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Summary (English)

This thesis explores the various facets in integrating new hardware with existing
robot platforms such as ROS and bridging the gap to other robot platforms such
Mobotware.
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Summary (Danish)

Målet for denne afhandling er at udforske de forskellige problemer der opstår
når nyt hardware skal integreres med eksisterende robot platforme så som ROS
og hvordan forskellige robot platforme bedre kan integreres med hinanden.
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Preface

In today’s world an ever growing amount of industrial automation is fueling
the need for evermore sophisticated robots. However building and controlling
these robots without large abstractions has proven infeasible from an engineering
standpoint, much like modern software systems such as Windows, Facebook
and Google Search would be practically impossible to implement using only
assembly. Abstractions in embedded systems however must carefully consider
the real-time aspects and constraints of the system which has proven to be
a difficult endeavor. Fortunately most systems can settle for soft real-time
constraints by isolating the hard real-time parts to separate systems. This
allows developers to take advantage of Linux and all of the abstraction benefits
it provides freeing developers to focus on the automation problem they’re trying
to solve rather.

To facilitate robot programming even larger abstractions exists in the form of
robotics middleware that enables reuse of common components and subsystems
and sharing these with the community. Notable examples of these includes
Robot Operating System (ROS), Player Project, Mobotware and MIRO. The
platforms used in this project is described in chapter 1.

When interfacing with middleware special care should still be taken to minimize
deadline misses to avoid unacceptable system performance degradation. The
overarching goal of this project is therefore to explore how existing systems
can be integrated with the ROS middleware while keeping performance and
real-time constraints in mind.

This project has taken place in two parts that are only slightly related in that
they both interact with ROS.
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The first part is improving upon an existing ROS hardware driver for the Uni-
versal Robot family of robot arms and is described in chapter 2.

The second part consists of building a software bridge between Mobotware and
ROS such the simple scripting language SMR-CL from Mobotware can be used
to control robots supported by ROS as described in chapter 3.

Lyngby, 09-June-2017

Simon Rasmussen
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Chapter 1

Platforms

This chapter gives a detailed overview of the various robot platforms and related
software used in this project.



2 Platforms

1.1 Robot Operating System

Robot Operating System (ROS) is a middleware built on top of the Linux kernel
and contains many community provided packages facilitating interaction with
various robot platforms, sensors and actuators.

/odom

/cmd_vel

/goal

Controller

Odometry Planner

Motor

Figure 1.1: Graph of
nodes and topics.

At its core ROS is a distributed message passing sys-
tem with many predefined message types where a
central master service called roscore coordinates
data streams and logging.
ROS calls message channels for topics and each topic
is strongly typed to only accept one kind do mes-
sage. These topics are published and subscribed
to by what ROS defines as nodes where a OS pro-
cess can run one or many nodes. Nodes connect to
roscore at startup and declare which topics they
publish and/or subscribe to.
For example an odometry node can declare
it will publish odometery messages of type
"nav_msgs/Odometry" to the "/odom" topic. A
controller node would then subscribe to the odom-
etry and goal topics and from these calculate steer-
ing commands of type "geometry_msgs/Twist" to be published to the
"/cmd_vel" topic. A motor node would subscribe to this topic and convert it
into native motor commands that gets sent over I2C. A graph of the nodes and
topics can be seen in Figure 1.1 where rounded squares represents nodes and
edges represent topics.

1.1.1 Topics, Messages and Services

Each topic published by ROS nodes have a specific message type associated with
them, for example "geometry_msgs/Twist" for "/cmd_vel" as in the ex-
ample described above. These message types are described with a Domain Spe-
cific Language (DSL) called ROS Message Description Language (MDL) to fa-
cilitate interoperability between different programming languages with Python
and C++ supported by default. MDL is very straightforward and each line
simply states a field and its type, furthermore the language contains some sim-
ple base types such as bool, intX, uintX, floatX, string, time and
duration where X denotes the type size in bits. Appending [] to a field
type turns it into an array. Field types can be message types defined by
other packages which in turn also can have nested messages, for example the
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"geometry_msgs/Twist" description can be seen in Listing 1.1 which refer-
ences "geometry_msgs/Vector3" as seen in Listing 1.2.

1 Vector3 linear
2 Vector3 angular

Listing 1.1:
"geometry_msgs/Twist".

1 float64 x
2 float64 y
3 float64 z

Listing 1.2:
"geometry_msgs/Vector3".

Naturally these message descriptions aren’t useful on their own and ROS there-
fore has a tool to generate serialization and deserialization code for C++ and
Python and community tools exists for other languages.

Furthermore ROS has a notion of services that can be interacted with from other
nodes. These services are essentially Remote Procedure Calls (RPC) and use
the same strongly typed message system described above by taking a message
of type X as argument and returning another message of type Y. Service calls
are for example useful when toggling GPIO pins on the robot, changing runtime
parameters or switching control modes.

1.2 Mobotware

Mobotware[BAAR10] is developed by the Automation and Control (AUT) de-
partment at DTU and is used in both educational and research contexts. The
design is primarily centered around separating the hard and soft real-time parts
of robot control while facilitating an easy to extend plugin system. As shown
in Figure 1.2 the system is split into 3 parts: Robot Hardware Daemon, Mobile
Robot Controller and Automation Robot Servers.

The backbone of Mobotware is the Robot Hardware Daemon (RHD) which is
responsible for running hard real-time scheduling and communicating with both
hardware sensors and actuators.

To facilitate access of sensor and actuators from the soft real-time side of the
system RHD also maintains a variable database that is synchronized with a
single master writer and multiple reading clients through sockets. To mini-
mize network communication the whole variable database is only transmitted in
its entirety to new clients and from then only kept in sync by sending variable
changes. Variables in the database have a direction where "read" direction de-
scribes variables provided by sensors and therefore only can be read from out-
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Figure 1.2: Mobotware Design as depicted in[BAAR10].

side of RHD while "write" direction variables can be written to by the master
client.

In reality the RHD does not directly interact with any hardware but rather del-
egates it to plugins. RHD plugins vary in how specialized they are, for example
the plugin AUSerial is a generic plugin for communicating with hardware pe-
ripherals that use a serial interface and can be fully configured using XML
whereas the RFlex plugin is specialized to only work on one robot platform
namely the iRobot ATRV-Jr. The RHD is configured using a simple XML file
that describes which plugins to load and setting configuration values for these
plugins.

The master client mentioned above is in most cases the Mobile Robot Controller
(MRC) which has a host of functionality, the primary being motion control
and interpreting SMR-CL commands sent to it. SMR-CL is a very simplistic
scripting language that is primarily used in a teaching context to program the
Small Mobile Robot (SMR) to go through obstacle courses.

However SMR-CL is also used in more advanced use-cases involving Automation
Robot Servers (ARS) which primary purpose is motion planning and submits
SMR-CL commands to MRC.

1.3 Universal Robots
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Figure 1.3: UR5
robot arm.

Universal Robots is a Danish company that produces
small industrial robot arms like the UR5 model shown in
Figure 1.3. The main advantage of these robots is their
safety stop measures allowing them to work in the same
space as humans instead of requiring large clearances and
cages to prevent bodily harm to humans. Furthermore
a similar protective stop measure prevents the arm from
colliding with itself. The arm has six degrees of freedom
(DOF) while the three different models UR3, UR5 and
UR10 have different carrying capacities and reach with
higher numbered models being better.

Primary Secondary Real-time
Description State and Messages State and Version Real-time state

Port 30001 30002 30003
Frequency 10 Hz 10 Hz 125 Hz

Figure 1.4: UR Network Interfaces.

The robot can be communicated with over TCP on three
different ports as shown in Figure 1.4. The primary and
secondary ports share the package format shown in ?? where the first field of the
package is a 4 byte unsigned integer describes the entire message size including
the size field.

Control of the robot is done by sending URScript commands to the robot via
the real-time port. URScript is a python inspired programming language with
various built in methods to control the movement, run threads and do socket
communication.

1.4 Docker

Docker is a software suite that "containerizes" applications and give them a
consistent runtime environment. The basic premise is that software relies on
different versions of different libraries which can vary depending on the operating
system the software is run and/or compiled on. These libraries in turn have
their own dependencies as well which makes it very hard to ensure a consistent
operating environment across different systems.

Docker’s solution to this problem is to create lightweight images/packages that
contain a snapshot of the environment and its dependencies. Images can be built
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from other images such that only a minimal set of changes made to the parent
image must be stored. For example ROS provides docker images for the 4 most
recent versions of ROS[ROS] which in this project has been used extensively as
a development environment because ROS is only supported on Ubuntu.

Furthermore using docker in this project has been very beneficial because all
the library dependencies are explicitly listed in the Dockerfile.

Last but not least having a docker image with all build dependencies of a project
has the added benefit of making Continuous Integration (CI) much simpler to
setup because most CI services support docker.



Chapter 2

Improving ur_modern_driver

This chapter describes the work done t enao improve the ur_modern_driver[Tim]
originally written by Thomas Timm as described in [And15].
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2.1 Goals

During the beginning of this project a set of improvements for ur_modern_driver
was discussed with Thomas. Most of the improvements are based on feedback
from various people and organizations posted on the project’s Github issue page.
The final list of desirable improvements can be seen below:

• Improve support for newer versions of UR (Github issue #75)

• Publish joint temperatures (Github issue #81)

• Publish analog tool inputs (Github issue #83)

• Improve safety by implementing a ROS service that must be called to
enable the robot and recover from safety stop.

• Improve security by hardening the driver against malicious attacks.

• Improve documentation of the code.

• Improve the usability of the driver as a library that does not depend on
ROS.

• Prepare the code as much as possible to allow maintenance and ownership
to be transferred to the ROS-Industrial project. This includes various
code style and formatting changes, porting to ROS Kinetic, adding unit
testing and preparing for continuous integration.

Initially it was thought these changes could be implemented in the existing
code, however during the first week of getting familiar with the code it quickly
became apparent that the existing code was written in an ad-hoc manner that
does not follow modern software development standards. This meant that unit
testing would require extensive and very time consuming refactoring and it was
therefore decided to rewrite the driver almost entirely, despite the rule of thumb
that rewriting software systems from scratch should be avoided.

This is generally considered a good rule of thumb because it can be very diffi-
cult to catch all the edge cases that the existing code already has run into and
dealt with, especially if the rewrite is done by a different set of people than the
original implementation. However, due to the architectural deficits of the exist-
ing code as described in section 2.2 a radical shift in architecture was required
which justifies a complete rewrite. Furthermore Thomas Timm, the original im-
plementor, overseeing the rewrite helps catching potential edge cases that must
be handled properly.
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2.2 Existing Solution and Problems

This section will only give a small overview of the existing solution and not go
deep into the details of the design because from a software engineering perspec-
tive the design is non-existent. A small description of the existing solution can
be found in [And15, p. 24-27] but it does not go into much detail either. In-
stead this section will try to focus on the problems of the existing solution from
a software engineering perspective.

The existing ur_modern_driver consists of roughly 2700 lines of C++ code,
according to the cloc CLI tool[AlD], spread across eight source files and seven
header files.

As described in [And15, p. 24-27] the driver is split into 4 parts:

• UR state/message parsing handled by RobotStateRT and RobotState.
Represented by � in Figure 2.1.

• Communication with UR in both directions handled by UrCommunication
and UrRealtimeCommunication.
Represented by � in Figure 2.1.

• Trajectory execution handled by UrDriver.
Represented by � in Figure 2.1.

• ROS integration handled by RosWrapper and UrHardwareInterface.
Represented by � in Figure 2.1.

A graph of the relation between these classes and areas can be seen in Figure 2.1
where nodes represent classes and edges represent calls to functions, getters or
setters on the class pointed to.

Figure 2.1: ur_modern_driver classes and their relations.

As Figure 2.1 shows the existing driver is very complex and does not separate
concerns in a good way because every single class accesses at least one function
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from the two parsing and state classes RobotState and RobotStateRT. The
complexity is further increased by multiple threads accessing the various com-
ponents making synchronization necessary.
Another increase in complexity not shown in Figure 2.1 comes from the fact
some function calls from UrHardwareInterface to UrDriver are directly
forwarded to UrCommunication or UrRealtimeCommunication while calls
from UrHardwareInterface to RobotState goes through public field ac-
cesses of UrDriver to UrCommunication and then to UrHardwareInterface
and vice versa for RobotStateRT.

Another issue with the existing driver is code duplication and copy pasting, an
example of this can be seen in Listing 2.1 where the code to parse a new version
message received from the robot inside the buffer *buf is essentially the same
for each field. Practically all parsing in the existing driver functions like this
and is not only very verbose but could easily be abstracted.

1 void RobotState::unpackRobotMessageVersion(uint8_t* buf, unsigned int offset, uint32_t len)
2 {
3 memcpy(&version_msg_.project_name_size, &buf[offset], sizeof(version_msg_.project_name_size));
4 offset += sizeof(version_msg_.project_name_size);
5 memcpy(&version_msg_.project_name, &buf[offset], sizeof(char) * version_msg_.project_name_size);
6 offset += version_msg_.project_name_size;
7 version_msg_.project_name[version_msg_.project_name_size] = ’\0’;
8 memcpy(&version_msg_.major_version, &buf[offset], sizeof(version_msg_.major_version));
9 offset += sizeof(version_msg_.major_version);

10 memcpy(&version_msg_.minor_version, &buf[offset], sizeof(version_msg_.minor_version));
11 offset += sizeof(version_msg_.minor_version);
12 ...
13 }

Listing 2.1: Parsing of RobotState.

Direct code duplication across class can also be spotted as seen in Listing 2.2
and Listing 2.2 which handles converting data of network order to host order.

1 double RobotStateRT::ntohd(uint64_t nf)
2 {
3 double x;
4 nf = be64toh(nf);
5 memcpy(&x, &nf, sizeof(x));
6 return x;
7 }
8

1 double RobotState::ntohd(uint64_t nf)
2 {
3 double x;
4 nf = be64toh(nf);
5 memcpy(&x, &nf, sizeof(x));
6 return x;
7 }
8

Many more examples of both direct and indirect duplication exists which makes
maintenance of the code a lot more difficult because potential bugs must be
fixed in multiple places.

Due to the complicated usage of threads there are also multiple race conditions
in the code that can lead to invalid data being published to ROS. An example of
such a race condition can be found in RosWrapper::rosControlLoop which
calls getToolVectorActual on RobotStateRT and publish the data and
only then calls getTcpSpeedActual to publish it. The race condition arises
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from the fact that while both getToolVectorActual and getTcpSpeedActual
internally locks the whole RobotStateRT from being updated during access,
RobotStateRT is unlocked in between the two calls which means it may be
updated in between resulting in data from two different moments being pub-
lished with the same timestamp. While it’s unlikely to happen in practice
due to the relatively long delay of 8 milliseconds between state updates the
probability increases rapidly with CPU load. Another related threading is-
sue exists in the same loop due to the same lack of a critical region where
updates to RobotStateRT can entirely be missed if the scheduling of the
rosControlLoop thread is less than ideal.

All in all the synchronization resembles a poorly implemented producer/con-
sumer queue intermingled with lots of other concerns.
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2.3 Design

Before jumping into writing code it’s important to explore different architectural
designs and consider their pros and cons to arrive at a design that fulfills the
goals described above in the best possible manner.

Figure 2.2: RT
Pipeline Design.

The primary take away from the existing driver is that
the majority of the complexity can be abstracted away
into multiple producer/consumer queues best described
as pipelines, one for the real-time state and another for
the regular state updates. Each of these pipelines follow
the same overall process where raw data is received from
a TCP socket which is then parsed and then published.
An example of this real-time pipeline design can be seen
in Figure 2.2 where data flows from the robot through
the producer resulting in new messages being put into
the queue while the consumer awaits new messages and
runs them through multiple sub-consumers with varying
functionality.

Ideally to prevent the non-deterministic behavior of heap
memory allocation the queue should function as a fixed
buffer of memory that parsed messages could be written
directly to. However the non real-time pipeline is compli-
cated by the fact that a single data packet from the robot
may contain a variable amount of messages that each have
different sizes and therefore can’t be pre-allocated in a sin-
gle queue. One solution would be to implement multiple
queues and have one for each message type but this com-
plicates the consumer side significantly because it must
either balance dequeuing from multiple queues or run one
thread per message type.

Instead it was decided to allow a single heap allocation per
parsed message which simplifies the pipeline to a single
producer and single consumer which operate on an abstract base type represent-
ing message. Ownership of the allocated data is handled using C++11 smart
pointer unique_ptr<T> which ensures memory is freed whenever it goes out
of scope. The ownership starts at the producer which explicitly transfer it to
the queue and from there is transfered to the consumer at which point it’s con-
verted to a shared_ptr<T> because multiple sub-consumers borrow access to
it and potentially would like to keep it around for later usage, for example until
next message to compute a delta between the two.
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However the actual data parsing is complicated by the fact multiple versions
of each message type exists and each newer version is not strictly backwards
compatible in the sense that fields sometimes change ordering, length or data
size.

Figure 2.3: Simplified UML for real-time messages.

One approach to parsing the data is to have one resulting message object that
contains all the possible fields for all versions and only assign values to the fields
for the version being parsed. This is the approach taken in the existing solu-
tion however this becomes quite messy because fields sometimes are reordered
between versions and therefore requires multiple if-else chains for each version
spread out through the parsing code. Furthermore it complicates the publish-
ing site because it explicitly need to be aware of which message version it is
publishing. Over all it complicates maintainability because adding support for
a new firmware version touches most parts of the system.

However since all message versions have a common set of fields for which parsing
can be shared the problem lends itself well to using Object Oriented Program-
ming (OOP) inheritance. This leads to a design where newer message versions
inherit from a base type containing shared fields and parsing functionality. The
parser therefore produces the base type and the consumer side then use the vis-
itor pattern to access the non-shared fields of the message version. A simplified
UML diagram for the real-time message versions can be seen in Figure 2.3.

The visitor pattern helps to ensure all consumers explicitly handles all versions of
messages as this improves maintainability when adding support for new message
versions because the compile will complain about unimplemented functions.
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2.4 General Improvements

The first and simplest improvement was adopting clang-format which is an
automated formatting tool for C and C++ code. ROS Industrial suggests[Ind]
using the ROS C++ Style Guide which Dave Coleman has kindly implemented
as a .clang-format file[Col] making the whole process automated. Similarly
the ROS naming convention for C++ was also adopted for all new code.

The next improvement made was primarily focused on improving the devel-
opment process and keeping code quality in check by enabling the GCC flags
"-Wall -Wextra -Wno-unused-parameter". These compile flags enable
some basic static analysis to avoid undefined behavior and other questionable
code constructs.

2.5 Implementation

To highlight the improved maintainability that sensible abstractions can pro-
vide compare the version message parsing code from before in Listing 2.1 to
Listing 2.2. The new version of the code not only has the same functionality as
the previous version but also improves security by preventing buffer overflows
which together with the improved readability and maintainability can only be
considered an improvement.

1 bool VersionMessage::parseWith(BinParser& bp)
2 {
3 bp.parse(project_name);
4 bp.parse(major_version);
5 bp.parse(minor_version);
6 bp.parse(svn_version);
7 bp.consume(sizeof(uint32_t)); // undocumented field??
8 bp.parse_remainder(build_date);
9 return true; // not possible to check dynamic size packets

10 }

Listing 2.2: Parsing of VersionMessage in new version.

In Listing 2.3 it can be seen how the implementation of URRTStateParser
is templated and then specialized using typedef to provide different parsers
depending on the version which is beneficial because adding support for a new
version is as simple as adding another typdef. Naturally this requires the
corresponding RTState_X class to be declared for the new version.



2.5 Implementation 15

1 template <typename T>
2 class URRTStateParser : public URParser<RTPacket>
3 {
4 public:
5 bool parse(BinParser& bp, std::vector<std::unique_ptr<RTPacket>>& results)
6 {
7 int32_t packet_size = bp.peek<int32_t>();
8 if (!bp.checkSize(packet_size)) { LOG_ERROR("Buffer len shorter than expected packet length"); return false; }
9 bp.parse(packet_size); // consumes the peeked data

10 std::unique_ptr<RTPacket> packet(new T);
11 if (!packet->parseWith(bp))
12 return false;
13 results.push_back(std::move(packet));
14 return true;
15 }
16 };
17
18 typedef URRTStateParser<RTState_V1_6__7> URRTStateParser_V1_6__7;
19 typedef URRTStateParser<RTState_V1_8> URRTStateParser_V1_8;
20 typedef URRTStateParser<RTState_V3_0__1> URRTStateParser_V3_0__1;
21 typedef URRTStateParser<RTState_V3_2__3> URRTStateParser_V3_2__3;

Listing 2.3: Templated URRTStateParser.

In order to make the pipeline creation as simple as possible a factory/utility
class was implemented to synchronously connect to the robot, fetch the first
message which is always a VersionMessage, save the result and then use the
retrieved version to construct the right parser version as shown in Listing 2.4

1 class URFactory : private URMessagePacketConsumer
2 {
3 private:
4 bool consume(VersionMessage& vm) { major_version_ = vm.major_version; minor_version_ = vm.minor_version; return

true; }
5 public:
6 URFactory(std::string& host) : stream_(host, UR_PRIMARY_PORT)
7 {
8 URProducer<MessagePacket> prod(stream_, parser_);
9 std::vector<unique_ptr<MessagePacket>> results;

10 prod.setupProducer();
11 if (!prod.tryGet(results) || results.size() == 0)
12 {
13 LOG_FATAL("No version message received, init failed!"); std::exit(EXIT_FAILURE);
14 }
15
16 for (auto const& p : results)
17 p->consumeWith(*this);
18
19 if (major_version_ == 0 && minor_version_ == 0)
20 {
21 LOG_FATAL("No version message received, init failed!"); std::exit(EXIT_FAILURE);
22 }
23
24 prod.teardownProducer();
25 }
26
27 std::unique_ptr<URParser<RTPacket>> getRTParser()
28 {
29 if (major_version_ == 1)
30 {
31 if (minor_version_ < 8)
32 return std::unique_ptr<URParser<RTPacket>>(new URRTStateParser_V1_6__7);
33 else
34 return std::unique_ptr<URParser<RTPacket>>(new URRTStateParser_V1_8);
35 }
36 else
37 {
38 if (minor_version_ < 3)
39 return std::unique_ptr<URParser<RTPacket>>(new URRTStateParser_V3_0__1);
40 else
41 return std::unique_ptr<URParser<RTPacket>>(new URRTStateParser_V3_2__3);
42 }
43 }
44 };

Listing 2.4: Partial code of URFactory.
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2.6 Unit Testing

Unit testing in ROS is implemented using gtest. Basic unit testing of the mes-
sage parsing for all versions of RobotModeData, RTState and MasterBoardData
was implemented.

Each version of each message has a testRandomDataParsing test case which
generates random bytes that are parsed and then checked to ensure the parsing
order is correct, an example of the code to do this is shown in Listing 2.5.

1 TEST(RTState_V1_8, testRandomDataParsing)
2 {
3 RandomDataTest rdt(812);
4 BinParser bp = rdt.getParser(true);
5 RTState_V1_8 state;
6 EXPECT_TRUE(state.parseWith(bp)) << "parse() returned false";
7
8 ASSERT_EQ(rdt.getNext<double>(), state.time);
9 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.q_target);

10 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.qd_target);
11 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.qdd_target);
12 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.i_target);
13 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.m_target);
14 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.q_actual);
15 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.qd_actual);
16 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.i_actual);
17 ASSERT_EQ(rdt.getNext<double3_t>(), state.tool_accelerometer_values);
18 rdt.skip(sizeof(double) * 15);
19 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.tcp_force);
20 ASSERT_EQ(rdt.getNext<cartesian_coord_t>(), state.tool_vector_actual);
21 ASSERT_EQ(rdt.getNext<cartesian_coord_t>(), state.tcp_speed_actual);
22 ASSERT_EQ(rdt.getNext<uint64_t>(), state.digital_inputs);
23 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.motor_temperatures);
24 ASSERT_EQ(rdt.getNext<double>(), state.controller_time);
25 rdt.skip(sizeof(double)); // skip unused value
26 ASSERT_EQ(rdt.getNext<double>(), state.robot_mode);
27 ASSERT_DOUBLE_ARRAY_EQ(rdt.getNext<double>(), state.joint_modes);
28
29 EXPECT_TRUE(bp.empty()) << "Did not consume all data";
30 }

Listing 2.5: Unit testing of RTState_V1_8.

The RandomDataTest class uses the same BinParser class as the various
message parsers to parse the random data which means the testRandomDataParsing
test cases only ensure correct parsing order and that the whole buffer is con-
sumed.

1 TEST(MasterBoardData_V1_X, testTooSmallBuffer)
2 {
3 RandomDataTest rdt(10);
4 BinParser bp = rdt.getParser();
5 MasterBoardData_V1_X state;
6 EXPECT_FALSE(state.parseWith(bp)) << "parse() should fail when buffer not big enough";
7 }

Listing 2.6: Unit testing of MasterBoardData_V1_X.

Furthermore each version of each message has another test case called testTooSmallBuffer
that ensures all parsing checks buffer sizes to prevent buffer overflows, an ex-
ample of such a test can be seen in Listing 2.6.
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Testing of the publishing subsystem was out of the scope of this project because
time constraints prohibited further investigation into the advanced area of unit
testing ROS nodes and topics.

2.7 System Testing

Reaching 100% code coverage with unit testing was out of the scope for this
project however to ensure the driver works as expected, system testing was
performed against version 1.8 and 3.3.4 of URSim by moving the robot arm in
the simulator and manually comparing that the published joint states matches
what the simulator numbers.

Unfortunately URSim did not perform exactly like the real robot and varied sig-
nificantly in message publishing rates ranging from 108 to 120 Hz and oscillating
over time. For this reason direct comparison of how the two drivers perform
during trajectory execution was only done using a physical robot as described
in section 2.8.
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2.8 Performance

Naturally it’s important to show that the extensive rewrite and introduction
of abstractions hasn’t impacted the performance of the driver. This can be
shown with a full system test that touches as much of the system as possible by
submitting a trajectory to follow through the ROS ActionServer interface and
measuring the position updates published to the /joint_states topic. This
kind of test was also conducted in [And15][p. 28] to compare with the even
older python driver, where it’s also suggested to minimize external factors by
conducting the test of the end (tool) joint. All the tests were conducted on
an UR5 with firmware version 1.8.14035 and the measured network latency
between the computer running the driver and the robot controller was 0.5 to
1.0 millisecond and on average around 0.8 millisecond. The network factor was
not entirely isolated as was only measured before and not continuously during
testing so external equipment connected to the same network may have caused
interference.

0 1 2 3 4 5 6 7 8

0

1

2

3

Time (s)

Jo
in

t
Po

sit
io

n
(r

ad
) org_1

org_2
org_3
org_4

v2_1
v2_2
v2_3
v2_4

Figure 2.4: Tool joint rotation over time.

The test conducted here therefore consists of first rotating the tool joint to a
neutral 0 radian position over 1 second, then 1 radian forward over 3 seconds
and then 1 radian backwards over 4 seconds. The initial 1 second zeroing is there
minimize any variance in starting position across drivers. The described trajec-
tory is submitted to the driver via a small python script that sets up logging of
the joint states and starts logging as soon as the trajectory has been submitted
and stops logging when the trajectory finished signal is received. To minimize
variance 4 tests per driver were conducted and the linux performance governor
of the machine running the driver was set to performance mode ensuring a con-
sistent CPU clock speed.

The combined 8 tests are graphed in Figure 2.4 where it can be seen that both
drivers follow the same path very closely. Looking at a 100ms slice of the same
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graph in Figure 2.5 it can be seen that of all 8 tests the two lines furthest apart
are both from the original driver and roughly has a 0.03 radian difference. One
difference to note is that the old driver appears to be slightly more consistent
in timing between multiple runs in the sense that the timestamp of sample N
in one test is within a few milliseconds of sample N of the other tests.

3 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.1

2.05

2.1

2.15

2.2

Time (s)

Jo
in

t
Po

sit
io

n
(r

ad
)

org_1
org_2
org_3
org_4

v2_1
v2_2
v2_3
v2_4

Figure 2.5: Tool joint rotation over time (zoomed).

To ensure this isn’t a problem with the new driver introducing more jitter in
the publishing of joint states a new test was devised. This test simply logs
the timestamp of published joint states and the time since the previous update
over a 60 second period. The timestamp of joint state messages are assigned by
the driver right before publishing and therefore works as easy measuring points
without having to consider the variable delay of the ROS message publishing
stack. Again to minimize variance and 4 runs per driver were conducted using
the same circumstances described above.
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Figure 2.6: Time between joint state updates.

One run from each driver can be seen in Figure 2.6 which shows both drivers
having for the most part having ±0.5 millisecond jitter with few spikes exceeding
1 millisecond. Looking at the histogram of the jitter in Figure 2.7 performance
similarity of the two drivers is further cemented by both having 99% of joint
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state updates happen between 7.5 to 8.5 milliseconds.
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Figure 2.7: Histograms of Figure 2.6.

The 3 remaining tests are plotted in Appendix B which shows the same pattern
but with some slightly larger spikes.

2.9 Discussion

Improved support for newer versions of UR firmwares have been achieved be-
cause the new driver supports version 3.3.4 which the old driver had some issues
with. Furthermore adding support for new versions have been eased thanks to
the improved parsing design.

Both joint temperatures and analog tool inputs are parsed by the new driver
however currently only the joint temperatures are published.

The service stopper has been implemented and prevents both ActionServer and
ROS Control from submitting new goals whenever the robot enters a fault state
until this state has been acknowledged.

The driver has been hardened against malicious attacks by adding both explicit
and implicit buffer size checks throughout the dangerous parsing code.

Documentation of the code has not improved substantially due to time con-
straints and a focus on stabilizing design and functionality before documenting
code that might change.

Using the driver as a standalone library has not seen any progress either because
the code cannot compile without ROS however the pipeline design has been
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built with this usecase in mind and should make isolating the ROS specific
parts fairly simple.

There has been significant progress in adopting code style changes and unit
testing, however there are still significant improvements to be made in the unit
testing department. No specific communication with ROS-Industrial has taken
place yet and should sought to ensure there are no major blocking issues pre-
venting them from adopting code ownership.

2.10 Conclusion

Looking at the design, achieved goals and the performance of the rewritten
driver it can be seen that a significant contribution has been made, in the form
of improvements and additions, despite taking significantly longer than initially
anticipated.

Besides the unfulfilled goals described above the primary improvement that
could have been made was better project management both in terms of managing
the available time and maintaining continuous contact with ROS-Industrial to
have a well defined goal that would result in transferring of ownership.

2.11 Future Work

Further testing should be the primary goal of any future work done because
the implemented testing is limited to only parsing. The first step would be to
implement unit testing of the publishing sub-system and then integration tests
of the pipelines using packet captures from the real robot.

Porting the code to ROS Kinetic is another top priority task. however the
majority of changes should be isolated to RosController and implementation
of hardware_interface::RobotHW which has some breaking changes.

Concrete contact should be established with ROS-Industrial to investigate the
precise procedure for transferring ownership, specifically regarding licenses, git
access and such. Documentation of the code also leaves a lot to be desired
and Doxygen should be integrated into the build pipeline. Last but not least a
special compile target should be introduced that builds the driver as a library
that can be used without any ROS code.
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Chapter 3

Bridging Mobotware and ROS

This chapter describes the criteria, design, code and results of the SMR/ROS
software bridge.

In order to effectively come up with a solution the exact problem being solved
must first be defined. As it stands currently Mobotware only supports a very
limited set of robot platforms and as such limit’s its impact and reach[BAAR10].
It’s therefore desirable to support more platforms but with the limited funding
and manpower of the DTU’s Robotics department it’s simply infeasible to do
so on any impactful scale. As such the next best solution is to collaborate with
external entities to leverage their code and since ROS has a large amount of
pre-written hardware interfaces it seems like a good choice.

The problem therefore becomes: "How can Mobotware be integrated with the
ROS ecosystem to leverage existing ROS hardware interfaces/drivers?"
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3.1 Solution Criteria

Before answering that question a set of criteria for a possible solution must be
defined:

• The implementation must incorporate well with the Mobotware hard/soft
real-time boundary.

• Basic movement should be supported "out of the box" for wheeled robots.

• Easy to extend with support for new types of hardware interfaces.

Interfacing with advanced sensors like laser and cameras to/from ROS is however
outside the scope of this project.

3.2 Solution Space

Before settling for a solution design it’s important to explore different options
and their pros & cons. The primary design decision to be made when integrating
Mobotware and ROS is where to slice open Mobotware and inserting ROS, three
of these possible incision points are described below.

A) SMR-CL Interpreter

One solution would be to throw away much of the existing Mobotware code
and instead implement a new interpreter that interfaces directly with ROS.
Effectively this would be equal to replacing This would provide a more integrated
experience for the SMR-CL users/programmers in terms of having access data
published from ROS topics. To minimize the amount of new code existing ROS
packages such as move_base could be used to implement the motion control
and would make many of the SMR-CL commands trivial to interpret. However
it would require a substantial amount of work to provide compatibility with the
robot platforms Mobotware currently supports as many of these do not have
corresponding ROS hardware interfaces.

In summary this solution is fairly good if the primary goal is to bring the
simplicity of robot programming to ROS but cannot support the current more
advanced usages of Mobotware.
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B) RHD Plugin

By far the simplest and fastest solution to implement is an RHD plugin that
synchronize the ROS odometry topic with the two RHD database variables
"transpos" and "rotpos". RHD has multiple controller modes most of
which are not well suited to control ROS because the "cmd_vel" topic format
is centered around controlling the robot using linear and angular velocities which
are hard to translate to from a differential drive controller. Fortunately MRC
has a velocity & omega control mode that with simple trigonometry can be
converted to the linear and angular velocity format ROS uses. In this mode
MRC writes velocities to "cmdtransvel" and "cmdrotvel".

This approach enables SMR-CL control of most wheeled ROS robot that support
the "cmd_vel" but does not make it feasible to add support for infrared and
line sensors.

In the end this approach was selected because of time constraints and doubts
about the feasibility of integrating ROS and Mobotware that could be eliminated
as fast as possible with a proof of concept.
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3.3 Implementation

Implementing an RHDPlugin is fairly straightforward because it’s simply a
shared library (.so file) that exports 3 C functions:

• int initXML(char *filename) which initializes the plugin and pro-
vides a path to the RHD configuration file.

• int periodic(int RHDtick) which is called once at every RHD tick.

• int terminate (void) which is called when RHD shuts down.

However since the plugin integrates with ROS which requires C++ the functions
must be wrapped in extern "C" to prevent the functions names from being
mangled by the C++ compiler.

Plugins access the variable database through the interface defined in database.h
from RHD which is pure C and not very convenient to use so templated C++
wrappers was created to represent read and write database variables. The base
class can be seen in Listing 3.1 which takes a direction and name to create ei-
ther a read or write variable and saves the id. Implicit casting to the templated
T parameter is implemented to make accessing the variable seamless.

1 template <typename T>
2 class DBVal
3 {
4 protected:
5 int id_;
6 T value_;
7
8 DBVal(const std::string& name, const char dir)
9 : id_(createVariable(dir, IPT, name.c_str()))

10 { }
11 DBVal(const DBVal& o) = default;
12 DBVal(DBVal&& o) = default;
13 DBVal& operator=(const DBVal& o) = default;
14 DBVal& operator=(DBVal&& o) = default;
15
16 public:
17 static const auto IPT = 1 + ((sizeof(T) - 1) / sizeof(int));
18 operator T() const { return value_; }
19 };

Listing 3.1: Database value wrapper.

Using the base wrapper a wrapper for write variables is implemented as seen
in Listing 3.2 where the update function should be called on each call to the
periodic(int rhdTick) function to ensure the value is kept in sync. Be-
cause the RHD database internally stores values in ints the update function
work allocating an int buffer that can contain the type T which the value from
the database is copied into and then from there assigned to the value_ field.
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1 template <typename T>
2 class DBWriteVal : public DBVal<T>
3 {
4 public:
5 DBWriteVal(const std::string& name)
6 : DBVal<T>(name, ’w’)
7 { }
8 DBWriteVal(const DBWriteVal& o) = default;
9 DBWriteVal(DBWriteVal&& o) = default;

10 DBWriteVal& operator=(const DBWriteVal& o) = default;
11 DBWriteVal& operator=(DBWriteVal&& o) = default;
12
13 bool update()
14 {
15 if(!isUpdated(’w’, this->id_))
16 return false;
17
18 int buf[DBVal<T>::IPT];
19 int res = getWriteArray(this->id_, DBVal<T>::IPT, buf);
20 if(res)
21 std::memcpy(&(this->value_), buf, sizeof(T));
22
23 return true;
24 }
25 };

Listing 3.2: Database write wrapper.

Similarly a read variable wrapper shown in Listing 3.3 is implemented with
overridden operators which ensures writes to the variable is always synchronized
to the variable database.

1 template <typename T>
2 class DBReadVal : public DBVal<T>
3 {
4 private:
5 inline void update(const T& value)
6 {
7 int buf[DBVal<T>::IPT];
8 std::memcpy(buf, &value, sizeof(T));
9 //todo check error

10 setArray(this->id_, DBVal<T>::IPT, buf);
11 }
12
13 public:
14 DBReadVal(const std::string& name)
15 : DBVal<T>(name, ’r’)
16 { }
17 //Delete copy ctr/assign to avoid assigned value_
18 //going out of sync between copies
19 DBReadVal(const DBReadVal& o) = delete;
20 DBReadVal(DBReadVal&& o) = default;
21 DBReadVal& operator=(const DBReadVal& o) = delete;
22 DBReadVal& operator=(DBReadVal&& o) = default;
23
24 inline DBReadVal<T>& operator=(const T& value)
25 {
26 update(value);
27 this->value_ = value;
28 return *this;
29 }
30 inline DBReadVal<T>& operator+=(const T& value) { return this->operator=(this->value_ + value); }
31 inline DBReadVal<T>& operator-=(const T& value) { return this->operator=(this->value_ - value); }
32 inline DBReadVal<T>& operator*=(const T& value) { return this->operator=(this->value_ * value); }
33 };

Listing 3.3: Database read wrapper.

Furthermore a small helper class for working with 2D vectors was implemented.
Combining the database wrappers and vector helper it only takes a few linens
of code to keep the database up to date with odometry from ROS as seen in List-
ing 3.4 where transpos_ and rotpos_ are fields of type DBReadVal<int32_t>.
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1 void SMROS::onPosUpdate(Vec2D pos, double theta)
2 {
3 auto delta = pos - prev_pos_;
4 auto frame = delta * Vec2D(std::cos(theta), std::sin(theta));
5
6 transpos_ += static_cast<int32_t>(frame.sum() * LINEAR_VEL_SCALE);
7 rotpos_ = static_cast<int32_t>(theta * ANGULAR_VEL_SCALE);
8
9 prev_pos_ = pos;

10 }

Listing 3.4: Updating "transpos" and "rotpos".

This onPosUpdate function is called every time a new odometry message is
received from ROS.

The final piece of the puzzle is publishing velocity commands to "cmd_vel"
whenever the "cmdrotvel" or "cmdtransvel" database variables update
as seen in Listing 3.5. The primary thing to notice here is that the linear
velocities have a cutoff of 0.005m/s because otherwise the simulation described
in section 3.4 would slowly drift out of place over time, it’s however uncertain if
this would happen or not with a real robot due to friction. Another important
implementation detail here is that cmd_vel_publisher_ is not a regular
ROS publisher but rather a realtime_tools::RealtimePublisher which
runs the actual publishing in a separate thread. This is important because
the code runs in the hard real-time section of Mobotware and should under no
circumstances block the thread.

1 bool SMROS::tick(int rhdTick)
2 {
3 static const double epsilon = 0.005;
4 bool updated = cmdtransvel_.update();
5 updated |= cmdrotvel_.update();
6
7 //only publish when either rot or vel changed
8 if(updated && cmd_vel_publisher_.trylock())
9 {

10 double rot = (cmdrotvel_ / ANGULAR_VEL_SCALE);
11 double vel = cmdtransvel_ / LINEAR_VEL_SCALE;
12 auto x = std::cos(rot) * vel;
13 auto y = std::sin(rot) * vel;
14 //ignore very small values to remove instability that would
15 //result in drifting
16 x = x > epsilon ? x : (x < -epsilon ? x : 0.);
17 y = y > epsilon ? y : (y < -epsilon ? y : 0.);
18
19 //MRC rotvel to ROS geometry_msgs/Twist angular.z
20 //MRC transvel to ROS geometry_msgs/Twist linear x & y
21 cmd_vel_publisher_.msg_.linear.x = x;
22 cmd_vel_publisher_.msg_.linear.y = y;
23 cmd_vel_publisher_.msg_.linear.z = 0.;
24 cmd_vel_publisher_.msg_.angular.z = rot;
25 cmd_vel_publisher_.unlockAndPublish();
26 }
27
28 return ros::ok();
29 }

Listing 3.5: Publishing to "cmd_vel".

In total this proof of concept implementation is roughly 400 lines of code.
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3.4 Results

Due to time constraints it was not possible to test the implementation on a robot
however ROS provides a convenient 2D simulator called turtlesim which
testing could be done with. The simulator spawns a turtle in the center of
an 11× 11 meter room and moves the turtle according to messages received on
the cmd_vel topic and publishes position information to the turtle1/pose
topic. To demonstrate the implementation correctness two SMR-CL programs
were written. The first one shown in page 29 works as expected and draws a
square spiral with a diagonal crossing the entire width.

1 fwd 1
2 turn 90
3 fwd 1
4 turn 90
5 fwd 2
6 turn 90
7 fwd 2
8 turn 90
9 fwd 3

10 turn 90
11 fwd 3
12 turn 90
13 fwd 4
14 turn 90
15 fwd 4
16 turn 135
17 l=sqrt(5*5+5*5)
18 fwd l

Figure 3.1: SMR-CL code and resulting turtlesim path.

However when testing the turnr command which is described as "turn b degrees
with turning radius r in meters", something goes wrong and the turtle keeps
following the same circle and never stopping as seen in Figure 3.2.

1 turnr 1 90

Figure 3.2: SMR-CL code and resulting turtlesim path.

The problem however does not seem to originate from the plugin because exe-
cuting the same command in the Mobotware provided Stage simulation of the
SMR platform results in the same never ending spinning. Unfortunately due to
time constraints further investigation of the problem was not possible.
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3.5 Discussion

This chapter has shown that both Mobotware and ROS provide powerful ab-
stractions that enables both systems to be integrated in a relatively short time
period. However the internal structure of Mobotware is poorly documented
with none to few comments throughout the very terse C codebase which meant
the only way to discover which database variables to read and write was to
look through the source of existing plugins. Unfortunately only a single plugin,
namely rflex, implemented the velocity omega control interface and to com-
plicate matters further the data written to the "transpos" and "rotpos"
database variables came directly a hardware sensor of a poorly documented
robot. All of the above combined with the authors lack of experience with
robot odometry meant that it took unnecessarily long to reverse engineer the
simple trigonometric function to calculate "transpos" shown in Listing 3.4.

The first solution criteria to incorporate well with the hard/soft real-time bound-
aries of Mobotware has been fulfilled as shown in Listing 3.5 by taking special
care to only interface with ROS in a way that does not interfere with the hard
real-time thread running the tick function. The second solution criteria to
support wheeled robots has also been fulfilled as the cmd_vel interface is the
defacto standard in ROS to control wheeled robots. The third and last solution
criteria to make the implementation easy to extend has also been fulfilled by
providing wrappers for database variables that makes them significantly more
natural to interact with.

3.6 Conclusion

This chapter has proposed 2 different solutions and implemented one as a proof
of concept to answer the question: "How can Mobotware be integrated with the
ROS ecosystem to leverage existing ROS hardware interfaces/drivers?".

While the implemented solution by no means is perfect it provides a basic and
clean implementation that in the future can be used to further integrate Mobot-
ware and ROS.
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3.7 Future Work

In the future it could be interesting to extend the implemented RHD plugin
to support the remaining control modes of MRC as there most likely exists
robots supported by ROS that are controlled in similar fashions. Possible future
work also includes implementing one or more Automation Robot Server plugins
that interface with the more advanced ROS sensors such as laser scanners and
cameras.
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Chapter 4

Conclusion

Finishing this project has been a long and grueling 6 months with many bumps
along the road however in the end it succeeded and many lessons has been
learned.

Despite initial skepticism ROS has turned out to be a pleasant platform to work
with due to the large ecosystem of existing packages.

Over all the the primary objects have been fulfilled however the meta aspects of
the project such as time management, planning and communication could have
been done better.
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UR Protocol
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Driver Plots
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