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Abstract
In this Bachelor’s thesis, the usage of the SunMag chip as a
means of satellite a�itude determination is explored. �e a�i-
tude determination system of this thesis utilises a solar and
a magnetic direction vector to �nd the Euler angles of the
spacecra�. A�er an examination of the magnetic sensor of
the SunMag, the PHEBS, this sensor was deemed inadequate
for the a�itude determination of this thesis. �e sun sensors
were however capable of determining the solar body vector
for a 360 degree rotation. �e a�itude determination matrix
for a 3-2-1 body axis rotation is derived, and along with the
weighted TRIAD algorithm, the a�itude of a rotating CubeSat
mock-up is determined with a resolution of approximately six
degrees.
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1 Introduction

For many spacecra� applications, knowledge of the spacecra�’s a�itude, i.e. it’s orientation or
angular position in space, is of great importance to the mission objectives. O�en this knowledge
is used to correct the a�itude of spacecra�s that have direction dependent equipment. Equip-
ment such as cameras observing distant celestial objects or events, or antenna transmi�ing to or
receiving data from Earth based stations.

�e basic principle behind a�itude determination for any rigid object - spacecra� or not - is to
�nd the angles the axes of a reference frame, F , need to turn in order to align with the axes
of the rigid body’s coordinate system (the body frame, S). �is is done by comparing two or
more directional vectors observed from both frames. Two such directional vectors could be the
direction to the Sun and the magnetic �eld vector of the Earth’s dipole �eld at the spacial point
of the spacecra�’s position at that speci�c time.

For spacecra�s orbiting the Earth, o�en the origin of the body frame is set in the spacecra�s
centre of mass, and the origin of the reference frame is placed in the centre of the Earth. �e
most notable Earth centred coordinates systems are the ”Earth-centred inertial” (ECI) frame and
the ”Earth-centred, Earth-�xed” (ECEF) frame. �e ECEF frame has its three principal axes in-
tersecting set points on the surface of the Earth - the z-axis goes through geographic north pole,
the x-axis goes through 0◦ latitude and 0◦ longitude, and the y-axis completes the right-hand
coordinate system. �e ECEF frame is preferred for orientation and navigation on the surface
of the Earth, whereas the ECI frame is preferred for orientation and navigation in the space sur-
rounding the Earth. �e ECI frame also has its third principle axis through the geographic north
pole, but instead of having its x-axis intersecting a set point on the surface of the Earth, it is
placed to intersect a set point in space that does not rotate with respect to the Earth. O�en the
vernal equinox is used. Again the y-axis completes the right-hand coordinate system.

Figure 1: An illustration of the basic principles behind a Sun-synchronous
orbit. Here the orbit and its normal is drawn in orange at four di�erent times
in the Earth’s orbit around the Sun.



1 Introduction

Many scienti�c satellites are in a low-earth-orbit1 (LEO) [11], and many of these are in a sun-
synchronous orbit (SSO). A SSO is de�ned by having a constant angle between the norm of the
orbit and the direction to the Sun, see �gure 1. �is makes the the directional sun vector, as seen
by the Earth-centred reference frame, easy to calculate. As such a SSO is preferable for missions,
where the a�itude is determined in part through the directional sun vector.

In this thesis, an unambiguous a�itude determination system (ADS) using a Sun pointing vector
and a magnetic �eld vector is explored.
�e determination of the two directional vectors as seen from the body frame, b1 and b2 (here
the index 1 refers to the Sun and the index 2 refers to the magnetic �eld.), will be based on a mi-
croelectromechanical system (MEMS) sensor capable of measuring the indent angles of sunlight
and the magnetic �eld vector - the SunMag chip.

�e basic layout of the SunMag chip can be seen on �gure 2. �e two main components of the
SunMag chip is a two-axis sun sensor consisting of four photo diodes and a one-axis Planar Hall
e�ect bridge sensor (PHEBS) capable of measuring the magnetic �eld strength in one direction.

Figure 2: �e basic layout of the SunMag chip. Apart from the sun sensors
and the PHEBS, it also contains a thermistor and a radiation sensor in the
form of a PIN diode. �e thermistor is implemented because the sensitivity
of the PHEBS is temperature dependent [9], and knowing the temperature
should enable computational compensation. �e PIN diode does not have
any purpose as far as a�itude determination goes, but could provide useful
insight into the radiation the chip - and as such the satellite - is subjugated to.
�e thermistor and the PIN diode will not be analysed in this thesis. Source:
[1].

1Approximately 200 km to 2000 km
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1 Introduction

�e complete fabrication of the SunMag sensor is yet to be completed, but the PHEBS and the
sun sensors have been fabricated in separate batches [4], [1], [3]. �us, testing in this project
will be carried out using sun sensors and PHEBS on separate chips.
In the following section an overview of the theory behind the application of the SunMag chip
will be explained. For a full explanation of the design, function and fabrication of the SunMag
chip, see [9] or [1]. For projects and reports dedicated entirely to either the sun sensor or the
PHEBS, see [4] or [8] and [2] respectively.
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2 Overview of the �eory and Application of the SunMag Chip

2 Overview of the �eory and Application of the SunMag
Chip

2.1 �e Sun Sensor

As can be seen from �gure 2 the sun sensor consists of four triangular photo diodes. Each pair
can measure the indent angle of the sunlight in either the x- or y-direction, θ1,x and θ1,y respect-
ively. Each sun sensor is covered by quartz and a golden layer with a slit placed over the centre
of a photo diode pair, see �gure 3 (b). Depending on the indent angle of the sunlight the ratio of
the illuminated area on the two triangles of a set will vary - and therefore also the ratio of the
current the photo diodes produce. �is geometry can be seen on �gure 3.

Figure 3: (a) shows a top view of a photo diode and (c) shows a side view of
a photo diode. A description of the di�erent dimentions and parameters, as
well as their values, can be found in table 1 in appendix A. Source of (a) and
(c) is [9]. (b) shows the type of sun sensor chip used for the experimental part
of this thesis. Here the majority of the chip is covered by the golden cover.
�is sensor also has two square reference diodes, but these are not used in
this project.

In [9] the geometric dimensions are used to derive a relation between the indent angle of the
sunlight, θ1,y and the current produced by the two triangular photo diodes in a pair, I1,y and I2,y
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2 Overview of the �eory and Application of the SunMag Chip

I1,y − I2,y

I1,y + I2,y
=

2h tan
(

arcsin
(

1
nquartz

sin θ1,x

)
+ g tan θ1,y

)
2b (1)

where nquartz = 1.458 is the refraction index of vacuum and quartz, h is the height of the glass
cover, g is the thickness of the gold cover and b is the half width of the photo diode.

A similar expression applies to the relation between I1,x, I2,x and θ1,x. From here on the indent
angles θ1,x and θ1,y will simply be referred to as θx and θy respectively, as equation (1) shows that
the currents are independent of θ2,x and θ2,y. Using equation (1) and the values given in table 1
in appendix A, a graph of the expected current ratios as a function of θy as well as its inverse
function can be produced, see �gure 4.
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Figure 4: �e theoretical relation between the currents generated by the photo
diodes and the indent angle

As can be seen on �gure 4, the relation is approximately linear in the interval θy ∈ [-60 deg, 60
deg].
Using a simple linear regression instead of the more complicated expression of equation (1)
greatly decreases the computational power needed to calculate the indent angle. �is does how-
ever make the application of the sunsensors inaccurate in the extreme indent angles. But as will
be seen in section 5.1.2 the data generated by the sun sensors for the extreme angles is very
unpredictable anyway. �erefore approximating the angle-current relation will not further limit
the usable range of the sun sensors.

�e sun sensors will be used to calculate the solar direction vector. As the sensor is only usable
when light is hi�ing it, it is safe to assume that the sun vector component parallel with the
normal of the surface of the chip (the zs-component) is positive. Se�ing the zs-component to 1,
allow the remaining two components to be calculated as
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2 Overview of the �eory and Application of the SunMag Chip

tan θx = xs
zs

⇒ xs = zs tan θx = tan θx (2)

tan θy = ys
zs

⇒ ys = zs tan θy = tan θy (3)

In accordance with �gure 5. �e solar direction vector is then found through normalisation of
the components.

Figure 5: A coordinate system showing the relations between the indent
angles θx and θx. Here the surface of the sun sensor would be parallel with
the x, y-plane, and the red vector points towards the light source.

2.2 �e PHEBS

�e PHEBS ability to measure changes in magnetic �elds, comes from the inherent anisotropic
magnetoresistance (AMR) e�ect of ferromagnetic (FM) materials. �e AMR e�ect alters the res-
istance of the so�ly magnetised FM material (NiFe) depending on the direction of the outer �eld.
When an outer �eld is applied the magnetisation of the FM layer will make an angle with the easy
axis, resulting in the resistance of the FM layer changing. Applying this property, the PHEBS
can determine the magnetic �eld strength in the direction perpendicular to the easy axis of the
sensor, see �gure 7. �e hardly magnetised antiferromagnetic (AFM) layer (MnIr) forces the
magnetisation of the FM layer to be �xed along the easy axis, when no outer �eld is applied.
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2 Overview of the �eory and Application of the SunMag Chip

Figure 6: Magnetisation con�guration of the magnetic stack metals.

�e PHEB magnetic �eld sensor is designed as a wheatstone bridge as seen in �gure 7. �e
meander structure of the leads, which can be seen on �gure 8, allows for long leads on a small
surface, increasing the sensitivity and usability of the sensor.

Figure 7: �e basic principle behind
the PHEBS. Figure slightly edited from
[1].

Figure 8: �e meander geometry of the
PHEBS. For the sensors used in this
thesis, n = 21. Source: [1].

As the resistance of the meanders change pairwise (either R1 and R3 increase while R2 and R4
decrease or vice versa), this will o�set the bridge voltage Vy = Vy+ − Vy− from zero. How Vy
changes as a function of the magnetic �eld in the y-axis can be seen from equations (4) and (5)2.
�ese are derived in [2].

Vy = IxS0µ0Hy (4) S0 = nl∆ρ
wtFMµ0 (Hex +Hk)

(5)

Where;
Ix is the current entering the PHEBS. As the total resistance of the PHEBS,RPHEBS, doesn’t change

2�e expression for Vy given in equation (4) is the low-�eld signal. �e relation between Vy and µ0Hy is only
linear in a magnetic interval of less than ±5 mT. But as the maximum magnetic �eld strength of the Earth’s dipole
is within the interval ±60.000 nT at the surface of the Earth, the magnitude of the magnetic �eld the PHEBS will
be subjucated to in orbit is well within the low-�eld interval.
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2 Overview of the �eory and Application of the SunMag Chip

regardless of the magnetic �eld, and as the voltage applied across the bridge, Uin is assumed con-
stant3, Ix is also assumed constant.
S0 is the normalised sensitivity of the PHEBS given by equation (5).
µ0Hy = By is the y-component of the magnetic �eld.
Hex and Hk are the exchange bias and anisotropy �elds respectively, which are found through
an hysteresis analysis of the magnetic stack metals [1].
∆ρ = ρ|| + ρ⊥ is the sum of the parallel and perpendicular resistivities of the meander leads.
tFM is the thickness of the ferromagnetic layer.
n is the number of meander leads, l is each lead’s length and w its width.

As all elements of equation (5) are constant, and as Ix is assumed constant as well, the bridge
voltage, Vy is linearly proportional to the magnetic �eld in the y-direction, By. �is means
equation (4) can be rede�ned as

Vy = Sµ0Hy = SBy (6)

Where S is the speci�c sensitivity of the PHEBS, and is a function of Uin and RPHEBS. S will
be determined experimentally during characterisation of the individual PHEBS, as it will vary
from sensor to sensor, as the fabrication can result in slightly di�ering chips4. From this point
forward, the speci�c sensitivity will simply be referred to as the sensitivity.
With three orthogonal PHEBS the full magnetic �eld B = [Bx By Bz ]T can be found.

3Uin is bound to �uctuate slightly.
4[3] has shown, that this is indeed the case.
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3 Static A�itude Determination

3 Static Attitude Determination

As brie�y explained in section 1, the basis of a�itude determination is to align the axes of the
reference frame, F , with the spacecra� body frame, S. To do this, two direction vectors that can
be observed from both frames are needed - here the Sun pointing vector and the magnetic �eld
vector. In the reference frame these two vectors are denoted r1 and r2 respectively. In the body
frame, they are denoted b1 and b2.

�e reference vectors are transformed to the body vectors with the a�itude determination matrix

AS/F ri = bi (7)

whose elements contain the a�itude of the body frame, S, as seen from reference frame F. To
�nd AS/F one of Euler’s theorems, which states that any rotation is a rotation about a �xed axis,
can be utilised. In this section, the general theory and derivation of the direction cosine matrix
- the general name for the a�itude determination matrix - is explained. �en an algorithm for
�nding AS/F from the direction vectors is examined, and �nally it is described how the a�itude
is extracted from AS/F .

3.1 �e Direction Cosine Matrix

Given two right hand coordinate frames, A and B, each comprised of a set of orthogonal 3×1 unit
vectors a1, a2, a3 and b1,b2,b3 respectively, the basis vectors of B can be expressed in terms of
the basis vectors of A as

bT1
bT2
bT3

 =

C11 C12 C13
C21 C22 C23
C31 C32 C33


aT1
aT2
aT3

 = CB/A

aT1
aT2
aT3

 (8)

where the direction cosine, Cij ≡ bi · aj = |bi| |aj| cosφ = cosφ is the cosine of the angle
between bi and aj . �e entire matrix CB/A, which describes the orientation of B relative to A,
is called the direction cosine matrix.

According to the de�nition of CB/A, equation (8) can also be expressed as

CB/A =

b1 · a1 b1 · a2 b1 · a3
b2 · a1 b2 · a2 b2 · a3
b3 · a1 b3 · a2 b3 · a3

 =

bT1
bT2
bT3

 · [a1 a2 a3
]

(9)

Because each set of basis vectors of A and B consists of orthogonal unit vectors, the direction
cosine matrix is an orthonormal matrix. �erefore the following relation holds true

[CB/A]−1 = [CB/A]T = CA/B (10)
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3 Static A�itude Determination

where CA/B is the direction cosine matrix describing the orientation of A relative to B. CA/B

can be expressed - much like CB/A - as

CA/B =

a1 · b1 a1 · b2 a1 · b3
a2 · b1 a2 · b2 a2 · b3
a3 · b1 a3 · b2 a3 · b3

 =

aT1
aT2
aT3

 · [b1 b2 b3
]

(11)

As CA/B is also an orthonormal matrix the mirrored relation of (10) is also true;

[CA/B]−1 = [CA/B]T = CB/A (12)

Given the two frames A and B, an arbitrary 3×1 vector h = [ h1 h2 h3 ]T can be described in
terms of the basis vectors in A as

h = hA1 a1 + hA2 a2 + hA3 a3 (13)

and in terms of the basis vectors in B as

h = hB1 b1 + hB2 b2 + hB3 b3 (14)

where hAi and hBi are the ith component of h as seen from A and B respectively. From equation
(14) it is seen, that hBi can be wri�en as hBi = bi · h. Inserting equation (13), the following
relations between hAi and hBi are found

hB1 = b1 · h = b1 · (hA1 a1 + hA2 a2 + hA3 a3) = hA1 (b1 · a1) + hA2 (b1 · a2) + hA3 (b1 · a3) (15)
hB2 = b2 · h = b1 · (hA1 a1 + hA2 a2 + hA3 a3) = hA1 (b2 · a1) + hA2 (b2 · a2) + hA3 (b2 · a3) (16)
hB3 = b3 · h = b1 · (hA1 a1 + hA2 a2 + hA3 a3) = hA1 (b3 · a1) + hA2 (b3 · a2) + hA3 (b3 · a3) (17)

which can be wri�en in matrix form as

h
B
1
hB2
hB3

 =

b1 · a1 b1 · a2 b1 · a3
b2 · a1 b2 · a2 b2 · a3
b3 · a1 b3 · a2 b3 · a3


h

A
1
hA2
hA3

 = CB/A

h
A
1
hA2
hA3

 (18)

�is means, that any vector in A can be transformed to frame B with the direction cosine matrix,
CB/A.

In its essence, the direction cosine matrix, CB/A, describes the three rotations the three principal
axes of A must make to align with the three principal axes of B. �is is called body-axis rotation,
and can be represented symbolically as

CB/A(φ1, φ2, φ3) : B← A (19)
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3 Static A�itude Determination

Where φi , i = 1, 2, 3 is the Euler angle of rotation i. A body-axis rotation can be either sym-
metric or asymmetric. A symmetric body-axis rotation could be a 3-1-3 rotation, where �rst the
third principal axis is rotated, then the �rst and �nally the third again. An asymmetric body-axis
rotation could be a 3-2-1 rotation, where �rst the third principal axis is rotated, then the second
and �nally the �rst. A total of 12 such body-axis rotations exist5. In the following, the direction
cosine matrix for a 3-2-1 rotation will be derived, but the procedure is similar for all the body-
axis rotations.

For the derivation, the body-axis rotation is divided into three separate rotations, symbolically
represented as

B ← A′′ ← A′ ← A (20)

Where A’ is the frame A transforms into by rotating the third principal axis of A, A” is the
frame A’ transforms into by rotating the second principal axis of A’, and �nally B is the frame A”
transforms into by rotating the �rst principal axis of A”. A’ and A” have the basis vectors a′1, a′2,
a′3 and a′′1 , a′′2 , a′′3 respectively.
�e three rotations can be described by the three direction cosine matrices

C3(φ3) : A′ ← A
C2(φ2) : A′′ ← A′

C1(φ1) : B ← A′′
(21)

Where the three direction cosine matrices consists of elementary rotations respectively about
the third, second, and �rst axes

C3(φ3) =

 cosφ3 sinφ3 0
− sinφ3 cosφ3 0

0 0 1

 (22)

C2(φ2) =

cosφ2 0 − sinφ2
0 1 0

sinφ2 0 cosφ1

 (23)

C1(φ1) =

1 0 0
0 cosφ1 sinφ1
0 − sinφ1 cosφ1

 (24)

Given the de�nitions of A, A’, A” and B, each of the three rotations of equation (21) can be
described using equations (22) through (24) as

5Symmetric: 1-2-1, 1-3-1, 2-1-2, 2-3-2, 3-1-3, 3-2-3. Asymmetric: 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-2-1, 3-1-2
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3 Static A�itude Determination

a′1
a′2
a′3

 =C3(φ3)

a1
a2
a3

 (25)

a′′1
a′′2
a′′3

 =C2(φ2)

a′1
a′2
a′3

 (26)

b1
b2
b3

 =C1(φ1)

a′′1
a′′2
a′′3

 (27)

�e preceding sequence of rotations can then be combined

b1
b2
b3

 = C1(φ1)

a′′1
a′′2
a′′3

 = C1(φ1)C2(φ2)

a′1
a′2
a′3

 = C1(φ1)C2(φ2)C3(φ3)

a1
a2
a3

 (28)

Now, having arrived at a matrix enabling transformation directly from A to to B this matrix must
be equal to the direction cosine matrix, CB/A

CB/A = C1(φ1)C2(φ2)C3(φ3)

=

 cosφ2 cosφ3 cosφ2 sinφ3 − sinφ2
sinφ1 sinφ2 cosφ3 − cosφ1 sinφ3 sinφ1 sinφ2 sinφ3 + cosφ1 cosφ3 sinφ1 cosφ2
cosφ1 sinφ2 cosφ3 + sinφ1 sinφ3 cosφ1 sinφ2 sinφ3 − sinφ1 cosφ3 cosφ1 cosφ2

 (29)

�e a�itude determination matrix used in this thesis will be based on an 3-2-1 body axis rotation.

3.2 �e TRIAD Algorithm and Wahba’s Problem

As it is the orientation of the body frame, S, with respect to the reference frame, F , that is de-
sired, an a�itude matrix, AS/F that transforms the two direction vectors from F to S is needed,
such as the one described by equation (7). But as the measurements of the body vectors aren’t er-
ror free, �nding a single a�itude matrix that transforms both body vectors correctly is impossible.

�e basic TRIAD algorithm [6] seeks to avoid this issue by assuming that one of the unit direction
vectors are much more accurately de�ned than the other. �is means, that if the measurement
of b1 is more accurate than the measurement of b2, then the TRIAD algorithm �nds an estimate
of the a�itude matrix, ATRIAD, that satis�es ATRIADr1 = b1 exactly, but ATRIADr2 = b2 only ap-
proximately.

�e TRIAD a�itude matrix is based on two right-handed orthonormal triads, {v1 , v2 , v3}which
is placed in the reference frame, and {w1 , w2 , w3}, which is placed in the spacecra� body frame.
Given these two triads, the a�itude determination matrix
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3 Static A�itude Determination

ATRIAD =
[
w1 w2 w3

] [
v1 v2 v3

]T
=

3∑
i=1

wivTi (30)

will transform vi into wi by ATRIADvi = wi , for i = 1, 2, 3.

�e two triads are based on the two direction vectors. To ensure, that the two triads are or-
thonormal, their unit vectors are de�ned as

v1 = r1 , v2 = r× = r1 × r2

|r1 × r2|
, v3 = r1 × r× (31)

w1 = b1 , w2 = b× = b1 × b2

|b1 × b2|
, w3 = b1 × b× (32)

in accordance with equation (30), the estimate of the a�itude matrix is then

Â
S/F
TRIAD = w1vT1 + w3vT3 + w2vT2 = b1rT1 + (b1 × b×)(r1 × r×)T + b×rT× (33)

Of course none of the two body vectors are perfectly de�ned. �erefore the TRIAD algorithm
can be expanded by solving Wahba’s problem for two observations.

In a�itude determination, Wahba’s problem6 consists of �nding an orthogonal matrix A with
determinant +1 that minimizes the loss function

L(A) = 1
2

N∑
i=1

ai|bi − Ari|2 (34)

Where N is the total number of body vectors, and ai are non-negative weights. For two obser-
vations, i.e. N = 2, Wahba’s problem is solved with the weights

ai = c

σ2
i

(35)

where σ2
i = σ2

ri
+ σ2

bi
is the sum of the two measurement vector variances σ2

ri
and σ2

bi
, and c is

given by

c1/2 = σtot =
(

N∑
i=1

σ−2
i

)−1/2

(36)

so that the weights, a1 and a2, sum to unity.

Using these weights, the estimate of AS/F can be found trough equation (37), [6].

Â
S/F
Wahba = a1

λ

[
b1rT1 + (b1 × b×)(r1 × r×)T

]
+ a2

λ

[
b2rT2 + (b2 × b×)(r2 × r×)T

]
+b××r× (37)

6Grace Wahba posed this problem in 1965 in the article A Least Squares Estimate of Satellite A�itude, [6]
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3 Static A�itude Determination

where

λ =
(
a2

1 + a2
2 + 2a1a2 [(b1 · b2)(r1 · r2) + |b1 × b2| |b1 × b2| ]

)1/2
(38)

3.3 Solving for the three Euler angles

From equation (29) it is clear to see, that the second Euler angle φ2 of the 3-2-1 body axis rotation
can be extracted as

φ2 = sin−1(−[AS/F ]13) (39)

If cosφ2 6= 0 the other two Euler angles can be determined by7

φ1 = atan2
(
γ[AS/F ]23 , γ[AS/F ]33

)
(40)

φ3 = atan2
(
γ[AS/F ]12 , γ[AS/F ]11

)
(41)

where γ = ±1 is the sign of cosφ2 and atan2 is the arctangent function with two arguments[6].

7If cosφ2 = 0 the a�itude matrix becomes ill-de�ned. However, it is still possible to extract the Euler angles. In
[6], chapter 2.9.6, the steps in this calculation is explained. It will not be expanded on in this thesis however, as it is
a special case, and the issue was not encountered during data processing.
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4 Experimental Set-up

4 Experimental Set-up

To test the chosen sensors’ ability to determine a�itude, an experimental set-up capable of mim-
icking sun light, the magnetic �eld of the Earth and the rotational motion of a non-detumbled8

spacecra� was needed. Also, an object acting as the spacecra� would be needed. Due to their
limited size and simple geometry, a satellite mock-up of the same dimensions as a CubeSat9

was chosen. In the following the set up used for testing, which can be seen on �gure 9, will be
examined.

4.1 �e Overall Set-up

Figure 9: �e full experimental set up.

�e Helmholtz cage was build in a previous project. �e two main purposes of the Helmholtz
cage are to nullify the Earth’s magnetic �eld, so characterisation and calibration of magnetic

8Detumbling refers to the act of stopping/slowing the rotation of a newly launched spacecra�, until the desired
spin rate or orientation is acquired.

9�e standard dimensions of a CubeSat (short for cubic satellite) are 100×100×100 mm.
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4 Experimental Set-up

sensors can be performed, and to create a variable magnetic �eld for a�itude determination
tests. �e current in the three coils is set by the three power supplies underneath the cage.

�e CubeSat mock-up holds the sun and magnetic sensors, and will be thoroughly examined
in section 4.2.

�e lamp is an incandescent projector light bulb and is used to simulate the sun light.

�e rotational stage, which is hidden by the Helmholtz cage stand on �gure 9, holds the Cube-
Sat mock-up and is capable of turning 350 deg in the horizontal plane. �e rotational stage is
controlled through themotion controller, placed underneath the Helmholtz cage. �is speci�c
model is a Newport MM3000 motion controller.

4.2 �e CubeSat Mock-up

�e CubeSat mock-up can be seen on �gure 10. �e cubic structure was 3D printed at DTU.

Figure 10: �e CubeSat mock-up. Two of the sun sensor panels can be seen.

As will be fully described in section 5.2 a three-axis magnetometer (MAG3110) is used as a stand-
in for the PHEBS. �erefore the current mock-up does not involve any PHEB sensors. �e six
sides of the cube were covered by three di�erent types of panels. Four panels simply contained
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4 Experimental Set-up

a sun sensor as well as the electronics used for ampli�cation and digital conversion. One panel
had both a sun sensor and a MAG3110. An �nally, the last panel included the electronics needed
for data collection as well as a sun sensor. As a result, all six sides of the CubeSat mock-up should
have a sun sensor. Unfortunately, due to time limi�ions, only four sun sensors ended up being
ready for testing. As the rotational stage was only capable of rotating the mock-up around one
axis at a time, the panels with sun sensors were placed around the CubeSat mock-up, so 360 deg
coverage around one axis could be acquired.

4.2.1 �e Electronics

�e optimal circuit for amplifying the current generated by the photo diodes of the sun sensors
were found in both [4] and [7] to be a transimpedance ampli�er, see �gure 11. As each sun sensor
consists of four photo diodes, four ampli�ers would be needed for each sun sensor, as well as
four analogue-to-digital converters (ADC).

Figure 11: Transimpedance ampli�er. Figure slightly edited from [7].

�e data was collected on an Adafruit SD-card reader10 connected to an Arduino pro mini11. �e
type of ADC used, a four input 16-bit ADC, ADS111512, only had four possible I2C adresses,
and as the CubeSat mock-up were to sustain six sun sensors, an eight channel I2C bus switch, a
TCA9548A,13 was used.
�e MAG3110 has internal ADC’s, and therefore no additional ADC’s were needed for this com-
ponent.

10Adafruit SD-card: h�ps://www.adafruit.com/product/254
11Arduino Pro Mini: h�ps://www.arduino.cc/en/Main/ArduinoBoardProMini
12ADS1115: h�p://www.ti.com/lit/ds/symlink/ads1115-q1.pdf
13TCA9548A: h�p://www.ti.com/lit/ds/symlink/tca9548a.pdf
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5 Characterisation of the Sensors

5.1 �e Sun Sensors

�e goal of the sun sensor characterisation is to �nd the linear relation described in section 2.1,
see �gure 4.
�e CubeSat mock-up included four sun sensors. �ese will be referred to as SS1, SS2, SS3 and
SS4 in the following. Each sun sensor consists of four photo diodes numbered 1 through 4. As
an example, the current produced by photo diode 3 on sun sensor 1 would be ISS1,3. Photo diode
1 and 2 make up the diode pair capable of measuring θx, and photo diode 3 and 4 make up the
diode pair capable of measuring θy.

5.1.1 Procedure

Arranging the CubeSat mock-up so the sun sensor to be characterised was turned -90 deg away
from the light source, the mock-up was then turned 180 degrees clockwise. Having measured
the currents from one photo diode pair, the mock-up was rearranged as to have the second photo
diode pair’s sensitive axis be aligned with the motion, and the procedure was repeated.

5.1.2 Results

�e results of the characterisation of photo diodes 1 and 2 from SS1 can be seen on �gure 12.
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Figure 12: Results of the characterisation for photo diodes 1 and 2 of SS1.

Here the linear regression is based on θ ∈ [−50 : 50] deg, which is slightly less than the interval
used in section 2.1.
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5 Characterisation of the Sensors

While the chosen interval follows the linear regression quite closely, it is noted that the deviation
from linearity is systematic. But whether this is inherent to the sun sensor, or due to the cone
shaped light produced by the projector bulb is unknown.

�e current-angle relation of this photo diode pair was found to be

θx = 1.948 rad · I1 − 12

I1 + 12
− 0.0138 rad (42)

Similar results were found for the remaining diodes, and their calibration graphs can be seen in
appendix C.

5.2 Failure of the PHEBS

Previous works have shown, that the batch of PHEBS sensors used for testing in this project
have very low normalized sensitivities and large biases, meaning that Vy 6= 0 when By = 0 [3].
A�emps to work around this bias and the low sensitivity have been carried out both in [3] and in
this project. �ese a�empts have however failed, and as such, the magnetic �eld sensor used for
tests of the a�itude determination algorithm will be a commercially bought three-axis magnetic
sensor, MAG311014.
In the following an analysis of the sensitivity and the bias will be examined, and a hypothesis of
why the batch has failed will be discussed.

5.2.1 Test circuit

Previous test circuits have focused on how to remove the bias and improve the sensitivity through
analogue electronics, see [3]. �is experimental setup was however designed to simply meas-
ure Vy - including its bias - and see how the PHEBS responds to changes in the magnetic �eld,
without trying to enhance or alter the Vy+ and Vy− signals in any way.
�e schematic of this setup can be seen on �gure 13.

14A datasheet for the MAG3110 can be found here: h�p://www.nxp.com/assets/documents/data/en/data-
sheets/MAG3110.pdf
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5 Characterisation of the Sensors

Figure 13: Schematic of the test circuit. Here VCC = 3.3 V, Rref = 1
kΩ, RU = 10 kΩ, and the total resistance of the PHEBS, RPHEBS =
(R1 +R2)||(R4 +R3) = 23 kΩ.

Here, Uin is set by a voltage generator, and could as such be varied. As stated by equation (6) the
speci�c sensitivity should increase with Uin. �erefore the sensitivity, the bias and the signal-
to-noise ratio of a single PHEBS are investigated for various values of Uin. �e �ndings could be
improved by repeating the measurements for several of the PHEBS, but the data and the results
from this one experiment are however found to be su�cient in describing the shortcomings of
this batch of PHEBS chips.

�e circuit also involved the MAG3110 sensor for comparison. In the setup the PHEBS sensor
was placed as to be sensitive in the y-direction of the MAG3110.
First the change in magnetic �eld was created by moving a strong magnet around the setup,
simply to see if the y-signal from the MAG3110 and Vy from the PHEBS correlated.
A�erwards the change in magnetic �eld was generated by slowly turning the setup 360◦. �is
would give a maximal and minimal value of Vy that would be in the same order of magnitude as
the signals generated by a PHEBS in orbit.

5.2.2 Data processing

To illustrate the basic data processing, the data acquired from moving a magnet around the setup
is used as an example. Figure 14 (a) and (b) show the raw data; the data from the MAG3110
and the signals Vy+ and Vy− respectively. �e large bias is clear on �gure 14 (b), and no clear
correlation between Vy and the Y-axis of the MAG3110 is evident. Even when subtracting the
bias, as has been done for �gure 14 (c), no correlation can be seen. Either, there simply is no
signal generated from the PHEBS, or the signal is so small, that it disappears in noise. In an
a�empt to �lter some of the high frequency noise, simple exponential smoothing is used.
First Vy is de�ned as in equation (43)
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Figure 14: Steps in the data process. Top, (a): �e signals from the MAG3110.
(b): �e unedited signals from the PHEBS sensor. (c): �e signals from the
PHEBS sensor, with the o�set removed. (d): �e exponentially smoothed Vy
signal, Sy and the y-component from the MAG3110 for comparison. As can
be seen from (a) and (d), the data output from the MAG3110 is treated as being
unit less. �e MAG3110 is not fully characterised, and as such the output is
only proportional to the magnetic �eld components. But as all the magnetic
vectors - both in the reference and body frame - are to be normalised, having
an output simply proportional to the true magnetic �eld is su�cient.
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5 Characterisation of the Sensors

Vy = V no bias
y+ − V no bias

y− (43)

Vy is now smoothed in accordance with the de�nition of simple exponential smoothing as given
in [5];

Sy,n = (1− λ)Vy,n + λSy,n−1 n = 0, 1, 2, .., N (44)

where λ ∈ [0, 1] and N is the total number of measurements. �is means, that the smoothed
value, Sy,n is based (1− λ) · 100% on the measured datapoint, Vy,n, and λ · 100% on the previous
smoothed point, Sn−1. As such, for high values of λ, high frequency changes can be smoothed
o� the data. Here, λ = 0.95 is used, and the resulting graph can be seen on �gure 14 (d).

Finally, correlation between the MAG3110 data and the PHEBS signals can be seen. It is however
noted, that the PHEBS signals still are very noisy and of a very small amplitude< 2 mV. A similar
data processing procedure was used for the remainder of the tests in treated in this section.

5.2.3 Results

�e voltage applied to the PHEBS, Uin was set to the following values, Uin = [10.0V, 12.5V, 15.0V,
20.0V, 22.5V, 25.0V, 27.5V, 30.0V]. For each increment in voltage, the circuit board was slowly ro-
tated 360 degrees.
�e �rst parameter to be investigated is the noise of the PHEBS signals.

2.3.3.1 Noise
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Figure 15: (a) �e signals generated by the PHEBS for di�erent values of Uin.
Here the bias is removed as described in section 5.2.2. (b) �e exponentially
smoothed signals.
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Figure 15 (a) and (b) show the un�ltered and the smoothed data. �e di�erence between the two
graphs is clear, and the noise is very evident. �e signal to noise ratio (SNR) was calculated from
the actual data and the smoothed data, and the SNR as a function of Uin can be seen on �gure
16.
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Figure 16: �e signal to noise ratio of the PHEBS signals in both dB and mag-
nitude.

As can be seen on �gure 16, the usable signal is never larger than the noise, which renders
the PHEBS practically useless. �e SNR does increase with Uin, but the curve breaks at 25 V.
Whether this is an inherent property of the PHEBS, or due to the circuit being build on a bread
board (which are infamous for being noisy) is unknown. Either way, it seems improbable to
overcome the issue of the SNR by simply increasing Uin, as - even before the 25 V break - the
SNR seems to converge to a set value as the voltage increases.

2.3.3.2 Sensitivity and Bias

�e sensitivity of the PHEBS should increase linearly with Uin, as stated in equation (6). As the
PHEBS was rotated 360 degrees during this experiment, the sensitivity was calculated as

S = ∆Sy
∆By

= max(Sy)−min(Sy)
2 · the horizontal intensity of Earth’s magnetic �eld

(45)

�e horizontal intensity of Earth’s magnetic �eld was found through [12], and the output, as
well as the date and coordinates used for calculations, can be seen in appendix B. �e bias was
calculated as the di�erence between the mean of Vy+ and the mean of Vy− before any correction
was applied. �e trends can be seen on �gure 17.
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Figure 17: (a) �e sensitivity of the PHEBS as a function of Uin. (b) �e bias
of the PHEBS as a function of Uin.

As expected the sensitivity appears to increase linearly as a function of Uin, as does the bias. �e
gain in sensitivity per voltage increase is however so small, that combined with the results of
section 2.3.3.1 and the addition of the increase in the bias, the PHEBS chips initially chosen as
the magnetic sensor for the project were deemed un�t.

5.2.4 Hypothesis of Why the PHEBS Failed

�e tested batch of PHEBS chips were fabricated during the fall of 2016 [3]. Unfortunately, dur-
ing the depositing of the magnetic metals, see �gure 6 in section 2.2, the thickness of the AFM
and FM layers were switched by mistake. As described in section 2.2, the AFM layer is used as a
reference, forcing the magnitisation of the FM layer to line up with the easy axis when no outer
�eld is present. �e ratio of the AFM and FM layer thicknesses greatly in�uences the usability of
the PHEBS. If the AFM layer is too thin, the sensor becomes uncertain, as the reference point will
be ill de�ned. On the other hand, if the AFM layer is too thick, the sensor becomes insensitive,
as a stronger outer magnetic �eld will be needed to change the magnitisation of the FM layer.
Here, the later was the case.

�e bias of the PHEBS sensor is likely due to non-uniformity of the resistance in the four me-
anders. Most PHEB sensors produced at DTU DanChip have few meander leads. �ese PHEBS
have signi�cantly smaller biases, but they’re still present [1].

When increasing the number of leads - which should result in an increase in the normalised
sensitivity, see equation (4) - the area where magnetic metal is to be deposited also increases.
�e large area of each PHEBS could allow for irregularities in the depositing to have a greater
e�ect on the meander resistances than for a smaller sensor.
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Figure 18: A cross section of a PHEBS sensor where li�-o� of the resist is
yet to be performed. �e �gure shows how uneven depositing of metals can
result in a non-uniformity of the resistance in the meanders. �e dimensions
are greatly exaggerated.

As can be seen on �gure 18 uneven depositing of metals could result in meander 2 having a
higher resistance than meander 1, as meander 2’s cross-section area is smaller. For a PHEBS
with fewer meander leads, this di�erence would be less prominent.

Fabricating the PHEBS with the correct AFM and FM ratios would improve the sensitivity of
the PHEBS. �e uneven depositing could be due to human error in the alignment steps of the
fabrication, resulting in varying widths of the meanders, or it could originate from an inherent
unevenness in the machine used for depositing, thus creating non-uniform thicknesses of the
meanders.
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6 Calculating the Body Vectors From Sensor Data

6.1 De�ning the Body and Reference Frame Vectors

To calculate the body vectors, �rst the reference and the body frame must be de�ned. Figure 19
show the orientation of both frames before rotation starts (t = 0).

Figure 19: �e two frames at time t = 0.

As can seen from �gure 19 the two frames align at t = 0. As the reference frame is kept stationary,
so are the reference vectors, r1 and. r1. Looking at �gure 19 it is clear to see, that

r1 = [ 0 1 0 ]T (46)

�is is however dependent on the light beams from the lamp being completely parallel with the
second axis of F . �e lamp does however produce cone shaped light, and this might reduce the
accuracy of the reference vector and the data produced by the sun sensors.

�e magnetic reference vector, r2 is found by measuring the magnetic �eld with the MAG3110
for a couple of minutes, while the CubeSat mock-up is stationary and the two frames are aligned.
�e individual components are then found by taking the mean of the MAG3110 output and nor-
malising.

�e data collected by the sensors are used to de�ne the two vectors

B1 = [ xSun ySun zSun ]T (47)

B2 = [ Bx By Bz ]T (48)

where the three components are parallel with the three principal axes of the body frame, S. �e
body vectors are then de�ned as
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b1 = B1

||B1||
(49) b2 = B2

||B2||
(50)

6.2 Calculating the body vectors

At t = 0, SS2 is in direct line of the light. �en as the mock-up rotates clockwise the order the
panels are illuminated in is, from le� to right

SS2→ SS4→ SS3→ SS1→ SS2

Figure 20 shows the unedited currents of all the photo diodes as the mock-up rotates as well as the
data output from the MAG3110. �e magnetic body vector, b2, is merely found by normalising
the three magnetic components.
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Figure 20: �e unedited data the two body vectors, b1 and b2 will be calculated
from. (a) shows the unedited MAG3110 data, and (b) shows the unedtited sun
sensor data.

To �nd the solar body vector, b1, �rst the sun sensors’ outputs were cropped to only include the
data within the various sensors linear area, as described in section 5.1.2. �is enables the angles
to be found as a linear regression of the current ratios. It also insures, that the individual sun
sensor’s z-component is positive, and the de�nitions of equations (2) and (3) from section 2.1 can
be used. �e resulting normalised components can be seen on �gure 21.
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6 Calculating the Body Vectors From Sensor Data
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Figure 21: �e three components of b1 as found by the di�erent sun senors.
Here the third component of SS1 is set to be 0, as photo diode 3 on SS1 did
not work. As the mock-up only rotates around the horizontal plane, this
component should be 0.

As can be seen from �gure 21 the sensor output overlap. �is means that b1 is de�ned throughout
the rotation. In the areas of overlap, the �nal component values are simply found as the mean
of the two component values. �e �nal normalised body vectors can be seen on �gure 22.
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Figure 22: (a): �e solar body vector, b1. (b): �e magnetic body vector, b2.
From (a) it is clearly seen, how the components have discontinuities in the
areas of sensor overlap. �e reason as to why the components, as seen on
�gure 21, do not align completely is either due to the linearisation being to
rough of an approximation, or because the sensors aren’t aligned perfectly
on the CubeSat mock-up. Most likely it is a combination of the two.
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7 Application of the Weighted TRIAD Algorithm

Its these body vectors, and the previously de�ned reference vectors, that are used for the a�itude
determination in the following section.

7 Application of the Weighted TRIAD Algorithm

7.1 Determining the Variance of the Two Body Vectors

As described in section 3.2 the weights for the TRIAD algorithm are based on the variances of
the reference and body vectors.

To �nd the body vector variances, σ2
b1 and σ2

b2 , the sensors were set to measure the components
for approximately 10 minutes while the mock-up was stationary. From these measurements the
variances were calculated.

To determine whether the variance of the MAG3110 measurements were dependent on the mag-
nitude of the �eld, the mock-up was turned 90 deg each 10 minutes. As such each of the three
components would be of a di�erent magnitude or each variance measurement. �e results can
be seen on �gure 23.
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Figure 23: �e magnetic variance measurements. Top: �e entire measure-
ments. Bo�om: Each angle increment and the variances of the three compon-
ents.

As can be seen from �gure 23 the variance of each component remains within the same range
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7 Application of the Weighted TRIAD Algorithm

despite the angle and - and therefore also the magnitude. �is means that the variance could be
determined as a constant independent of the magnetude of the magnetic �eld.

�e total vector variance, which must be a scalar, was found as the absolute sum of all the ele-
ments in the covariance matrix of the three components. �is was done for each angle, and the
highest variance was chosen;

σ2
b2 = 8.2945 · 10−4 (51)

A similar approach was used for the sun sensors, except the angles -45, 0 and 45 deg were used.
�e results can be seen on �gure 24.
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Figure 24: �e sun vector variance measurements for three di�erent indent
angles.

It is noted that the variances of the sun vector components are very small by comparison. For 0
degrees, the z-axis component (the component parallel with the norm of the sun sensor surface)
is extremely small compared to the z-component for the other two angles. �is indicates, that
the variance of the sun vector is not angle independent. However, when calculating the sum of
the covariance matrices, all turned out to be of the same order of magnitude, ≈ 10−7. �erefore
the total sun vector variance was set as a constant;

σ2
b1 = 7.9747 · 10−7 (52)

As r2, the magnetic reference vector, is found through the same magnetic sensor at b2, the vari-
ance of r2 was set equal to σb2 .
�e same was done for the reference sun vector, r1.
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7 Application of the Weighted TRIAD Algorithm

7.2 Application of Wahba’s Problem for Two Observations

Following the equations from section 3.2 the a�itude determination matrix for each measure-
ment was found, and following the equations from section 3.3, the Euler angles were extracted.
�ese angles, as well as the theoretical angles for comparison can be seen on �gure 25.
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Figure 25: (a): �e three measured Euler angles as a function of time, and
the theoretical angles for comparison. (b): �e determinant of each a�itude
matrix as a function of the time. It is noted, that the determinant is far from
being +1 as it should. (c): �e a�itude error, calculated as εφi

= φi,theoretical−
φi for i = 1, 2, 3.

From �gure 25 (a) it is seen, that the three measured Euler angles follow the basic pa�ern of the
theoretical angles. �e a�itude errors are however quite large, as can be seen from both 25 (a)
and (c).

�e cause of this is likely ill-de�ned a�itude matrices. As �gure 25 (b) shows, the determinant of
AS/F is far from being +1. �e a�itude determination matrix should be based on two orthogonal
triads. �is would makeAS/F orthogonal as well, and as with all orthogonal matrices, det(AS/F )
should be ±1. If det(AS/F ) 6= 1, that would mean that the triads used were not orthogonal,
resulting in faulty angle conversion.

As noted previously, the variance of the body sun vector was found to be signi�cantly smaller
that the variance of the body magnetic vector. But this variance was based on the measurements
of a single sun sensor. b1 is however based on measurements from several sensors. As such, the
value of σ2

b1 is most likely too small, placing too much weight on the sun sensor measurements
in the a�itude determination process. �erefore the sun body vector weight is rede�ned.
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7 Application of the Weighted TRIAD Algorithm

7.3 Rede�ning the Weights

As discussed in section 3.2, Wahba’s problem consists of �nding the weights that minimise the
loss function, equation (34). Here the weight, a1 based on σ2

r1 and σ2
b1 will be rede�ned through

a similar approach.

From �gure 25 (b) it is clear, that the greatest a�itude error is on φ3. As the theoretical value of
φ3 is known, σ2

b1 will be determined as the sun body vector variance that minimises the sum of
squared errors (SSE) of φ3:

SSE =
M∑
i=1

(φ3,theoretical,i − φ3,i)2 (53)

Where M is the number of measurements.
�is sum was calculated from various values of σb1 , and the loss function graph can be seen on
�gure 26.
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Figure 26: �e sum of squared errors of the third Euler angle, φ3, as a function
of the solar body vector standard deviation, σb1

�e minimum of this function was found for

σb1 = 0.61462 ⇒ σ2
b1 = 0.37776 (54)

�is newly found value of σ2
b1 was then used instead to set the weights.

7.4 Results

With the new weights, the results presented on �gure 27 were obtained. From �gure 27 (a) and
(c) the improvement is clearly evident. Figure 27 (b) also shows how the determinant of the at-
titude determination matrices are much closer to +1 than previously.
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Figure 27: (a): �e three measured Euler angles calculated with the new
weights, and the theoretical angles for comparison. (b): �e determinant of
each a�itude matrix as a function of the time. It is noted, that the determ-
inant of AS/F is much closer to +1 now. (c): �e a�itude error, calculated as
εφi

= φi,theoretical − φi for i = 1, 2, 3.

�e maximum errors of each Euler angle, were found to be

max εφ1 = 0.0534 rad = 3.0596 deg (55)
max εφ2 = 0.1005 rad = 5.7582 deg (56)
max εφ3 = 0.1105 rad = 6.3312 deg (57)
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9 Conclusion

8 Discussion

On �gure 27 (c) it is noted, how both residuals for φ1 and φ2 do not resemble white noise, but
instead seem follow slight sinusoidal motion. �is could be due to the a�itude determination
being faulty, but it could also be a result of the experimental set up being slightly crooked. �e
wast majority of the experimental set up is assembled by hand, making it of limited accuracy. If
the set up is crooked, the theoretical Euler angles will not describe the true motion of the Cube-
Sat mock-up and this would result in faulty residuals. �erefore, instead of the sinusoidal shape
of the residuals indicating erroneous a�itude determination, it could be the an indication of the
true, slightly crooked, rotation of the mock-up. �is would make the determination of at least
φ1 and φ2 more accurate than listed in section 7.4.

However, one of the main limitations of the experimental set up is its inability to adequately sim-
ulate tumbling motion. As of now, the rotational stage only allows for rotation around one axis,
which is a very coarse approximation to the rotations a spacecra� would experience in orbit.
From �gure 27 (c) it is evident that the measurements of φ3 are the most erroneous. �is indic-
ates, that the a�itude determination is less accurate for axes that experience rotation. �erefore
the maximum errors of φ1 and φ2 would most likely be larger than the ones listed in section 7.4
if rotation also occurred around the �rst and second axes.

�e sun sensors are limited in that they are only usable within a certain angular interval. While
it was shown in section 6.2 that the usable range of the sensors did overlap, resulting in a solar
body vector de�ned for a full 360 deg rotation, it was also evident, that the components of b1
had discontinuities where sensor data overlapped. It was also shown in section 7.2 and 7.3, that
the variance of b1 needed to be much larger than originally anticipated. �is means, that despite
full coverage, the body vector generated from the sun sensors was quite inaccurate.

A great deviation from the initial goals of this thesis was the exclusion of the PHEBS as a sensor.
While proper fabrication most likely would result in more capable magnetic sensors, many of
the challenges surrounding the usage of the PHEBS, as described in section 5.2, would still ap-
ply. Further research into the use of the PHEBS as a means a�itude determination needs to be
conducted before a �nal verdict on the PHEBS can be made.

9 Conclusion

In this Bachelor’s thesis, the usage of the SunMag chip as a means of satellite a�itude determin-
ation was explored.
An initial conclusion, was that the usability of the PHEBS used for this project was inadequate.
Due to human errors in the fabrication, the sensitivity of the PHEBS was too low, and the inher-
ent bias of the sensors made them un�t for a�itude determination.
On the other hand, the sun sensors were capable of determining the solar body vector for a 360
deg rotation, and therefore usable for a�itude determination. It was however found, that the solar
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10 Future work

body vector was less accurate than originally anticipated. �is initially resulted in the weighted
TRIAD algorithm being unable to acceptably �nd the Euler angels. �is issue was overcome by
realising the inaccuracy of the solar body vector, and compensating by altering the weights used
in the TRIAD calculations.
�e uncertainties of the three Euler angles were found to be

δεφ1 = ±3.1 deg δεφ2 = ±5.8 deg δεφ3 = ±6.3 deg (58)

�ese uncertainties are however ambiguous as discussed in section 8.
While a complete a�itude determination system utilising the SunMag chip was not completed,
the work conducted and described in this thesis has made the initial progress towards this goal.

10 Future work

Carrying the project forward, the inclusion of all six sun sensors could would allow for solar
body vector determination around other axis than the one explored in this thesis. �e labor-
atory, where the practical work has been carried out, is in possession of an air-cushion driven
spherical rotational stage. Altering the experimental set up to include this rotational stage would
let the CubeSat mock-up rotate around all three axes.

As brie�y mentioned in section 5.1.2 the sensitive area of the sun sensors was found to not be
completely linear. Investigating the origin of this irregularity - whether inherent to the sensors
or due to the limitations of the light source used for testing - could improve the sun sensors
ability to determine the solar body vector.

While the PHEBS utilised in this thesis ended up not being included in the a�itude determination
system, properly fabricated PHEBS could be of future use. �e fabrication of the full SunMag
chip is scheduled to be undertaken during the summer of 2017. If the fabrication is successful,
the SunMag could be tested in the experimental set-up constructed during the practical work of
this thesis.

To increase the accuracy of the a�itude determination, an extended Kalman �lter could be im-
plemented. Kalman �ltering is o�en used in the context of a�itude determination and control.
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A Sun Sensor Dimensions

A Sun Sensor Dimensions

Parameter Description Value on used sun sensor
a �e height of a single triangular photo diode. 2400 µm
b �e half-width of the sun sensor. 750 µm
b′ �e distance from the centre of the sun sensor to the

centre of the illuminated area on the sensor.
–

d �e distance between the two triangular photo diodes. N/A
c �e height of the slit. 2800 µm
s �e width of the slit. 550 µm
s′ �e width of the illuminated area. –
x1 �e centre height of the illuminated area on photo diode

1.
–

x2 �e centre height of the illuminated area on photo diode
2.

–

A1 �e illuminated area on photo diode 1. –
A2 �e illuminated area on photo diode 2. –
α �e smallest of the two acute angles of the triangular

photo diode
32.0 deg

h �e height of the quartz layer. 495 µm
g �e height of the gold layer. 0.2 µm
u �e reduction of the width of the indent light beam due

to the non-zero tickness of the gold cover.
–

θ1 �e indent angle of the sunlight. –
θ2 �e angle of the refracted light. –

Table 1: Description and values of the various measurements and parameters
introduced on �gure 3. When a parameter is dependent on the indent angle
of the sunlight, its value is set to –.
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B �e horizontal intensity of the Earth’s magnetic �eld

B �e horizontal intensity of the Earth’s magnetic �eld

Figure 28: �e data generated from [12]
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C Sun Sensor Characterisation

C Sun Sensor Characterisation
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Figure 29: Results of the characterisation for photo diodes 1 and 2 of SS2.
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Figure 30: Results of the characterisation for photo diodes 3 and 4 of SS2.
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SS3 x-axis

-2 -1 0 1 2

Angle, [rad]

0

0.01

0.02

0.03

0.04

C
u
rr

e
n
t,
 [
m

A
]

The two currents. 

I
SS3,1

I
SS3,2

-1.5 -1 -0.5 0 0.5 1 1.5

Angle, [rad]

-0.5

0

0.5

1
The current-angle relation

(I
1
-I

2
)/(I

1
+I

2
)

Linear fit. R2 =0.99696

Figure 31: Results of the characterisation for photo diodes 1 and 2 of SS3.
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Figure 32: Results of the characterisation for photo diodes 3 and 4 of SS3.
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C Sun Sensor Characterisation
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Figure 33: Results of the characterisation for photo diodes 1 and 2 of SS4.
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Figure 34: Results of the characterisation for photo diodes 3 and 4 of SS4.
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