 2 0 7 1 6 4 1 5 8 8 0 , 0 , 0 ) RELATIVE Row12
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper13 = ATHENA deform (
wid th = 0 . 0 9 2 7 8 2 , l e n g t h = 0 . 0 2 8 1 9 1 , g r i d n = N deform +32 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 2 6 1 / 2 , 0 . 0 2 8 1 3 2 7 / 2 ) RELATIVE Row13
ROTATED ( 3 . 6 8 6 5 0 7 1 6 5 3 6 8 4 9 4 , 0 , 0 ) RELATIVE Row13
GROUP h y p e r b o l i c
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EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper14 = ATHENA deform (
wid th = 0 . 0 8 8 3 2 6 , l e n g t h = 0 . 0 2 6 5 9 7 , g r i d n = N deform +33 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 3 8 / 2 , 0 . 0 2 6 5 3 5 1 / 2 ) RELATIVE Row14
ROTATED ( 3 . 9 1 0 3 5 0 6 4 4 9 6 1 1 5 5 , 0 , 0 ) RELATIVE Row14
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper15 = ATHENA deform (
wid th = 0 . 0 8 8 3 2 6 , l e n g t h = 0 . 0 2 5 1 7 5 , g r i d n = N deform +34 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 3 2 9 / 2 , 0 . 0 2 5 1 0 9 6 / 2 ) RELATIVE Row15
ROTATED ( 4 . 1 3 0 4 3 3 5 5 5 3 0 6 4 7 6 , 0 , 0 ) RELATIVE Row15
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper16 = ATHENA deform (
wid th = 0 . 0 8 8 3 2 6 , l e n g t h = 0 . 0 2 3 8 9 8 , g r i d n = N deform +35 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 2 7 6 / 2 , 0 . 0 2 3 8 2 9 1 / 2 ) RELATIVE Row16
ROTATED ( 4 . 3 5 0 2 9 9 3 2 6 3 8 7 0 3 2 , 0 , 0 ) RELATIVE Row16
GROUP h y p e r b o l i c
EXTEND
%{
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i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper17 = ATHENA deform (
wid th = 0 . 0 8 8 3 2 6 , l e n g t h = 0 . 0 2 2 7 3 8 , g r i d n = N deform +36 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 1 6 7 / 2 , 0 . 0 2 2 6 6 5 7 / 2 ) RELATIVE Row17
ROTATED ( 4 . 5 6 9 9 3 6 7 8 5 4 3 1 2 2 8 , 0 , 0 ) RELATIVE Row17
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper18 = ATHENA deform (
wid th = 0 . 0 3 7 0 9 6 , l e n g t h = 0 . 0 2 1 7 , g r i d n = N deform +37 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 3 1 2 / 2 , 0 . 0 2 1 6 2 4 1 / 2 ) RELATIVE Row18
ROTATED ( 4 . 7 9 2 8 7 1 4 8 5 9 8 5 2 3 7 , 0 , 0 ) RELATIVE Row18
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

COMPONENT hyper19 = ATHENA deform (
wid th = 0 . 0 3 7 0 9 6 , l e n g t h = 0 . 0 2 0 7 4 8 , g r i d n = N deform +38 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 2 6 4 / 2 , 0 . 0 2 0 6 6 8 7 / 2 ) RELATIVE Row19
ROTATED ( 5 .012014960134620 ,0 ,0 ) RELATIVE Row19
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

59



}
%}

COMPONENT hyper20 = ATHENA deform (
wid th = 0 . 0 3 7 0 9 6 , l e n g t h = 0 . 0 1 9 8 7 6 , g r i d n = N deform +39 ,

r e f l e c n = N r e f l e c )
AT ( 0 , −0 . 0 0 1 8 1 2 0 9 / 2 , 0 . 0 1 9 7 9 3 2 / 2 ) RELATIVE Row20
ROTATED ( 5 .230896866159527 ,0 ,0 ) RELATIVE Row20
GROUP h y p e r b o l i c
EXTEND
%{

i f (SCATTERED) {
r e f l e c s += m c S c a t t e r e d ;

}
%}

/ / t h i s i s t h e p a r t o f t h e i n s t r u m e n t where t h e m o n i t o r s
a r e i n s e r t e d . f i r s t we use a PSD m o n i t o r t o r e c o r d t h e
l o c a t i o n s o f t h e p h o t o n s

/ / t h i s m o n i t o r on ly c ha ck s f o r p h o t o n s which s c a t t e r e d
o f f a s u r f a c e

COMPONENT f i n a l m o n i t o r = PSD monitor (
xwid th = 0 . 5 , y h e i g h t = 0 . 5 , ny =500000 , nx =1 , f i l e n a m e =”

f i n a l p s d . d a t ” )
WHEN( r e f l e c s =2)AT ( 0 , 0 , 1 2 + m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n

/ / m o n i t o r n d i s i n t e n d e d t o m o n i t o r t h e d i v e r g e n c e o f t h e
i n c i d e n t p h o t o n s

/ / moni to r nD has t r o u b l e working f o r some r e a s o n
/∗
COMPONENT div mon = D i v e r g e n c e m o n i t o r ( nh =5000 , nv =1 ,

f i l e n a m e =” Outpu t . pos ” ,
xwid th =1 , y h e i g h t =1 ,
maxdiv h =2 , maxdiv v =2 , r e s t o r e x r a y =1)
WHEN( r e f l e c s >0)AT ( 0 , 0 , 1 2 + m i r r o r d i s t a n c e ) RELATIVE O r i g i n
ROTATED ( 0 , 0 , 0 ) RELATIVE O r i g i n
∗ /
FINALLY
%{

%}
END
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