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Abstract
Many systems perform tasks that require process models as input. For testing the
performance of these systems, it is useful to provide a benchmark consisting of a
collection of process models. However, constructing a collection with certain desired
characteristics from real-life models can be difficult and time consuming. By auto-
matically generating the collection, it can be constructed faster and with more ease,
but this puts high demands on the generation algorithm providing control of the char-
acteristics of the generated collection. Existing algorithms either provide little direct
control over these characteristics, or require a smaller collection of models with the
same characteristics to be available. This work proposes a process model generator
that takes the desired characteristics as input in the form of process model metrics,
providing direct control of the characteristics of the generated collection. The main
idea of the algorithm is to generate each model by incrementally reducing the differ-
ence between its current and desired characteristics, until a satisfactory solution is
met. This approach produces collections with characteristics that largely resemble
the desired ones. While it does have certain shortcomings, such as providing compre-
hensive support for only a small set of metrics, which makes it impractical for use in
real-life situations, it proposes possible solutions for each of these, and is a significant
first step towards designing a practical algorithm.
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CHAPTER 1
Introduction

Business process models are an important tool for many organizations, and aid in
tasks such as documentation of procedures, enterprise integration, performance anal-
ysis and improvement [2], and act as reference models for the creation of similar pro-
cesses [12]. Many systems that operate on process models also exist, such as model
editors, simulation tools for generating logs, or repositories that organize a large set
of models [30, 13]. These systems often have advanced algorithms for performing op-
erations involving process models. Model editors, for instance, might analyze a model
to check for errors [15], and alert the designer if it discovers any. Model repositories
might have a method for doing similarity searches with a specific model, to find other
similar models [24, 28, 42, 14].

When developing such algorithms, it is important to test them, to see how well
they perform. This could mean testing their correctness on a certain set of process
models, but could also mean to test their performance, specifically their average
performance, by subjecting them to a benchmark made up of a collection of process
models exhibiting relevant characteristics [21]. For an error checking algorithm, for
example, it might be desirable to test it on a range of different process models of a
large size, to determine the average performance as the size of the models in question
grows. If too small models are chosen, the benchmark will not be relevant to what
it is supposed to be testing, and if too similar models are chosen, it will be difficult
to draw any conclusion about how the algorithm might perform on different models
of the same size, so it might not be fair to other systems using the same benchmark.
It is therefore important to choose the right process model collection when creating
a quality benchmark.

In addition to systems that work on directly on them, process models can also be
useful within process mining [1], which is a discipline that analyzes logs from business
processes. This can involve, for example, determining how well a process conforms to
its definition in practice, i.e. process conformance checking, with the ultimate goal
of improving the model describing the process. When working with process mining
algorithms, it is often useful to have the prescribed process that a set of logs belong
to, so it can be used as a reference. Such a reference is also often used as a ground
truth which the results of the algorithm can be compared to. When evaluating a
process discovery algorithm, which is an algorithm that attempts to reconstruct a
process definition from its logs, having a reference to compare the discovered model
to is very important. Referring to a ground truth is often vital to the evaluation of
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the quality of a process mining algorithm [1].
The process used as a ground truth generally can not just be any process model.

Like with algorithms that operate on process models, process mining algorithms are
tested or benchmarked on logs that come from processes that exhibit certain desired
characteristics. It might be of particular interest to test a process discovery algo-
rithm on logs generated from a process that contains deadlocks, for example. This
also means that choosing process models that exhibit certain characteristics is as
important in process mining, as it is in other algorithms.

There are mainly two ways of obtaining process models to use for testing or bench-
marking an algorithm, both with their advantages and disadvantages [32]. One is to
select the models from an existing source, such as a publicly available process model
repository. This allows developers to quickly attain usable models that usually rep-
resent real-life processes, but comes with the drawback of reduced flexibility and
control over what kind of models are used. For example, the developer might have
found models that display the desired characteristics, but the set is not of adequate
size, or is otherwise inadequate for drawing conclusions about the algorithm’s perfor-
mance. This means that the developer will have to look for other models to make
up for current shortcomings, which can be very time-consuming, if even possible, and
might lead to choosing sub-optimal models. This problem is exaggerated by the fact
that many models are closely guarded trade secrets of their respective companies, or
contain personal or sensitive information, so the number of publicly available real-life
process models is limited [43].

Another way of obtaining suitable process models is to automatically generate
them. This approach is however strongly dependent on the generation algorithm
used, and how well it can generate process models that exhibit the desired character-
istics. There are several proposed solutions for such process model generators, such
as the basic one included in the Process Log Generator (PLG) [5]. This generator
defines a set of basic patterns that are iteratively chosen during generation of a model,
based on a predetermined probability assigned to each. While simple, the generator
does not provide the user with a high degree of control of the characteristics that
the generated process models will display, as the generation process only takes the
assigned probabilities as input. The work of van Hee et al. [40] remedies this by
determining the input probabilities by decomposing a collection of models that dis-
play the desired characteristics. While they achieve higher control of the generated
models by faithfully reproducing the characteristics of the reference collection, the
method requires users to be in possession of a reference collection with the desired
characteristics, which is not always the case, or searching for one might be extensively
time-consuming or difficult. This is also true if the characteristics of the collection
have to be adjusted slightly from an available collection.

This work aims to create a generation method for business process model collec-
tions that provides increased control of the characteristics of generated collections,
by taking the desired characteristics of the generated collections as input, in the form
of metrics. From these metrics, the probabilities for choosing each basic pattern will
be determined, and continuously updated for each iteration of the generation, based
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on the current state of each generated model compared to the desired one. In addi-
tion to eliminating the need for having an available model collection with the desired
characteristics, this method puts the user in direct control of what characteristics
generated collections will display.

The rest of the thesis presents this approach in the following manner. Chapter
2 puts the proposed algorithm in the context of existing research in the field, and
chapter 3 presents a number of preliminary concepts that are referenced in the rest
of the thesis. Chapter 4 presents the algorithm and central concepts, before chapter
5 provides an overview of its implementation. From this implementation, the results
presented in chapter 6 are obtained, which also provides a discussion of several aspects
of its performance. Finally, chapter 7 provides a summary of the thesis and lists
suggestions for future research into the topic.
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CHAPTER 2
Related Work

There have been several previous works tackling the problem of generating business
process models. Some of these generators are quite basic, and are only parts of
a more comprehensive research focus. One such generator is the one included in
the Process Log Generator (PLG) [6], currently in its second iteration as PLG2 [5],
which proposes a generator for models that are used to generate logs from, serving
as a ground truth for the logs. This generator works by defining a context-free
grammar producing process models, and deriving a set of basic patterns from the
context-free grammar. During execution, these patterns are recursively produced in
the model until no more symbols are left. What patterns are chosen depends on a set
of predetermined weights of each pattern, which dictate the probabilities of choosing
each one. A similar generation algorithm is the one in [24], which randomly chooses
one of several refinement rules as defined in [10], and uses the generated models in an
indexing algorithm. While being able to quickly generate large and random process
model sets, they provide little direct control over what characteristics the generated
model collections will have.

A similar process model generator is defined in [39]. However, this generator is
specifically designed to generate process models for creating benchmarks, and thus
provides some more control of the generated characteristics by allowing users to choose
between different classes of workflow nets. These can be either Jackson-nets, state
machine nets, marked-graph nets and free-choice nets, and decide what patterns, or
construction rules, will be available. The framework of the generator also allows for
a subset of workflow nets that have certain characteristics to be chosen from the
superset of all generated models. Despite providing increased control of the output
characteristics, the algorithm still requires the user to specify the probabilities of
applying each construction rule, which in the end determines what characteristics the
workflow net will have.

The work in [40] extends the work of [39] by analyzing existing process model
collections to find their generation parameters, i.e. the probabilities assigned to each
construction rule in order to generate similar models. By analyzing a collection of
nets with known characteristics, this allows the generation of a bigger collection of
nets with similar characteristics. This is a major improvement compared to previous
work, but still only provides indirect control of the generated characteristics, since it
requires a collection of nets with the desired characteristics on-hand. In contrast, the
method proposed in this thesis removes this middle link, providing direct control of
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the produced characteristics, by allowing users to directly specify them.
The work in [43] and [44] also deals with process model generation, but their

focus is on the labels and naming of the components in the models, rather than their
structure, which is the focus of this thesis.



CHAPTER 3
Background

The thesis is targeted towards readers that have a background within computer sci-
ence, and the rest of the work will use this as a baseline. As such, it assumes that
readers have an understanding of basic concepts within fields such as graph theory,
algorithms, process and software modeling techniques, and principles of software de-
sign.

The thesis does however require certain preliminaries specific to the field of busi-
ness process modeling, which can not be expected by everyone with a computer science
background. In order to appeal to such readers, this section presents some basic con-
cepts that the rest of the thesis assumes the reader to be familiar with. The concepts
are not presented in-depth, but is meant to give the reader a basic understanding of
the concepts - just enough to be able to fully understand references to the material
later in the thesis.

3.1 Process Models

Workflow patterns, and in turn workflow models, form the basis of business process
models. These basic workflow patterns describe basic control-flow, which can be used
to model real-life processes. Unless otherwise stated, the information presented in
this section is reproduced from [27].

In order to present such a basic workflow pattern, a language is needed. Many
works use some form of a Petri net, which is very suitable for this task due to their
simple notation and control-flow focus. However, there are often several other aspects
of real-life processes that modelers want to represent. These can include information
about what certain activities or tasks of a process do, who performs them, or what
starts them. This means that modelers often want a language with more expressive-
ness than Petri nets to describe their processes, of which several exist. This thesis will
mostly focus on Business Process Modeling Notation (BPMN), but other languages,
such as Event-driven Process Chain (EPC) and Business Process Execution Language
(BPEL), also exist.
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3.1.1 Petri Nets
A Petri net is one of the most prominent techniques for capturing the behavior of
concurrent systems, and has been adopted by several works to describe workflows,
such as [4, 36, 40]. A Petri net is defined as a graph, which consists of places,
transitions and directed arcs between these. Since arcs only ever connect from a
place to a transition, or the other way around, it is a bipartite graph. An example of
a Petri net can be seen in figure 3.1.

(a) A Petri net with a token at place1

(b) The Petri net of 3.1(a) after firing transition1, transferring the
token to place2

Figure 3.1: An example of Petri nets, where the vertices have been labeled with
their types, and are connected by arcs.

In order to model the flow of a process net, it is possible to execute it. This is
done by defining the concept of tokens, which can be placed any any place in the net,
though preferably some form of start place, initially. The net can then be executed by
firing a transition, which moves the token along the net. A more thorough description
of Petri nets, along with their formal definition, can be found in [27].

3.1.2 BPMN
The Business Process Model Notation, or BPMN for short, is the industry standard
for modeling business processes. While the language contains many different elements,
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the following basic control-flow objects can be used to capture the central aspects of
many models.

Activities The most basic component of this kind is a task. Other components of
this category are sub-processes and call activities, but these are not in focus in
this work. Therefore, the terms task and activity will be used interchangeably
to mean a task.

Gateways These elements signal the splitting or joining of execution paths. The
elements that will be used in this work are parallel and exclusive gateways,
also referred to as AND- or XOR-gateways. Other gateways include event-
based gateways, that directs process execution based on an event happening, or
inclusive gateways, where conditions on choosing all paths are evaluated.

Events These elements indicate something happening. This work will focus on start-
and end-events, but an intermediate event signalling an event occurring during
process execution is also defined.

Sequence flow This element, indicated as an arrow with a solid line between flow
components in the model, indicate the possibility of transitioning from one
component to another.

Aside from the above listed objects, BPMN also has swim lanes and artifacts,
which give it the ability to capture additional aspects of real-life business processes.
Swim lanes allow for modeling the responsibilities of a process, i.e. who is responsible
for performing the contained tasks, while artifacts, such as data objects and annota-
tions, can be used to add extra information to the model. It also lists other types of
connections beside sequence flows, such as message flows. However, the focus of this
work will mainly be with regards to the above listed control-flow objects. With only
these basic objects, it is easy to draw parallels between the resulting BPMN models
and basic workflow models expressed as Petri nets.

An example of a BPMN model using basic control-flow objects can be seen in
figure 3.2. As shown in [27], a BPMN model using these elements usually has a basic
Petri net workflow equivalent.

3.1.3 Behavioral Properties
It is often useful to describe workflow models in terms of their behavioral properties.
These properties are not to be confused with process model characteristics, as defined
in section 3.2. The most relevant properties for this work will be presented in this
section. In general, behavioral properties of models can be divided into the following
four properties.

Reachability This kind of property is about a system’s possibility of reaching a
certain state. In the context of business process models, it makes sense to
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Figure 3.2: Example of a BPMN diagram. Each of the flow objects used have
been labeled with their respective types. This work will focus on the
components used in this figure.

talk about the reachability of an activity, which means that if the activity is
contained in the model, it should be possible to be reached during execution.

Safety This kind of property is about the absence of something undesirable happen-
ing. In the context of business process models, the absence of deadlocks is an
important safety property. A deadlock is a situation where the system gets
stuck, such that it is unable to continue. In terms of a BPMN model, this
could occur if a parallel gateway join is waiting for two preceding activities to
be reached, but an exclusive gateway split earlier in the flow means one of the
activities will never be reached.

Liveness By ensuring liveness properties of a system, it is ensured that the system
progresses. A common such property is the guaranteed termination of a system,
e.g. the system reaching an end-event in a BPMN model.

Fairness The fairness property implies that a choice is not ignored forever. This
means for example that if an xor gateway is part of an infinite loop, all the
choices will eventually be taken, and none ignored forever.

In addition to these properties, [38] discusses a soundness property, stating that
a sound process ensures (1) an option to complete, i.e. reaching an end-state, (2)
completing properly, i.e. there are no more states executing in the model when
termination happens, and (3) there are no dead transitions, i.e. any arbitrary activity
can be reached. They refer to this kind of soundness as classical soundness. Ensuring
property (1) implies fairness, assuming that all possible choices in a mutual exclusion
gateway split will always eventually be chosen. It also implies safety by the absence of
deadlocks, and that the system will always eventually terminate. The second aspect
of soundness implies that no other parts of the system is running when the model
terminates, and the third one implies reachability for every activity in the process
model.
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3.1.4 Constructing Process Models
The existing process model generators mentioned in chapter 2 use a variety of tech-
niques for actually generating their process models. While there exists some work
within the related field of graph synthesis (such as [3]), the concepts have only oc-
casionally been applied to workflow net generation. One such application is in [41],
where the process generation techniques of [29] were extended to business process
models.

Another generation technique relies on the construction rules studied by Berthelot
in [4] and Suzuki et al. in [36]. In [19], nets constructed from these rules, with the
exception of a loop addition rule, are called Jackson-nets. Such nets ensure the
soundness property, which is proven in [18]. The concept of soundness is explained
in section 3.1.3. In [39], an extension of this construction rule set is used to generate
workflow nets, with which they also prove that it is possible to construct any Petri
net, but which does not preserve soundness.

The basic rules studied in [4, 36] are called Murata rules, and are defined for Petri
nets. The rules are listed as R1-R6 in table 3.1, and mainly add places or transitions
to the model, duplicating them, or adding loops. In order to construct a model from
such construction rules, they have to be applied several times to a model, where the
model starts as a singular net of just one node. By consecutively applying the rules
at different places of the net, it will gradually grow bigger and more complex, until
the desired has been constructed.

In [39, 40], an extra set of rules, bridge rules, are added to the Murata rules. As
the name suggests, these rules ”bridge” the model by adding a connection between
two separate parts of the model. While these new rules do not necessarily preserve
the soundness of the model, they allow any Petri net to be constructed.

Other generation techniques include generating workflow models from a stochastic
context-free grammar, as is done by PLG [5]. This approach is explained in further
detail in section 3.3.

3.2 Metrics as Process Model Characteristics
In general, a metric is a standard of measurement, used to quantify a property of
something. Unlike a measure, a metric is usually not something that is measured
directly, but is obtained by combining one or more measurements. For example, a
metric for the customer satisfaction of a business could be the average rating, which
is a combination of the total value of the ratings divided by the number of ratings,
given to the business by customers through a web portal such as the one discussed in
[23]. These metrics are found throughout the sciences, and play an important role in
quantifying properties of research items. For the remainder of this thesis, there will
not be made any distinction between a metric and a measure when discussing process
models, which will be referred to as just metrics. Also, the terms characteristic
and metric will be used interchangeably to refer to the characteristics of a process



12 3 Background

Table 3.1: The construction rules used in [39, 40]. They have been freely reproduced
from their formal definitions in [40].

Rule Description
R1: Place refinement Turns a place into two places connected by a

transition
R2: Transition refinement Turns a transition into two transitions con-

nected by a place
R3: Loop addition Adds a new transition and connects it to a

place of the model through a two-way arc
R4: Place duplication Duplicates a place along with its arcs to tran-

sitions
R5: Transition duplication Duplicates a transition along with its arcs to

places
R6: Arc refinement Adds a sequence of a transition and a place to

another sequence of a transition and a place
R7: Place bridge Adds a place connected to two transitions, at

any two positions of the net
R8: Transition bridge Adds a transition connected to two places, at

any two positions of the net
R9: Arc bridge Adds an arc between a transition and a place,

at any two positions of the net

model. This implies the assumption that metrics can fully describe the characteristics
of a model, which may or may not hold true, depending of what definition of a
characteristic is used. However, for the purposes of this thesis, this assumption will
be made.

Metrics have been extensively used in several areas of research related to busi-
ness process modelling. One of these areas is network analysis, meaning the field of
structural theory within applied graph theory [33]. As this work focuses on BPMN-
models, which can be seen as a special kind of graph, a lot of work from this area
can be applied to business process models. Metrics used within this field can be, for
example, the density or distance of a network. Density is defined as the number of
edges in a graph, compared to the number of possible edges in the same graph. In
the case of a process model, the density could be an indicator of the complexity of
the process flow, where the more connections a process model has, the more possible
flows; hence a higher flow complexity. Likewise, the distance in a network, i.e. the
number of edges in a shortest path between two nodes, can be used to tell the length
of a process model, by looking at the distance from the start to end node.

Other metrics used in network theory can also be applied to business process
models, such as degree, centrality or connectivity. A further exploration of metrics
for business process modelling, as well as for this project in particular, will be provided
in section 3.2.1.
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When using metrics in the field of business process modeling, which metrics to
focus on is highly dependent on the purpose of the research. If the purpose is related
to improving process model design, it makes sense to look at metrics related to the
quality of process models, or quality metrics. What makes up such metrics, i.e. what
metrics correlate with the subjective construct of quality, is a matter of research
in itself, where one might have to resort to heuristics or logical arguments, rather
than empirical knowledge. Examples of metrics that have been linked to quality are
the number of distinct paths in the model, hierarchy levels showing the amount of
nesting, or parallelism [35]. Several works link the quality and likelihood of errors
in a model to its complexity, with the assumption that higher complexities make
models harder to comprehend for designers, and thus lead to a lower quality and
higher likelihood of errors [17, 33]. This also means that metrics related to model
complexity, complexity metrics, are a subject of study in several works [9, 8, 31]. The
work of Mendling [33] tries to make a distinct connection between the complexity of
a model and its likelihood of errors, and concludes that there is indeed a significant
correlation.

3.2.1 Specific Metrics
In [33], Mendling divides process complexity metrics into six categories, for presenta-
tion purposes. This work will use the same categories, which are as follows.

Size Includes metrics that affect the size of the process model. An obvious example
is the number of nodes in the process model, which for most BPMN models
means the number of activities and gateways. However, it also includes metrics
such as its diameter.

Density While density for a graph is usually defined as the ratio of the actual number
of edges to the total number of edges, it will for this work be used to refer to
any metric that describes the number of nodes related to the number of arcs, or
connectors. One such metric is, of course, its density. It however also includes
the coefficient of network connectivity, i.e. the ratio of arcs to nodes, the average
connector degree, i.e. the average number of nodes a connector connects to, and
the maximum degree, i.e. the highest number of nodes a connector connects to.

Partitionability This term is used to refer to the degree to which a model can
be partitioned into sub-components, which can be seen in isolation from other
parts of the model. This could be the number of SISO-parts in the model,
or how many nesting ”blocks” of split/join gateways it has. In this category,
Mendling included metrics such as separability, which is the ratio of cut-vertices
(articulation points) to all vertices of a model, sequentiality, which is the ratio
of edges between two sequential nodes to all edges in the model, and the depth,
which is the maximum depth of the nesting in the graph.
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Gateway Interplay While this category was originally called connector interplay by
Mendling, it has been renamed for the purpose of this work, as a connector is
mainly an EPC-related term. As the name suggests, it contains metrics related
to gateways, and their relation to each other. One metric in this category is the
connector mismatch, which measures the number of split-gateways that do not
have a corresponding join-gateway. Another one is the Control Flow Complexity,
or CFC, which considers the all possible states of the model a designer has to
take into account, which is dependent on the number and kinds of splits in the
model.

Cyclicity Indicates the degree to which the model is cyclic, i.e. contains cyclic
constructs such as a loop. Melding proposes a metric cyclicity which is the
ratio of nodes in a cycle to the total number of nodes in the model. Another
metric was proposed in [35], which counts the number of cycles instead.

Concurrency This category includes metrics that try to capture the number of
paths that need to be synchronized. Mendling suggests doing this by summing
the out-degree of all OR- and AND-splits in the model, while others have sug-
gested counting the maximum number of parallel paths that can be executing
at the same time, possibly related to the total number of nodes.

More specifically, [33] lists the following metrics. While some metrics might differ
from the ones as defined in the work by Mendling, the following definition of the
metrics will be used in this thesis. One important reason for the differences is the
CFG used by PLG, of which the same framework is used by the work in this thesis,
which does not include OR-gates, so the metrics have been adapted to reflect this, in
the cases where this makes a difference.

The following definitions are used in the tables 3.2 and 3.3.

• G: Process model graph

• N: Nodes in G

• T: Activities in G

• A: Arcs or connections in G

• C: Gateways (connectors) in G

• L: the set of distinct cycles in G. For each l ∈ L, l: {n ∈ N}, such that each
element in L is a set containing certain nodes in G.

3.3 PLG - Process Log Generator
In [6], Burattin et al. propose a framework for generating business process models
and their execution logs. The framework is expanded in [5], which introduces its
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Table 3.2: The first half of the metrics defined in [33], which are the focus of this
work. See also table 3.3.

Category Metric Definition
Size Number of

nodes
SN (G) = |N | The total number of nodes
in the graph

Number of activ-
ities

Sact = |T | The number of activities in G.
Not defined in [33].

Number of gate-
ways

SC = |C| The number of gateways in G.
Not defined in [33].

Number of
AND-gateways

Sand = |Cand| The number of AND-
gateways in G. Not defined in [33].

Number of
XOR-gateways

Sxor = |Cxor| The number of XOR-
gateways in G. Not defined in [33].

Diameter diam(G) Length of the longest part from
the start to end node of G

Density Density ∆(G) = |A|
|N |∗(|N |−1) The ratio of the num-

ber of arcs to the maximum possible num-
ber of arcs in the model

Coefficient of
connectivity

CNC(G) = |A|
|N | The ratio of arcs to nodes

in the model
Average degree
of connectors

d̄C(G) = 1
|C| ∗

∑
c∈C d(c) The average out-

degree of a gateway
Maximum
degree of con-
nectors

d̂C(G) = max{d(c)|c ∈ C} The maximum
out-degree of any gateway

second iteration, PLG2. The information on the framework presented in this section
is largely a reproduction of information presented in these two works. The term PLG
will be used to refer to both versions of the framework.

The generation algorithm proposed in this thesis is an extension of the PLG
process generation framework, and therefore has many things in common with it. For
this reason, the framework of PLG will be referred to frequently, and a more in-depth
explanation of the framework will be provided in this section.

The generation engine proposed by PLG uses a proposed context-free grammar
(CFG) as the basis for generating process models, where all producible process models
are the result of the production rules P of PLG, and can be represented as a string
of its alphabet Σ. The full definition of the context free grammar will not be stated
here, but can be found in [5]. Figure 3.3 provides an example of a derivation tree of
the CFG, along with its string and process model interpretation.

In its implementation of the CFG, which is publicly available, PLG defines a set of
basic patterns, or production rules, that are recursively applied to the process model.
While the work of Burattin does not explicitly define these production patterns, they
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will be defined in this work, since it is simpler to refer to these production patterns
instead of the CFG when discussing the framework. These basic patterns can be seen
in figure 3.4.

Some of the basic patterns of figure 3.4 contain an element called pempty. This
element can be thought of as the equivalent of a non-terminal symbol in the CFG, and
can be replaced by any of the other basic patterns, including the containing pattern
itself. For this reason, this element will be referred to as a placeholder of the other
patterns. Since it is the equivalent of a non-terminal symbol, all finished generated
process models contain no such placeholders.

The generation framework of PLG allows the user to specify weights for each of the
production rules in figure 3.4. The generation of a process model starts by defining
a start and end event, such that the initial model is defined by the string "estart ;
pempty ; eend". Then, the rest of the model is generated by recursively replacing the
placeholder pempty with one of the basic patterns, which then replaces all of its own
placeholders with other basic patterns, and so on, until there are no more placeholders
left in the model, or until a specified maximum limit on the size of the process model
is reached. What patterns are chosen to replace each placeholder is based on the
weights assigned to each of the patterns at the beginning of the generation, which
translates into the probabilities of choosing each pattern. These probabilities stay
the same throughout the generation of each process model.

The extension proposed by this thesis mainly affects the continuous recalculation
of the probabilities for choosing each pattern for each new pattern that is chosen,
and as such shares most of the rest of the framework with PLG. Therefore, the
commonalities of the PLG and the extension proposed in this thesis will be referred
to as the framework of the proposed algorithm. For example, the basic patterns and
way of recursively generating the algorithm is part of the framework.

The grammar used by the framework only has a limited expressiveness in terms
of the possible business processes it can produce, and limits the framework to only
producing block-structured processes, a term which is further explained in [26]. Be-
cause of this, the processes produced by the framework will all be sound processes,
which for example means it does not contain any deadlocks. This soundness leads to
the framework being unable to produce models containing any obvious flow-related
errors that can be detected without domain knowledge[38].
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Table 3.3: The metrics defined in [33], which are the focus of this work. See also
table 3.2.

Category Metric Definition
Partitionability Separability Π(G) = |{n∈N |nis cut-vertex}|

|N |−2 The ratio of
cut-vertices to the number of nodes. A
cut-vertex is a vertex that creates more
separated components in a graph when re-
moved.

Sequentiality Ξ(G) = |A|∩(T ×T )
|A| The ratio of arcs be-

tween non-gateway nodes to all arcs
Structuredness ΦN = 1 − SN (G′)

SN (G) The ratio of nodes in a
subgraph G’ to the nodes in G, where G’
is obtained by applying a set of reduction
rules defined in [33] as many times as possi-
ble. The reduction rules reduces structured
blocks of a graph.

Depth Λ(G) = max{λ(n)|n ∈ N}The maximum
depth of all nodes, where the depth of a
single node is the number of split-gateways
that have to be visited in order to reach it
from the start node.

Connector inter-
play

Connector mis-
match

MM(G) = MMxor + MMand The number
of gateway splits that are not matched to
a gateway join.

Connector het-
erogeneity

CH(G) = −
∑

l∈{and,xor} p(l) ∗ log2(p(l)),
where p(l) = |Cl|

|C| The entropy over differ-
ent gateway types.

Control flow
complexity

CFC(G) =
∑

c∈Cand
1 +∑

c∈Cxor
dout(cxor) +

∑
c∈Cor

2dout(cxor)− 1
Defined in [9] as a measure of complexity
in terms of how many states of execution
the designer of a process has to keep in
mind

Cyclicity Number of cy-
cles

CY CN = |L| States the number of distinct
cycles in G. This is not a metric defined in
[33] as other metrics, but is rather defined
by Nissen in [35].

Concurrency Token split TS(G) =
∑

c∈Cor∪Cand
dout(n) − 1 The

output-degree of AND-joins and OR-joins
minus one.
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(a) An example of a derivation tree from the CFG of PLG

(b) The string derived from 3.3(a)

(c) The BPMN representation of 3.3(a)

Figure 3.3: An example of a process model produced by the CFG of PLG. Repro-
duced from [5].
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(a) Parallel execution pat-
tern

(b) Mutual exclusion pat-
tern

(c) Loop pattern

(d) Activity pat-
tern

(e) Skip pattern

Figure 3.4: The basic patterns, or production rules, of PLG, which are derived from
its CFG. The interpretation of the skip pattern can be seen in figure
3.5.
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Figure 3.5: The interpretation of the skip pattern of 3.4(e). Its equivalent string
representation would be "Aact ; ϵ ; Aact" → "Aact ; Aact".



CHAPTER 4
Process Model

Generation Algorithm
When constructing a benchmark of process models, the desired properties of the
models can vary based on the algorithm being benchmarked, and the purpose of the
benchmark. This means that putting researchers in direct control of what properties
the generated process model collections will have is important. This is why doing
this, in the form of the metrics of the process model collection, is the main focus of
this work. However, this work will also assume that, in general, a good benchmark is
diverse, i.e. that its characteristics are diverse for those that are not directly specified
by the researchers. The logic behind this is that while a generation algorithm should
ensure that the process models have the specified characteristics, it should also try to
make sure that the benchmark covers as many cases as possible, so the benchmark has
an increased chance of covering all cases the algorithm will have to deal with in real life.
In continuation of this, it will also be assumed that a good benchmark is realistic, i.e.
contains a realistic collection of process models, and the model generation algorithm
should also try to facilitate this.

The main idea of the generation algorithm is that instead of specifying the prob-
abilities of each possible pattern to generate, as is the case for existing generation
algorithms, users specify the characteristics they want their process model collection
to exhibit. The algorithm tries to achieve these characteristics by dynamically assign-
ing and reassigning the probability of each pattern at run-time, based on the current
and desired state of the model. This section explains the algorithm in further detail,
of which a pseudo-code description can be seen in algorithm 1 through 8.

Note that the algorithm proposed in this work only deals with the generation of
the structural properties of process models. This means that it does not concern itself
with the names of components, or the production or consumption of data objects, as
is the case with the PLG framework. It only concerns itself with the generation of
models of basic workflow patterns.

The characteristics that the algorithm takes as input from the user, asides from
the size of the collection, are passed as pairs of a metric and the distribution of
its target values. Each pair specifies a characteristic of the collection of generated
process models, and will be referred to as the obligation for that metric. As such,
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Figure 4.1: The inputs and outputs of the generation algorithm.

each obligation is a pair of a metric and a specific distribution (with a specified mean,
variance, etc.). Since the obligation specifies the desired distribution of each metric,
this means that the metrics of the whole process model collection will follow this
probability distribution. The distribution of the generated collection is discussed in
further depth in section 4.2.

While the algorithm takes as input a metric and the distribution of its target
values, each process model is generated from a single target value, which is obtained
from the specified distribution. This value dictates the value that the specific process
model should be generated with. Each of these values are generated at the beginning
of the generation of the process model, based on the obligation and the specified
distribution, in line 5 in algorithm 2. The pair of a metric and its target value is
simply referred to as a target for the process model.

The generation algorithm for each process instance is based on the framework of
PLG, which has been explained in section 3.3. This means that, just as PLG, the
algorithm generates each process model by recursively generating new patterns based
on the CFG, until no more patterns can be generated. At each recursive generation,
the algorithm decides which new pattern or component to generate, based on the
weight that is assigned to each. However, while the generator of PLG assigns the
weights for each pattern at the beginning of the process generation, after which they
remain unchanged for the rest of the generation, the algorithm proposed by this work
dynamically assigns new weights to each pattern at each recursive iteration.

The way the weights are distributed is decided by the current state of the generated
model, i.e. what the model currently looks like, as well as what the model is supposed
to look like, i.e. its metric target values. This means that at each recursive generation
step, the program looks at the metrics of the currently generated model, and compares
this to the target value. Based on the difference, the algorithm decides to which degree
the generation of a certain pattern is beneficial, and assigns a weight to the pattern
accordingly. The exact procedure for assigning weights to each pattern, and what
makes it beneficial, is a bit more complex than this, and is discussed in further detail
in section 4.3.
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4.1 Pseudo-code Description
Algorithms 1 through 8 describe the generation algorithm proposed by this work in
terms of pseudo-code. The workings of the algorithm is the same as what is described
elsewhere in the thesis, but is meant both as a more precise and concise description
of it. The GENERATE-PROCESS-MODELS function should be considered the external
interface to the algorithm, such that it takes inputs as described by its parameters
and produces an output in accordance with the function’s return statement, as seen
in figure 4.1. The framework of the generation engine of PLG can be recognized
as algorithms 1, 2 and 3, which are largely equivalent. There are however a few
differences, the most significant being in line 7 of algorithm 3, where the placeholder
pempty in the parent pattern, i.e. the pattern that is to be replaced by the chosen
pattern, is replaced by the chosen pattern with placeholders, before these are replaced
themselves. The reason for this difference is discussed in section 4.3.6. Another
minor difference is in line 5 of algorithm 2, where the target value for each metric is
determined, as well as the parameters and return-values of the functions. However,
the effects of the latter, minor differences are not seen before COMPUTE-WEIGHTS, which
is where the metric target values are used. This means that the main differences
between the frameworks can be found in COMPUTE-WEIGHTS, and is in accordance
with the main contributions from this work being the way that probabilities for each
pattern are dynamically determined at each iteration based on the current and target
state of the model. As such, all other parts of the algorithm that are not contained
within this function will often be referred to as the framework of the algorithm, since
it shares this with PLG.

The pseudo-code largely follows the conventions of [11], which for example means
that objects passed as arguments, including arrays, are passed by reference. Certain
deviations from the convention, as well as other conventions, are as follows.

• Assignments to variables are expressed as ←, such as x← y, instead of x = y.

• Strings are described in a java-like syntax, where for example ”Hello” + ”World”
would produce the string ”HelloWorld”.

• pempty is regarded as an object. This means that passing a pempty-object
in GENERATE-PATTERN passes the corresponding object, not simply the empty
string ϵ.

• The patterns in the pseudo-code, such as p ∈ P in line 4 of algorithm 1, are as
defined as in figure 3.4.

• Certain functions called are not formally described as pseudo-code, as their inner
workings are not essential to the contributions of this work. The functions in
question are as follows.

– choosePattern: Chooses a pattern based on the weights assigned to them.
The probability of choosing each pattern is the weight assigned to the
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pattern, divided by the total number of weights of all patterns. In other
words, the probability of p, prob(p) = W (p)/

∑
p∈P W (p), where p, P and

W are as defined in lines 4 and 5 in the code.
– random(f): Chooses a random number based on a specified distribution

f , as defined in line 3 of algorithm 1. This could be any distribution, but
is intended to be one that reflects a realistic distribution of the specified
metric, as discussed in section 4.2. For the purposes of this work, a Poisson
distribution has been chosen, which means that the function returns a
random value following a Poisson distribution with the specified mean
value, the implementation of which is discussed in section 5.0.2.

– removePlaceholders(g): This is a method for removing the placeholders
pempty that exist in the process model g. The scheme for doing so is
explained in section 4.3.6. The method returns the resulting model.

– isLargerThanAreaOfComfort(np): This method returns true if the num-
ber of placeholders in the generated process model np is higher than the
largest value in the range of values defined as the area of comfort for np

in section 4.3.3.
– isSmallerThanAreaOfComfort(np): This method returns true if the num-

ber of placeholders in the generated process model np is lower than the
lowest value in the range of values defined as the area of comfort for np in
section 4.3.3.

– reachedTarget(m, t): This function compares the current value m of a
metric to its target value t. When comparing, a margin e is introduced,
such that the function returns the boolean value of t−e < m < t+e. This
error margin e has been set to 5 % of t.

4.2 Probability Distribution of the Metrics
While it is difficult to define the characteristics of what constitute realistic process
models, or what process models resemble real-life ones, it is possible to say something
about the probability distribution of real process model collections. The work of
Mendling in [33] analyzes four real-life collections of process models in terms of a range
of metrics and the mean and variance of their probability distribution functions. From
this work, we can see that even though each metric has varying mean and variance,
each variance σ > 0, and the mean and variance tend to fall within a factor 2 of each
other. While not conclusive, this indicates that collections of real process models tend
to follow a non-uniform probability distribution function. This is also indicated in
[40], where the distribution of the length of the longest path for a realistic collection is
displayed as a histogram which clearly indicates a curved, Gaussian-like distribution.

It is however difficult to say anything definite about the kind of probability dis-
tribution function real process model collections tend to follow, without an extensive
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Algorithm 1 GENERATE-PROCESS-MODELS

inputs:
1: O ← {(m, f)|m ∈M, f ∈ F} ▷ The obligations of the algorithm, such that

O(m) = d is the probability distribution for m
2: s ∈ N ▷ The size of the generated collection

globally defined constants:
3: F ▷ all possible probability distributions
4: P ▷ all possible patterns
5: M : string→ R ▷ all possible metrics
6: M ′ ← {m|(m, f) ∈ O} ▷ the set of metrics passed as obligations in O

7: function GENERATE-PROCESS-MODELS(O, s)
8: G ▷ the collection of generated process models
9: for 1 to s do

10: G← G ∪ {GENERATE-PROCESS-MODEL(O)}
11: end for
12: return G
13: end function

Algorithm 2 GENERATE-PROCESS-MODEL

inputs: ▷ Global variables defined in algorithm 1 are also accessible here
1: O ▷ The set of obligations, as defined in algorithm 1

2: function GENERATE-PROCESS-MODEL(O)
3: T : M → R ▷ The metric target values, such that T (m) is the target value of

m
4: for all m ∈M ′ do
5: T (m)← random(O(m))
6: end for
7: g ← ”estart ; ” + pempty + ” ; eend” ▷ the generated process model
8: replace pempty ∈ g with GENERATE-PATTERN(T, g, pempty)
9: return g

10: end function

analysis of these collections. In order to be as general as possible, while still trying
to achieve a closeness to real process model collections, the generation algorithm pro-
posed by this work supports, in principle, any probability distribution function for the
metrics of the generated collection. It is however worth noting that for the imple-
mentation of the algorithm to support a certain probability distribution, a random
number generator as specified in line 5 of algorithm 2 is required.
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Algorithm 3 GENERATE-PATTERN

inputs: ▷ Global variables defined in algorithm 1 are also accessible here
1: T ▷ The set of metrics and target values, as defined in line 3 of algorithm 1
2: g ▷ The currently generated process model
3: plocation ∈ g ▷ The placeholder pattern that is to be replaced

4: function GENERATE-PATTERN(T , g, plocation) ▷ Recursively generates a
pattern in place of plocation in g

5: W ← COMPUTE-WEIGHTS(T, g, plocation)
6: pchosen ← choosePattern(W )
7: replace plocation in g with pchosen

8: for all pempty ∈ pchosen do
9: replace pempty with GENERATE-PATTERN(T , g, pempty)

10: end for
11: return pchosen

12: end function

4.3 Weighing Patterns
The weighing of patterns, or computing their weights, is done in COMPUTE-WEIGHTS
at line 4 in the pseudo-code. The main idea of assigning weights is that each target
contributes with a certain value to each pattern’s weight, depending on the benefit
of producing the pattern in relation to the metric in question. This means that
the final weight of each pattern is the sum of the weights provided from all targets.
As an example, consider a generation instance with one target value for number of
activities, and another for number of gateways. When calculating the weight for a
sequence pattern, it might receives a weight from the number of activities of 0.5.
When it then receives a contribution of 0.25 from the number of gateways, this will
add up to a total weight of 0.5 + 0.25 = 0.75.

The total contribution of weights from a target to all patterns is always 1, meaning
that each target has a total weight of 1 that it can split up and assigned to different
patterns, depending on how beneficial it finds each one. What is considered beneficial
for a particular target follows a set of rules, and is discussed in section 4.3.3. In order
to assure that the total sum from each pattern is 1, each weight the target wants to
give out is normalized with respect to the sum of all weights. This is described in
algorithm 6 in the pseudo-code. The weight given out from each target to a pattern
can be either positive or negative. In the case that it is negative, its absolute value
will count towards the total value it is allowed to give out, meaning that contributing
with −0.5 and 0.5 to a pattern would count equally towards giving out a total value
of 1.

By giving each target a static value of 1 that it can assign in total, it is ensured
that each target contributes equally to what pattern is chosen, so as to restrain each
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Figure 4.2: The scheme of assigning weights from each target to each pattern. No-
tice that the sum of all weights each target gives out,

∑m
i=1 |w(tn → pi)|,

is equal to 1. Each pattern receives a part of this total weight from each
target, which equates to the total weight assigned to the pattern.

target. If this were not the case, an overly active target might assign either very high
or low weights to each pattern, resulting in a high sum of all weight contributions
given out. Meanwhile, another target might assign a weight to only one pattern,
giving it a low total weight contribution. When compared to the overly active target,
its contribution would easily drown among all the other contributions, so the overly
active target would dictate what patterns are generated.

4.3.1 Interdependence of Targets
When considering a metrics-based generation algorithm, the statistical independence
of the targets and their metrics are important. When two or more targets of the
generation algorithm somehow have an effect on each other during generation, the
algorithm might not produce optimal results, as the desired value of one target might
conflict with another. In order to discuss this concept, this thesis defines the notion
of interdependence of targets. In general, if two targets are interdependent, it means
that they might somehow affect one another during the generation. The concept of
interdependence is both reliant on the metric of the target, as well as the basic patterns
of the generation framework used. Conversely, if two targets are not interdependent,
a model could always be generated with any combination of values for the metrics,
since they would never conflict.
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Algorithm 4 COMPUTE-WEIGHTS

inputs: ▷ Global variables defined in algorithm 1 are also accessible here
1: T ▷ The set of metrics and target values, as defined in line 3 of algorithm 1
2: g ▷ The currently generated process model
3: plocation ∈ g ▷ The pattern in g where p would be inserted

4: function COMPUTE-WEIGHTS(T , g, plocation) ▷ Calculates the total
weights assigned to each pattern based on T and the state of g

5: W : P → R ▷ the set of weights for all patterns, such that W (p) is the weight
of pattern p

6: for all p ∈ P do
7: W (p)←

∑
m∈M COMPUTE-WEIGHT(T, m, p, g, plocation)

8: end for
9: return W

10: end function

Algorithm 5 COMPUTE-WEIGHT

inputs: ▷ Global variables defined in algorithm 1 are also accessible here
1: T ▷ The set of metrics and target values, as defined in line 3 of algorithm 1
2: m ▷ The metric of the target value that is giving out the weight
3: p ▷ The pattern that the weight is going to be assigned to
4: g ▷ The currently generated process model
5: plocation ∈ g ▷ The pattern in g where p would be inserted

6: function COMPUTE-WEIGHT(T , m, p, g, plocation) ▷ calculates the weight
given to p based on m, T (m), m(g), if p is inserted in g at plocation

7: bm ← CALCULATE-BENEFIT(T, m, p, g, plocation)
8: bM ←

∑
p∈P CALCULATE-BENEFIT(T, m, p, g, plocation)

9: wm ← bm/bM ▷ the normalization of bm

10: return wm

11: end function

In this work, two kinds of interdependence will be defined. The first one of these
will be called inherent interdependence, which means that the definition itself of each
metric of two targets makes them dependent, because they partly contain the same
measures. A simple example is the number of AND-splits, GAND, and the total
number of gateway splits, GALL, in a model. If a model can contain both AND-
and OR-gates, this means that GALL = GAND + GOR. Thus, an increase in GAND
will also lead to an increase of GALL, which would make their targets inherently
interdependent.

Another case is what will be defined in this work as non-inherent interdependence,
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which, as the name suggests, is not inherent to the measures that make up metrics
themselves, but is rather due to the basic patterns used by the generation framework,
in this case PLG. Imagine if a generation algorithm can choose between one of two
patterns - creating an activity, or creating an activity and an AND-split. Now let
us say that the generation algorithm has been set to generate a model with 10 AND-
splits, but only 5 activities. The number of AND-splits and activities in a model are
not inherently dependent on each other, since adding an activity to the model does
not necessarily add another AND-split, and vice versa. However, with only the two
aforementioned generation patterns available, generating such a model would be im-
possible, since the algorithm would always generate one activity each time it created
an AND-split. In other words, even though the metrics are not inherently dependent
on each other, they are dependent on each other with respect to the possible pat-
tern, or non-inherently interdependent. This is actually the case for the generation
framework of PLG, where generating a parallel execution pattern also generates two
activities. Conversely, if the pattern generating an AND-split did not also produce
an activity, it would indeed be possible to create such a model with twice as many
gateways as activities. The generation of a pattern affecting one metric would not
affect the other, and thus the metrics would not be interdependent.

While the above is a trivial example, the same situation can in principle occur
each time the generation of a certain pattern affects more than one metric at a
time. For example, the creation of a loop would affect the cyclicity of the model,
but it would also affect its control flow complexity, as it involves adding a pair of
gateways, thus introducing more possible states to the model. It is arguable that
the independence of metrics is lowest when the metrics are within the same category,
or involves the same measures, in which case we might have both inherent and non-
inherent interdependence. Note that two metrics can correlate when looking at their
values for a collection of models, while still having neither inherent nor non-inherent
interdependence.

4.3.2 Monotonicity of Metrics
This thesis will make a distinction between monotonic and non-monotonic metrics,
with regards to the patterns used by the framework. This is a term defined by this
work, and draws inspiration from the notion in mathematics of monotonic functions.
If a metric is monotonic, it is either non-increasing or non-decreasing during the
generation of the model, when using a certain set of production patterns. Using
the number of activities as an example, this will always be monotonically increasing
during generation, as no patterns in the framework will ever remove any activity.

When a metric is non-decreasing with respect to a set of patterns, it will also be
referred to as a monotonically increasing metric. Likewise, monotonic metrics can
also be monotonically decreasing, which means that it can never increase with respect
to the set of production patterns. On the other hand, non-monotonic metrics might
both increase or decrease during generation, as the addition of different patterns may
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increase or decrease them. Non-monotonic metrics have the ability to enter into local
maxima. This can for example happen if a metric is being generated towards a target
value, but in order to increase from its current value to the target value, it first has
to decrease. As discussed in section 6.1, this can prove a challenge to the algorithm,
and is therefore important to note here.

4.3.3 Benefit of Patterns
The input to the benefit calculation in algorithm 6 is five-fold. First of all, it needs
to know which combination of metric and pattern the benefit is being calculated for,
in the form of m and p. It also needs to know the state of the currently generated
model, so g is passed, as well as which pattern the generated pattern would replace,
as g and plocation. Along with the target value of the metric t, it can use this to
calculate how much closer to the target value generating the pattern in question gets
the model, as ∆d in line 10 of algorithm 7.

The goal for the rules that govern the benefit of a pattern is twofold. Firstly, it
should make sure that the target value is reached. Second, it also has to make sure
that the generation of the model terminates at the right time, meaning that when the
target value is reached, or a better solution can not be reached, the algorithm should
stop. If not, it should continue. To facilitate this, the rules governing the benefit has
been split in two, where one part states the benefit of choosing the pattern in terms
of distance from the current value to the target value, and another for the benefit of
choosing the patterns in terms of termination of the generation. These parts will be
called the metric benefit and termination benefit, respectively.

The idea is that normally, the metric benefit of the pattern should govern what
pattern is chosen. The metric benefit is calculated simply as the difference in distance
to the target value from generating a pattern. In other words, the metric benefit is
given as metric benefit = − ∆d

target value = |dafter|−|dbefore|
target value , where d is the distance

from the current value to the target value, and dafter = |t −mafter| and dbefore =
|t−mbefore| are the absolute distances after and before the pattern would be generated
in the current model, respectively, where t is the target value of metric m. This means
that the closer a pattern will bring a metric to its target value, the more desirable it
is, as the metric benefit will be higher. If ∆d is positive, i.e. the distance is increasing,
the benefit will be negative, i.e. it is not desirable. The definition of the metric benefit
is calculated in algorithm 7.

However, there are certain cases where we also have wishes for the current growth
potential of the algorithm, which is governed by the number of placeholders pempty

in the model. These cases can occur when the specific metric has reached its target
value, or is within the threshold of it, defined as 5 % of the target value, in which
case it is beneficial for the metric to terminate generation of more patterns that might
potentially bring the model further away from the target value. In such cases, the
termination benefit will return a high benefit for patterns that decrease the number of
placeholders in the model. Also, an area of comfort has been defined for the number
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of placeholders in a model, which is a range for this number that the algorithm should
be within during the generation algorithm. This range is defined as between 3 and
5 placeholders, and ensures that the algorithm does not get too many placeholders,
such that it becomes harder to stop when target values are reached, and so that it
will not inadvertently terminate while the target values have not yet been reached.
This is also described in algorithm 8 of the pseudo-code.

The termination and metric benefits are combined into the total benefit, so that
they have the same effect on the total benefit. This means that the algorithm as-
sures that |metric benefit| = |termination benefit|, termination benefit > 0. This
means that benefit = metric benefit + termination benefit, termination benefit > 0
and benefit = metric benefit, termination benefit = 0. Note that this benefit is calcu-
lated for each combination of metric and pattern, and is the same value as returned
by algorithm 6.

Algorithm 6 CALCULATE-BENEFIT

inputs: ▷ Global variables defined in algorithm 1 are also accessible here
1: T ▷ The set of metrics and target values, as defined in line 3 of algorithm 1
2: m ▷ The metric of the target value T (m) that the benefit is calculated for
3: p ▷ The pattern that the benefit is calculated from
4: g ▷ The currently generated process model
5: plocation ∈ g ▷ The pattern in g where p would be inserted

6: function CALCULATE-BENEFIT(T , m, p, g, plocation) ▷ calculates the
benefit for T (m) of generating p in g in the place of plocation

7: bm ← CALCULATE-METRIC-BENEFIT(m, T (m), p, g, plocation) ▷ The
metric benefit

8: bt ← CALCULATE-TERMINATION-BENEFIT(m, T (m), p, g) ▷ The
termination benefit

9: if |bt| > 0 then ▷ If the termination benefit is not zero, both the metric and
termination benefit matter equally

10: bt ← bt ∗ |bm|
|bt| ▷ Ensure that bt has the same magnitude as bm

11: return bm + bt

12: else
13: return bm

14: end if
15: end function

4.3.4 Optimizing the Model State
The idea of calculating the benefit of a pattern based on how much closer it gets the
metric to a target value means that the algorithm can be seen as an optimization
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Algorithm 7 CALCULATE-METRIC-BENEFIT. See section 4.1 for a description
of removePlaceholders()

inputs:
1: m ▷ The metric that the benefit is calculated for
2: t ▷ The target value for m
3: p ▷ The pattern that the benefit is calculated for
4: g ▷ The currently generated process model
5: plocation ∈ g ▷ The pattern in g where p would be inserted

6: function CALCULATE-METRIC-BENEFIT(m, t, p, g, plocation) ▷
Calculates the metric benefit for m of generating p in g

7: dbefore ← |t−m(removePlaceholders(g))| ▷ Distance (numerical
difference) to target value before p is inserted in g

8: gp ▷ g with p inserted in place of plocation

9: dafter ← |t−m(removePlaceholders(gp))| ▷ Distance (numerical
difference) to target value after p is inserted in g

10: ∆d← dafter − dbefore

11: return −∆d
t

12: end function

problem, which is about reducing the relative distance between the actual values of
the metrics and their target values, i.e. |∆d

t |, for each metric. The algorithm can be
seen as an approximation of the optimization problem for −∆d

t in line 11 of algorithm
7, in which the algorithm should minimize the absolute average value for all metrics
for |∆d

t |, or minimize the euclidean length of the vector obtained by combining −∆d
t

for all metrics. While just an approximation, since this value is not directly used,
and the termination benefit can also play a role, it illustrates the basic idea of the
algorithm well. It also allows us to talk of a model state, the improvement of which
happens as | − ∆d

t | for all metrics decreases. When the model state can not be
improved any longer, the model state is optimized.

In principle, there are multiple ways of calculating this improvement of the model
state, by choosing each pattern. For certain combinations of patterns and metrics
the difference in distance is always the same, regardless of the current state of the
model. For example, producing a mutual exclusion pattern will always contribute 2
to the number of AND-gateways, no matter how many other AND-gates exist in the
model. In such cases, it would be possible to pre-program ∆d, such that it would
only have to be looked up at run-time. This is however not possible for certain other
metric-pattern combination. One example is the diameter, which would increase if the
chosen pattern was located on the longest path, given that the pattern has a length
l > 0. However, if the same pattern was generated on a shorter path, this would
not necessarily be the case. In other words, the change in difference depends on the
current state of the model. Another common case where the difference in distance can
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Algorithm 8 CALCULATE-TERMINATION-BENEFIT. See section 4.1 for a de-
scription of the methods isLargerThanAreaOfComfort() and reachedTarget()

inputs:
1: m ▷ The metric that the benefit is calculated for
2: t ▷ The target value for m
3: p ▷ The pattern that the benefit is calculated for
4: g ▷ The currently generated process model

5: function CALCULATE-TERMINATION-BENEFIT(m, t, p, g) ▷ calculates
the termination benefit for m of generating p in g

6: np ▷ Number of placeholders pempty in g
7: ∆n ▷ difference in placeholders after introducing p in g
8: shouldDecreasePlaceholders = isLargerThanAreaOfComfort(np) OR

reachedTarget(m, t) ▷ Whether the number of pempty in g should decrease
9: shouldIncreasePlaceholders = isSmallerThanAreaOfComfort(np) AND

!reachedTarget(m, t) ▷ Whether the number of pempty in g should increase
10: if shouldDecreasePlaceholders then
11: if ∆n < 0 then
12: return 1
13: else
14: return -1
15: end if
16: else if shouldIncreasePlaceholders then
17: if ∆n > 0 then
18: return 1
19: else
20: return -1
21: end if
22: else
23: return 0
24: end if
25: end function

not be predetermined is with certain metrics, which are determined as a ratio. Here is
the case that the magnitude of the difference, and whether it is positive, negative, or
zero, is dependent on the values of the numerator and denominator before the pattern
is added. An example of such a metric is connectedness, where a sequence pattern
contributes more when there are fewer edges, than when there are many. Another
example is the coefficient of connectivity, given as the ratio of connectors to nodes,
which will always go towards the value 1 as subsequent sequence patterns with an
activity are added to the model. If this happens as the first thing after the start and
end nodes, the value will increase towards 1 from 0.5, and if there has been created a
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large number of gateway patterns, such that the metric is higher than 1, generating
a sequence pattern with an activity would decrease the value of the metric.

For the above cases, another way of determining the difference in distance to the
target value is needed. In this work, the difference in distance to the target value ∆d
is calculated by simulating the generation of the pattern on the current model, and
calculating the new value of the metric, to compare it to the initial value value. This
process can be seen in algorithm 7. This method was chosen because of its generality
and simplicity, such that all pattern-metric combinations can be supported. Notice
that the simulation is reliant on knowing the current state of the model by its metrics,
which is explained in further detail in section 4.3.5.

An alternative to determining ∆d by simulation that was considered was to create
specific predetermined rules for determining the difference in the case of each metric,
based on a set of rules on the current state of the model. While such a solution
might achieve a better running time for complex metrics, since the difference would
only have to be looked up, the difficulty of implementing such rules, especially for
ratio-based metrics, was considered high as compared to the difficulty of adapting
the framework to support the run-time evaluation of metrics, as described in section
4.3.6. Also, requiring the implementation of rules specific to each supported metric
would also mean that an extra overhead in the implementation of new metrics would
be introduced, which is undesirable.

4.3.5 Evaluation of Process Model Metrics

During a process generation instance, the algorithm continuously recalculates the
probabilities of each pattern, based on the current state of the model, compared to
its desired state. Since a model’s state is defined by its metrics in the algorithm,
this means that it measures the metrics of the current model, and compares this to
the desired value for the metrics, in order to decide what pattern to generate next.
This means that the generator needs a way of automatically calculating the metrics
of process models at run-time. This is done as a part of the calculation of the benefit
of generating a pattern, in lines 7 and 9 of algorithm 7.

Since the generator is heavily dependent on a metrics calculator, as it has to re-
measure all metrics at every recursive iteration, it is very dependent on the calculator’s
qualities, specifically its time complexity and supported metrics. As it has to be run
at every iteration, its direct impact on the time complexity is evident, and will be
discussed further in section 4.4. When it comes to the supported metrics of the
calculator, since those supported by the algorithm need to be calculated at every
iteration, the algorithm can only support those metrics that are also supported by
the calculator. The supported metrics of the algorithm can be seen in figure 5.1 and
5.2.
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4.3.6 Supporting Run-time Evaluation
When metrics are evaluated at run-time, this is done on the current state of the
generated process models. However, in order to do this on the “unfinished“ process
model at each iteration, certain modifications to the PLG generation framework are
needed.

When the PLG framework recursively calls its GENERATE-PATTERN-equivalent, it
waits until the recursive call returns to insert the generated pattern into its chosen
pattern pchosen, and connect it to the rest of the pattern. However, this means that at
each call of GENERATE-PATTERN, the generated pattern is not connected to any other
parts of the model, until control returns to its caller. In other words, the framework
generates model components in a top-down fashion, and connects them in a bottom-
up fashion. If a metric is calculated for the process model, the components would
not be connected, such that there is no information about the control flow of the
model, which is necessary for metrics such as the diameter. This is shown in figure
4.3, in which the components of each pattern are generated on the way ”down” in the
recursion, while the same components are not connected until the same call returns
back ”up” the recursion.

In order to solve this problem, a framework that both generates and connects
models in a top-down fashion is needed. To achieve this, the algorithm generates a
placeholder, pempty, in each GENERATE-PATTERN, which it inserts into the generated
model in place of the patterns that are to be generated by subsequent recursive
GENERATE-PATTERN-calls, in line 9. This means that calls further down the recursion
will have accurate information about the flow state of the model, and can properly
evaluate metrics from this state. This new scheme is shown in figure 4.4, in which
both the generation and connection of components happen on the way down the
recursion, i.e. before consecutive recursive calls are made.

Figure 4.3: Scheme for generating patterns in the PLG framework.
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Figure 4.4: The new scheme for generating patterns, which allows for run-time eval-
uation of metrics on unfinished models.

Generating placeholder to achieve a top-down connection of process model com-
ponents introduces another problem, which is how to handle the placeholder itself
when evaluating a metric. Since the placeholder represents a pattern that is to be
generated, but has not been so yet, it is in fact an empty pattern, which is equivalent
to a skip pattern. This is also reflected by the string representation of the placeholder
as pempty = ϵ, which is the same as a skip pattern. This means that in order to sup-
port the run-time evaluation of metrics, all placeholders in the currently generated
model are treated as empty strings, such that ”pbefore ; ” + pempty + ” ; pafter” =
”pbefore ; ϵ ; pafter” = ”pbefore ; pafter”.

The time complexity of evaluating each metric depends on the metric itself. Cer-
tain metrics are fairly simple, and can be computed in constant or linear time. One
such is the number of gateways, which involves counting the number of gateways in
the process model, which can be done in linear or constant time, depending on the
data structure that represents the process model. Other metrics are harder to calcu-
late, such as cyclicity, which involves solving the problem of finding all cycles of a
directed graph, which has several research papers discussing possible solutions, such
as [25, 37], which all take significant time to compute, i.e. more than proportional
to the size of the graph. As section 4.4 describes, the time that compute each metric
takes can have a big impact on the total running time of the algorithm, especially
when it is complex. A figure of the implemented metric calculators, and their running
times can be seen in table 5.1 and 5.2.

4.4 Running time
While the running time of the algorithm is not a major area of focus for this thesis, the
extension of the PLG generation framework proposed contains a significant amount
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of computation. This section will present a brief analysis of the running time of the
framework, and identify what is likely to be the most time consuming aspects. If the
running time of the algorithm is to be improved, the identified areas are prominent
candidates for inspection.

The original generation framework of PLG is very basic, and requires little com-
putation. Assuming that the generated process models are generally of a certain size,
significantly larger than the number of patterns, the most time-consuming part of
the algorithm will likely be the number of recursive calls to its GENERATE-PATTERN()
equivalent. While there are no guarantees, it is reasonable to assume that the number
of calls to GENERATE-PATTERN() is proportional to the size s of the generated model
in the end. This means that the original framework of PLG should have a running
time of O(s) for generating a single model, which means a running time of O(n ∗ s)
when generating n models.

Instead of just using predetermined weights for each pattern, the extended frame-
work computes these weights at each call of GENERATE-PATTERN, in line 5, which is
quite computationally demanding. Basically, for each pattern, the algorithm com-
putes the sum, for all specified metrics, of the normalized benefit of choosing the
pattern, the latter of which requires computing the benefit of all other patterns, for
that metric. Since the number of patterns are constant, this adds up to a running
time of O(|M |) ∗ timeof(BENEFIT()). Assuming that copying and converting the cur-
rently generated model g for simulation purposes in removePlaceholders() takes
O(s) time, where s is the size of the generated model, then the CALCULATE-BENEFIT
function takes between s and however long the computation of the metrics of g takes.
As discussed in section 4.3.6, the time it takes to compute the value of a metric is
highly dependent on the metric itself, and could very well take less than, proportional
to, or longer than time than s. Therefore, stating a running time for the algorithm is
difficult, but making the assumption that calculating the most complex metric takes
longer than converting g in line 9, the COMPUTE-WEIGHTS function takes O(|M |∗tmetric

time, where tmetric is the time it takes to compute the most complex metric. This
leads to a total running time of O(n ∗ s ∗ |M |) ∗ tmetric, for which tmetric >= O(s), or
at least O(n ∗ s2 ∗ |M |).

Looking at the running time of the algorithm, if assuming that the set of basic
patterns |P | is significantly smaller than the average size of generated process models,
then the terms that are going to be most significant to the running time are s and
n. Since the contribution of this work only adds one term dependent on s, namely in
tmetric >= O(s), the time for computing metrics of the model have a very significant
impact on the total running time.
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CHAPTER 5
Software

Implementation
Details

This chapter describes the implementation of the algorithm described in chapter 4,
which is used to obtain the results of chapter 6. Readers who are not interested in
the details of the implementation of the algorithm should be able to skip this chapter,
without losing out on information significant to the contribution of the work, with
the exception of the list of implemented metric calculators of table 5.1 and 5.2.

The algorithm has been implemented as an extension to the PLG project, of which
the source code is publicly available, as mentioned in [5]. As such, it is implemented
as a Java project. It also readily supports exporting generated models as Petri nets
using the PNML standard [20], as BPMN models, or as graphical representations
of these using the Graphviz format [16]. It also supports a GUI for users, which
allow users to specify their input as described in section 3.3, however, this is not
supported for the extension proposed by this work, as will be described in 5.0.3. Like
the PLG project, the source code of the implementation of the proposed extension
is also publicly available1. This section will make several references to the classes
contained in the implementation for reference.

In the implementation, certain simplifications have been made to PLG, in order to
reduce its complexity. First of all, the model generator does not support or concern
itself with data objects. Also, in order to be able to predict the number of branches
in a generated gateway, all gateway patterns have been set to always generate two
branches.

Figure 5.1 shows an overview of the classes used to implement the algorithm.
Most associations do not have a direction or a multiplicity, except for the Pattern,
the PatternWeight and TargetWeight. This was done to stress that it is not a one-
to-one relationship, but rather that DynamicRandomizationConfiguration has as
many Pattern instances as there are basic patterns being used, and that each of these
has one weight attributed to it, which again has as many TargetWeight instances

1See https://github.com/anders9310/plg

https://github.com/anders9310/plg
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Figure 5.1: An overview of the main classes used in the implementation of the
algorithm.

attached to it as there are metrics specified as obligations. The relationship between
these classes is roughly equivalent to the relations shown in figure 4.2. In designing
the architecture of figure 5.1, the principles of low coupling and high cohesion have
been used as guidelines. This has lead to a design that has quite few associations
per class. It should however be noted that the process is actually referenced in a
few additional classes than what the diagram shows, and this is an implementation
issue. However, a clean and uncluttered diagram showing where Process is mainly
referenced was prioritized.

5.0.1 Implemented Distributions
The proposed generation algorithm, as presented in chapter 4 as algorithm 1, takes
a set of obligations, which is a combination of a metric and its desired distribution,
along with the particular properties of the distribution, such as its mean or variance.

For the implementation, a Poisson distribution has been chosen for all metrics.
This has been chosen on the merits of its simplicity, as a particular Poisson distribu-
tion can be specified by its mean, and its variance will be the same. It also follows a
somewhat even distribution resembling a normal distribution.
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Since a Poisson distribution is a discrete probability distribution, it is only defined
for values in N. This is perfectly suited for metrics that also take only values in N, such
as the number of nodes or cycles. However, it does not work as well for metric that
are defined outside of N, e.g. R. These metrics include most ones that are defined
as ratios, such as the sequentiality or coefficient of connectivity. In order to also
accommodate such metrics, a scaled Poisson distribution is used. More specifically, a
Poisson distribution is scaled down by a factor 100 to fit it to metrics defined outside of
N. For example, for a distribution for the sequentiality of 0.46, a Poisson distribution
of mean λ = 46 would be created and each interval divided by 100, so the new mean
would become λscaled = 46

100 = 0.46. This also means that each metric defined in R
can only be specified with a granularity of two decimals, such that specifying a mean
of 0.123456 would only be interpreted as 0.12. Note that no assumptions are made
on the validity of scaling down the Poisson distribution in this manner, but is purely
a practical way of supporting such metrics.

5.0.2 Implementation of the random() Function
The random() function described in section 4.1 is implemented as the poissonRandom()
function of the Random class. The implementation is based on inverse transform sam-
pling, and as such runs in time proportional to the specified mean of the Poisson
distribution. The implementation has been based on the inversion method presented
in [34].

5.0.3 User interface
In addition to its user interface, PLG also offers a command line interface. How-
ever, none of these interfaces are supported by the implementation in its current
state. Instead, the extension can only be run by accessing the interface of the
ProcessGenerator directly, which is the same as shown in a Java fragment in [5].
However, the difference between running the traditional version of PLG and the pro-
posed extension, is that instead of a ProcessGenerator, a DynamicProcessGenerator
is used. This new type of process generator takes a different input than the tradition-
alone, which reflects the input of the proposed extension. This can be seen in figure
5.2.

Since the proposed extension only supports Poisson distributions, which can be
fully defined by specifying their mean, the DynamicProcessGenerator actually only
takes pairs of metrics and the desired mean value of the distribution. When the
algorithm initializes the generation of a process, these pairs are converted into targets,
as they are described in chapter 4. This means that the implementation actually does
not realize the notion of obligations, which define the actual input of algorithm 1.

Another important difference between algorithm 1 and the implementation is that
there does not exist a part of the implementation that takes the number of process
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Figure 5.2: An Java fragment of the generation of several process models through
the interface of the proposed extension. Notice the different type of the
process generator from the one used in the Java fragment listed in [5]..

models to generate. Rather, this has to be done by generating a model through the
DynamicProcessGenerator multiple times, as is done in figure 5.2.

5.0.4 Support for Metrics
An important aspect of the algorithm is the continuous calculation of the metrics of
the model being generated, in order to make sure that the benefit gets it closer to the
target values. As stated in section 4.3.5, any metrics that the generation algorithm
supports as part of the input obligations must have its own metrics calculator. How-
ever, this is not the only reason why a metric might not be supported. As discussed in
section 6.4, other factors also play a role. The tables 5.1 and 5.2 state which metrics
are supported by the algorithm, and provide a short description of why they are not
supported, if this is the case.

Most supported metrics have calculators that are trivial to implement, as they
simply count elements in the model, or ratios between such counts. One metric that
is more complex in this respect is the number of cycles, since cycles are not explicitly
kept track of in the process model. In order to evaluate this metric, an implementation
of Johnson’s algorithm[25] from a third party is used. Information about the third
party implementation is included in the publicly available implementation of this
work.

If the reason for a metric not being implemented is that it is ”not prioritized”, this
simply means that the implementation has been deemed overly complex compared
to other metrics. This is often the case for control-flow related metrics, such as the
diameter, which require an algorithm that can take this into account. This means
that a third party algorithm would have to be found and adapted to fit the solution,
or a custom one would have to be implemented, both of which has the risk of become
significantly time consuming.

Several other metrics are not supported due to framework issues. This usually
means that the designed algorithm is not suited for incrementally getting the model
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closer to the target value by using the patterns of the framework from figure 3.4,
In other words, the combination of the patterns and the proposed algorithm do not
support the metric. This is however stated as a framework issue since, as proposed
in section 6.4, these issues can probably be solved by changing the basic patterns.
There are however situations where this is not enough, and the algorithm also has to
improve, in which the algorithm design is stated as the issue.

5.0.5 Post-Evaluation of Metrics
In addition to the run-time calculation of metrics required to calculate the benefit of
choosing patterns, the implementation also includes an integration to BPMeter[22],
accessing its public API. This easily allows users to see the metrics of finished and
exported models, and is what will be used to obtain the results of section 6.2. The
number of metrics BPMeter supports is however limited, and only includes a subset
of the metrics defined in [33].

5.0.6 Extensibility and Maintainability
Extensibility is the aspect of adding new features to the software without major
changes to the design or implementation, and maintainability is the aspect of per-
forming functional changes, and the ease of which this can be done. In this section,
these two concepts will be used interchangeably to refer to the ease with which the
algorithm can be extended or changed, for simplicity. This section lists some signifi-
cant ways the algorithm is expected to be changed or extended, based on the issues
discusses in chapter 6, and what it would take to implement such changes.

An important part of extending the capabilities of the algorithm is to support
more metrics. If the algorithm can support the desired metric in principle, it can be
added to the system by defining a value for it in the Metric enum, and implementing
a method for calculating its metric in MetricCalculator. This means that the
complexity of adding a new metric mostly depends on the implementation of its
calculator.

An issue for supporting several metrics is the basic patterns used by PLG in
figure 3.4. Section 6.4 suggests implementing basic patterns, or construction rules,
equivalent of those used in [40]. This would firstly require a redesign of the rules
to find the equivalent, and would also cause a couple of changes in the algorithm.
First of all, the recursiveness of the generation framework would have to be changed
to a more iterative one. More specifically, this means that the ProcessGenerator
would no longer generate one single pattern recursively by calling inserting patterns
for placeholders over and over, but would have to iteratively apply the construction
rules to the model. Also, the framework would need a way of deciding where to apply
each construction rule. What kind of scheme to use is more of a design issue than
an implementation issue, but it should be possible to contain the implementation so
that it is not dependent on any other parts of the system than ProcessGenerator.
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Another suggested improvement is to redesign the algorithm for predicting the
benefit of choosing patterns, to one that is capable of looking several steps ahead in
the generation, i.e. is more clever. The implementation of such a design should be
able to be contained in the Benefit class, or to only be dependent on this and the
information contained there.

As stated in table 5.1 and 5.2, there is an implementation issue that keeps the
density metric from being implemented. This is related to the rules when calculating
the benefit, where a distinction is made between monotonically increasing metrics,
and metrics that are not necessarily this, namely ratio-based metrics. This means
that it is regarding any ratio-based metric (or rather any metric defined in R) as
non-monotonic. However, for the density metric, this is not the case for all but small
model sizes, as it is monotonically decreasing for bigger ones. A solution to this is to
create new rules when calculating the benefit that are general for all types of metrics.

5.0.7 Performance
The actual running time of the algorithm is discussed in section 6.3, in which it is
shown that the running time is highly dependent on the size of the models generated.
While improving this dependency, or changing the time complexity of the algorithm
in general, requires a redesign of the algorithm, there are certain optimizations that
can be readily made to reduce the running time.

The most obvious optimization, and the only one that will be described here, is
reducing the time the algorithm spends calculating the metrics of the model being
generated. By debugging the algorithm, it is possible to show that each metric is
evaluated a whopping 170 times for each new pattern that is generated. Ideally, the
algorithm should only calculate each metric for the model once for every possible
pattern, in order to predict the value of the metric if the pattern is generated, each
time a new pattern is chosen. This would add up to ideally calculating the metric 5
times each time a new pattern is chosen, which is 34 times less than the ideal number
of times. The reason why this is not the case is mainly due to the fact that every time
the value of a metric is read at any point during execution, it has to be calculated
all over again. This means that every time it is logged, or even quickly checked by
another class, it has to be recalculated. However, this can be improved by creating
a caching solution, in which the Process caches the values of its own metrics, and
invalidates this cache whenever a change to it happens, which is usually when a new
pattern is added.
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Metric Is sup-
ported

Reason Comment

Number of
nodes

Yes

Number of activ-
ities

Yes

Number of gate-
ways

Yes

Number of
AND-gateways

Yes

Number of
XOR-gateways

Yes

Diameter No (not pri-
oritized)

Not prioritized Can be supported, but
was not prioritized due to
implementation complex-
ity.

Density No Implementation
issue

Can be supported by the
algorithm, but not by the
current implementation of
it. This is because the
metric is monotonically
decreasing when the num-
ber of nodes gets above a
certain value, and is an im-
plementation issue.

Coefficient of
connectivity

Somewhat Framework
issue

The algorithm provides
some support, but the
metric can easily enter
into a local maximum.
This is a PLG framework
issue, related to the pat-
terns used.

Average degree
of gateways

No Framework
issue

Can be supported, but
due to simplifications to
the generation framework,
the only out-degree of
a gateway possible is 2,
which makes the average
degree 1.5 for all finished
models.

Maximum de-
gree of gateways

No Framework
issue

Can be supported, but
due to simplifications to
the generation framework,
the only out-degree of a
gateway possible is 2.

Table 5.1: An overview of which metrics of table 3.2 are supported by the current
implementation of the algorithm.
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Metric Is sup-
ported

Reason Comment

Separability No Not prioritized Can be supported, but was
not prioritized due to imple-
mentation complexity.

Sequentiality Somewhat Framework
and algorithm
design issue

Only provides limited sup-
port since increasing or de-
creasing the metric often re-
quires a basic pattern fol-
lowed by an activity to in-
crease or decrease, which
means that the algorithm of-
ten can not anticipate how to
change the value of the met-
ric. This means that the al-
gorithm will often enter into
an endless loop, and is a prob-
lem related to a combination
of the available patterns, and
the cleverness of deciding the
metric benefit of patterns.

Structuredness No Framework
issue

Not supported as the frame-
work patterns only support
structured blocks, which
means that this metric would
only ever take a value of 1,
since it is fully structured.

Depth No Not prioritized Can be supported, but was
not prioritized due to imple-
mentation complexity.

Connector mis-
match

No Framework
issue

Since the framework only sup-
ports block-structured mod-
els, all connectors will always
be matched, and the connec-
tor mismatch would therefore
only ever take the value 0.

Connector het-
erogeneity

Yes

Control flow
complexity

Yes

Number of cy-
cles

Yes

Token split Yes

Table 5.2: An overview of which metrics of table 3.3 are supported by the current
implementation of the algorithm.
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Metric Calculator time complexities
Number of nodes O(1)
Number of activities O(1)
Number of gateways O(1)
Number of AND-gateways O(1)
Number of XOR-gateways O(1)
Connector heterogeneity O(NG), where NG is the number of gateways

in the model
Control flow complexity O(NG), where NG is the number of gateways

in the model
Number of cycles O(s2 ∗ log s), where s is the size of the model

being evaluated. Johnson’s algorithm [25] is
being used.

Token split O(NG), where NG is the number of gateways
in the model

Table 5.3: The time complexities of the implemented metric calculators.
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CHAPTER 6
Results and Discussion

The following sections discuss the different aspects of the algorithm’s qualities and
shortcomings. The following aspects will be in focus.

• Correctness

• Diversity

• Running time

• Support for metrics

6.1 Correctness
This section seeks to show the correctness of the algorithm, i.e. how well metrics of
generated models hit their target values, as well as the distribution of metrics across
the generated model collection. If assuming that a proper distribution of metrics is
ensured if the algorithm hits the target values for each model, then the meaning of
the correctness of the algorithm is how accurately the algorithm hits the target values.
This means that if there exists a solution for which the generated model hits its target
values, then the algorithm should generate such a solution.

The following subsections contains tests for different types of metrics, and are
designed to show the merits and shortcomings of the algorithm when used on these
metrics. Section 6.1.3 discusses the implications of the shortcomings seen in the tests,
and proposes possible solutions for each of them.

6.1.1 Monotonic Metrics
The simplest metrics to handle for the algorithm should be monotonically increasing
metrics, which usually take the form of counts, such as the number of activities or
number of gateways. In order to determine the correctness of the algorithm for such
relatively simple metrics, a test with three monotonic metrics is run. The input to
the algorithm for this test can be seen in table 6.1.

None of metrics used as input for this test have any inherent dependency. They
do, however, have some dependency in terms of the possible patterns the algorithm
can produce. This is because 2 activities are always created when creating 2 AND- or
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Table 6.1: Algorithm input with monotonic metrics.
Size of collection: 100
Obligations:
Metric Mean value Monotonic
Number of AND-gates 10 Yes
Number of XOR-gates 10 Yes
Number of activities 30 Yes

XOR-gateways through either a parallel execution, mutual exclusion or loop pattern.
This means that the number of activities is always equal to, or higher, than the number
of AND- and XOR-gates, such that number of activities ≤ number of AND-gates +
number of XOR-gates. It is however always possible for the algorithm to reach a
perfect solution for the number of activities, given that both the number of AND-gates
and number of XOR-gates have hit their target value, and the number of activities
has not yet, by creating a sequence and activity pattern a given number of times. In
other words, there exists at least one solution where all three metrics hit their target,
one of which the algorithm should choose.

Table 6.2: Results of the input in table 6.1.

Metric Mean Average absolute
distance to target

Number of AND-gates 9.80 0.61 (6.2 %)
Number of XOR-gates 10.16 0.77 (7.6 %)
Number of activities 27.51 4.69 (17 %)

Looking at the results in table 6.2, it is arguable that the algorithm hits the
target well for number of AND-gates and number of XOR-gates. The accuracy of the
algorithm can be considered even better, when taking into account that the target
value can take on odd values, while gateways are always generated in pairs of two,
such that it is impossible to generate a model with an odd number of gateways.

While the results for the number of activities are not particularly bad, they are
worse than for the other two metrics. The accuracy of the algorithm is low considering
that it misses the target value by 17% on average. Noting that it most often hits a
value lower than the target value, and considering that there is always a solution that
makes the model reach or surpass the target value for the number of activities, these
results are not optimal.

6.1.2 Monotonic and Non-monotonic Metrics
While most monotonically increasing metrics are fairly simple to handle, this is not
necessarily the case for non-monotonic metrics. The challenge is that the the latter
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can both increase and decrease, and may also contain local maxima on the way from
the initial value to the target value. To test the correctness of the algorithm on such
metrics in conjunction with monotonic ones, a test with the inputs of table 6.3 has
been devised.

Table 6.3: Algorithm input for a mix of both monotonic and non-monotonic metrics.
Size of collection: 100
Obligations:
Metric Mean value Monotonic
Number of Nodes 40 Yes
Control Flow Complexity 10 Yes
Connector Heterogeneity 0.75 No

As can be seen from table 6.4, none of the metrics used hit the desired mean, the
closest one being the connector heterogeneity, which produces a distribution with a
mean value only 0.02 from the desired mean. Its average difference to the target value
for each case is only 6.6%, which is only 1.6 percentage points above the tolerance of
the generation algorithm (e of reachedTarget(), stated in section 4.1). From table
6.4, the variance of the distribution is significantly lower than the expected variance
of a Poisson distribution, which is the same as the mean. This can also be seen from
figure 6.2(c), which shows that the shape of the distribution is narrower than the
reference Poisson distribution.

For the number of nodes and CFC, while the variance of the data is closer to its
expected value for the connector heterogeneity, it is evident that the mean value is
substantially off the mark. Compared to the goal of hitting the target value for each
metric every time, an average difference of 13.2 and 20.1% is a large offset. It should
also be noted that the control flow complexity usually hits a value higher than the
target value, while the opposite is true for the number of nodes.

Table 6.4: Results of the input in table 6.3.

Metric Mean Variance Average absolute
distance to target

Number of nodes 37.78 58.49 5.27 (13.2 %)
Control Flow Complexity 11.99 9.11 2.01 (20.1 %)
Connector Heterogeneity 0.77 0.28 0.051 (6.6 %)

6.1.3 Discussion of Results
As can be seen from sections 6.1.1 and 6.1.2, while the correctness of the algorithm
is fairly good, there is still room for improvements. This section analyzes the results
to find the probable causes of its shortcomings, and proposes solutions to deal with
them.
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Figure 6.1: Distribution of the metrics in the collection generated from the input
of table 6.3.

(a) Number of nodes (b) Control Flow Complexity

(c) Connector Heterogeneity

6.1.3.1 Termination of Generation

In the test of section 6.1.1, the algorithm is shown to hit the target value pretty well
for the two metrics regarding the number of gateways, but does not do as well for the
number of activities, which on average hits a value 2.49 lower than the target value.
Since the algorithm should be able to hit the target value for the number of activities
by creating consecutive sequence and activity patterns, something is not working
optimally in the algorithm. If, in the situation where the number of activities has not
hit the target value yet, the algorithm never stopped, the algorithm would eventually
reach the target value. This is because neither the sequence nor the activity pattern
are disadvantageous for any of the metrics, so that if the algorithm never stopped,
these would eventually be chosen. This indicates that the algorithm stops too soon.
Since the termination of the generation of each model is controlled by the termination
benefit part of the total benefit, this is likely where the problem arises.

Indeed there is a shortcoming in what controls the termination of the generation.
Since this is generated as part of the benefit, the algorithm just gets a ”local” benefit
of stopping from each of the metric target values, instead of a ”global” evaluation
of whether it would actually be advantageous to stop the generation for the entire
model. For the case of the test in section 6.1.1, what likely happens is that the two
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metrics for the number of gateways hit their target value before number of activities.
Since they have now reached their target value, their total benefits reflect that the
algorithm should stop, while the benefits calculated for number of activities does not.
However, since there are now two metrics that want the generation to stop, versus
one that does not, the algorithm is going to favour patterns that brings the number
of placeholders in the model toward 0, stopping the generation, even though there is
still a metric for which the target value can be reached. In other words, the algorithm
has an issue with stopping at the optimal time.

In order to stop at a more optimal point of the generation, a solution could be
to look at the collective benefit of stopping the generation at every iteration. This
can be done by looking at the average relative distance to all target values for all
metrics from generating each pattern. If no patterns are contributing to a decrease in
the average distance to all target values, the algorithm likely can not obtain a better
solution, and should stop generation, by converting all placeholders in the currently
generated model to skip patterns.

6.1.3.2 Local Maxima

When dealing with non-monotonic metrics, there is a risk of the algorithm being
caught in a local maximum in terms of the benefit. This can happen if it is possible
to generate a solution where the metric hits its target value, but no patterns show
any benefit for the metric at the current point of generation. In such a situation, the
algorithm can get stuck trying to reach the target value, but not know which pattern
to choose to get there.

One example of such a situation is for the sequentiality metric, which is the ratio
of the number of connections between non-gateway nodes to the total number of
connections. In order to increase this ratio, the algorithm has to generate an activity
pattern that can not connect to a gateway. While this is usually possible, it can
happen that all remaining empty patterns in the generating models are between two
gateways, such as ”AND ; pempty ; AND”. Generating an activity pattern in place of
the empty pattern would not increase the ratio, but decrease it. Instead, the algorithm
has to generate more than two sequence patterns, and then activity patterns to fill
their empty patterns. However, since the algorithm only looks one step ahead, it
does not know this, and will easily be stuck in a loop of creating sequence and skip
patterns, since neither of these decrease the value of the ratio. So the algorithm is
stuck in a local maximum.

This shortcoming can be solved by introducing a smarter scheme for determining
the benefit of choosing new patterns, which would have to be able to see several
”moves” ahead. A possible solution that springs to mind when viewing generating a
pattern as performing a move, is one borrowing inspiration from chess AIs, such as
[7]. The commonalities between the generation algorithm here and such algorithms
is that both have to look several moves ahead, and take a large number of different
outcomes into account, which are determined in a stochastic manner. Other solutions
are also possible, but proposing a specific solution is outside the scope of this thesis.
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6.1.3.3 Impossible Metric Values

All metrics are only defined for a certain set of values. For example, the number of
nodes in a model is restricted to the natural numbers N. Likewise, the sequentiality
can only take a value in [0, 1]. For the set of patterns used in PLG, the connector
heterogeneity can only take values in [0.5, 1]. This can actually be seen in figure 6.2(c),
where there are no occurrences of models with values outside this range, even though
the scaled Poisson distribution with a mean of 0.75 that is used in the implementation
is defined outside this range.

Fixing this shortcoming would not take a major redesign of the algorithm, but
rather entails the algorithm having the defined range of all metrics, such that it knows
not to set target values outside these ranges.

6.1.3.4 Empty Patterns

Another shortcoming of the algorithm is its use of empty patterns as placeholders,
and their interpretation as empty strings. This usually manifests itself as a problem
for certain metrics when calculating the benefit of generating patterns containing
placeholders, since the patterns are necessary for increasing or decreasing their value,
but generating such a pattern with empty strings instead of actual components does
not affect the metric. One example is generating a sequence pattern for the diameter
metric, which, among other patterns, is necessary for increasing the longest path of
the model. However, when the new placeholder is interpreted as an empty pattern,
the pattern does not actually add to the length of the path, since ”component ; pempty

; component”→ ”component ; component”. This is also the case for metrics that rely
on an actual component to be generated in each of the branches of gateway-patterns,
before their effect can be seen. One such metric is the average degree of connectors, for
the degree of each gateway-split will be 1 if there are only placeholders in each branch,
and the number of branches if all placeholders were replaced by single activities.

One solution to this problem could be to introduce a more clever look-ahead
during the calculation of the benefit, such that it looks several iterations ahead in
the simulation, like proposed in section 6.1.3.2. This would allow the algorithm
to predict the benefit for each metric, analogous to predicting a way out of the
local maxima. Another solution would be to change the framework of PLG from
generating placeholders altogether, and instead just generate activities, and treat
these as placeholders instead. Such a scheme would start to look a lot like the one
used in [40], where they define a set of construction rules that they apply to the model
to transform it. In such a scheme, since no parts of the model would be undefined as
the empty pattern at any time, the problem of placeholders is solved. It is however
worth noting that if a metric still requires a certain series of generated patterns, a
smarter look-ahead algorithm for determining the benefit is needed.
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6.2 Diversity
In addition to having the metrics passed as obligations follow the specified distri-
bution, it is also desirable to have a certain diversity in the metrics not passed as
obligations. This means that the distributions of these other metrics should be some-
what spread out, following something that looks like a normal distribution.

In order to test the diversity aspect, the algorithm is run with just the number of
nodes passed to it as an obligation. Instead of just choosing the same solution every
time, the algorithm should ensure that each of the other metrics are also diverse. The
input can also be seen in table 6.5, and the results are shown in figure 6.2.

Table 6.5: Algorithm input specifying the size of the generated collection.
Size of collection: 100
Obligations:
Metric Mean value Monotonic
Number of nodes 50 Yes

The diversity has been evaluated for the metrics in figure 6.2(a) through 6.2(e).
For number of nodes in 6.2(a), the models follow a Poisson distribution as expected.
When looking at the metrics of figures 6.2(b), 6.2(c) and 6.2(d), these also seem
to follow a unimodal and Poisson-like distribution. The coefficient of connectivity
in figure 6.2(e) is somewhat different in that it follows a distribution with a lower
variance than the other metrics. By examining the analysis of real process models
in [33], it becomes clear that this metric tends to follow a distribution with a low
variance compared to the mean. This means that the narrow distribution of figure
6.2(e) can be considered satisfactory. Since the distributions of the metrics in figure
6.2 seem reasonably diverse, it can be concluded that the diversity of the metrics not
passed as obligations is insured.

6.3 Running Time
In section 4.4, the algorithm was argued to have a running time mainly dependent
on the size of the produced model, as well as the time for calculating the metrics
passed as obligations. In this section, this hypothesis is tried on a series of tests. The
running time will also be evaluated for feasibility for use in practice. All tests are run
on a computer with the specifications of table 6.6.

Table 6.6: Specifications of the computer used to run the tests.

Model Lenovo Thinkpad T440s
Processor Intel(R) Core(TM) i7-4600U CPU @ 2.10 GHz 2.69 GHz
RAM 12 GB
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(a) Number of nodes (b) Number of activities

(c) Number of gateways (d) Control flow complexity

(e) Coefficient of connectivity

Figure 6.2: Distribution of metrics not included in the input of the test in table 6.5.

6.3.1 Size of Generated Models

According to the hypothesis, the algorithm should take longer when generating larger
models. To test this, the algorithm is run three times - once when generating process
models of 10 nodes, one for 32 (i.e. 10 ∗

√
10) nodes, and another for 100 nodes. The

test setup and results can be seen in table 6.7, which shows that there is indeed a big
difference between the running times. This supports the hypothesis that the running
time of the algorithm is greatly dependent on the size of the generated models, and
in fact runs more than proportional to the size of the process model. In fact, it can



6.3 Running Time 57

be shown that a polynomial regression line of the second degree can be very well
fitted to the running time, as shown in figure 6.3. This is in line with the analysis
performed in section 4.4, which states that the running time is proportional to s2, i.e.
not linear.

Table 6.7: Test results for different sizes of the generated models.
Generated models: 100
Number of nodes Time elapsed per model
10 0.085 s
32 0.436 s
100 3.570 s

Figure 6.3: A polynomial regression line of degree 2 fitted to the running time of
the algorithm in terms of the number of nodes generated.

6.3.2 Computation Time of Metrics
According to the analysis of section 4.4, the running time of the algorithm should also
be dependent on the computation time of the metrics used. To test this, two metrics
of different computational complexity have been chosen. The number of activities
metric is very simple to compute, and takes only constant time in the implementation.
The number of cycles metric is however a bit more complex to compute, and takes
O(s2 log s) time in the implementation, where s is the size of the generated process
models. If the analysis is correct, it should take substantially longer to run the
algorithm with the number of cycles than with the number of activities. In order
to make the size of the process models irrelevant, both runs will be told to produce
models of size 30 by also passing the number of nodes as an obligation.
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The results of the test in table 6.8 clearly show a significant difference in the
running times when using the two metrics, with the simplest one taking less time.
The analysis is therefore correct in assuming that the metrics used in the algorithm
are important for its running time.

Table 6.8: Test results for when using metrics with high and low computation time.
Generated models: 100
Metrics Time elapsed per model
Number of nodes: 30
Number of activities: 20 0.547 s

Number of nodes: 30
Number of cycles: 5 0.919 s

6.3.3 Feasibility
In order to test whether the generation algorithm is feasible for use in practice running
time wise, the running time of the algorithm is measured when running with several
different metrics. In order to be feasible for use in practice, the algorithm must be
able to construct a reasonable sized collection in an amount of time that can not
disrupt the work of the researchers using it. For the purposes of this work, being able
to generate a process model collection size of 2000 models in a reasonable time will
be considered satisfactory for the feasibility. The number 2000 has been chosen since
this is the combined size of the analyzed real-life process models in [33], which is the
kind of process model sets that the generation algorithm is competing with for use in
benchmarks.

The test setup and results can be seen in table 6.9. The test is run for 100 models,
and the time to generate 2000 models is extrapolated from this (notice that this is
the number of models, not the size of the models, so it is possible to assume linearity).
This means that the algorithm will take 2.66 seconds ∗ 2000 = 5320 seconds, or 89
minutes, to generate 2000 models. If left to run overnight, or maybe even during
lunchtime, this should not significantly impediment researchers’ work.

It is however important to note that the models produced in this test are only of a
modest size, and input producing larger models would likely have a significantly higher
running time, as demonstrated in section 6.3.2. Extrapolating from the findings of
that section, and assuming a squared dependence on the size, indicates that producing
2000 models of size 100 would take about nine hours, while producing 2000 models
with 1000 nodes each would take about 170 hours, or 7 days. This means that
while the algorithm is time-wise fit for use in practice for modestly sized models, it
is possible that the running time of the algorithm exceeds what can be considered
feasible when desired size of the models becomes too large. However, this test shows
that the size of the models will have to exceed 100 models, and possibly be in the
order of a thousand models for this to be the case.
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Table 6.9: Results for the algorithm with several different types of metrics.

Generated models 100

Metrics
Number of nodes: 40
Control flow complexity: 10
Connector heterogeneity: 0.75

Time elapsed per model 2.66 s

As mentioned in section 5.0.7, it is however probably possible to reduce the run-
ning time of the algorithm significantly by implementing a caching mechanism for
calculating the metrics, such that each metric will only be calculated 5 times for
each new pattern that is chosen, compared to the 170 times it is currently calculated.
While this should reduce the time significantly for all models, it still won’t change
the time complexity of the algorithm, such that generating very large models might
still be unfeasible in many situations.

6.4 Support for Metrics
Section 6.1.3.3 discusses shortcoming of the algorithm in supporting metrics that are
not defined for certain values. There are however also other shortcomings in the
algorithm when it comes to supporting metrics, that are not as easily uncovered by
tests. Compared to the metrics identified in [33], there are only a subset of those that
are well supported by the algorithm.

Some metrics that can not be supported by the algorithm in its current form,
are impeded by the generation framework and expressiveness of the CFC used by
PLG. Since this only produces structured models, and never contains design errors
such as the presence of deadlocks, and ensures liveness in the process, several metrics
identified in [33] do not make sense to support, since they would usually only ever
take on a single value. One example is the connector mismatch, which would only ever
take a value of 0, since the CFG does not allow for mismatched gateways. Another
example is the structuredness, which would always be 1, since the rules of PLG only
allow for structured components, which are described in [33] when defining the metric.

In order to allow for support of such metrics, the CFG must allow for ”incorrect”
process models, which is to say models that contain design errors. One way of doing
this is to introduce changes directly into the CFG. Another solution would be to make
this a feature of a possible migration to a different framework of using production rules
in stead of the CFG, as sketched out in section 6.1.3.4. By introducing an equivalent
of the construction rules used in [40], the soundness property as defined in [38] would
no longer be guaranteed. This means that the model can now contain deadlocks, and
supports the generation of business process models that are transferable from any
arbitrary Petri net.

Another shortcoming in terms of supporting metrics is the lack of support in



60 6 Results and Discussion

the implementation for handling different distributions for metrics. Different metrics
often appear with different distributions in different real-life process model sets, which
is evident from the real-life collections analyzed in [33]. One example is the coefficient
of connectivity, which is shown to follow a significantly different distribution than
other metrics in section 6.2. This means that in order to generate more realistic
process model sets, it would be beneficial for the algorithm to be able to support a
wider range of distributions.

It is also not possible for the algorithm to support monotonically decreasing met-
rics at its current state. This is due to an implementation issue where the algorithm
is not told to stop if the metric falls below the target value, and is relatively easily
fixable. It also has problems supporting metrics that are monotonically increasing,
but not only take on values m ∈ N, which is also due to an implementation issue. In
order to be able to predict the number of branches in a gateway pattern, the number
of branches has been set to 2 every time, which limits the range of values metrics
based on the degree of nodes can take.



CHAPTER 7
Conclusion

This work proposes a generation algorithm that provides direct control of the charac-
teristics of generated business process models, where the characteristics are specified
as metrics along with their desired distributions. Each process model is generated
with respect to a target value for each metric, which are produced from this distri-
bution. The algorithm continuously calculates the probability of choosing among a
set of basic production patterns, based on the benefit of choosing each pattern with
regards to producing a model with the specified metrics. What patterns are beneficial
or not is based on how much closer to the target values each pattern would get the
model, and how the pattern contributes to the generation terminating at the right
time.

The produced process model collections are generally in accordance with the spec-
ified characteristics. The results vary between metrics, and were on average within
6-20 % of the desired mean for different metrics, and had a good alignment with
the reference distribution. The models also show a distribution resembling a normal
distribution for characteristics that do not have a specified desired distribution, and
shows an average running time indicating feasibility for practical use when generating
models of around 100 nodes.

While the algorithm does achieve good results, there are still some serious limita-
tions that makes impractical in its current state. A significant drawback is its limited
support of metrics, mainly due to the basic generation patterns used. The algorithm
also determines when to terminate generation non-optimally, and has problems han-
dling local maxima and interdependence of metrics. However, despite its drawbacks,
the algorithm is a nice first step towards developing a practically feasible method for
generation of process models based on specification of the desired characteristics.

Future work

Chapter 6 discusses possible solutions to the aforementioned shortcomings, that will
improve on the performance of the algorithm. These solutions to the most significant
drawbacks can be summarized as introducing the following to the algorithm, as well
as fixing the implementation issues identified in chapter 5.

• A new set of basic generation patterns that do not contain placeholder compo-
nents, such that the model is non-ambiguously defined at all points of generation.
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Patterns should also be as atomic as possible, so they can not be decomposed
into other patterns.

• A smarter method for determining the benefit of choosing each pattern, by
looking further ahead in the generation.

• A global notion of the benefit of terminating, where the generation does not
terminate before an optimal solution has been found.

Future work on the proposed algorithm should focus on redesigning the algorithm
to incorporate the above solutions. Likewise, subsequent work on similar algorithms
should take note of the experiences made in this work, in search for a practically
feasible method for generating process models with a high control of the output
characteristics. Furthermore, the basic ideas of the proposed algorithm could also be
applied in fields outside of business process modeling, such as graph synthesis, a field
which seemed to lack a similar solution based on gradual optimization for generating
graphs with certain characteristics.



APPENDIX A
Project Planning

When working on a project, having a plan for the progress towards reaching the end
goal successfully is very important. By choosing not to work after some kind of plan,
it is arguable that one is consciously planning to fail.

The project work on this thesis has been structured into two-week sprints, a
concept that has been borrowed from the Scrum framework. Particularly for this
project, it has meant that at the beginning of every sprint, a set of goals for the
sprint has been set. Since some of the activities of the project work are not as
tangible as delivering some functionality in a computer program, it has been the idea
to make the results of the goals of each sprint as tangible as possible.

Before the beginning of each sprint, an informal sprint planning was also always
performed. During this activity, the project plan as defined before the beginning
of the previous sprint could be revised, to accommodate any necessary changes and
to allow bigger tasks or more abstract goals to be broken down into smaller, more
specific, tasks and goals. Right before the sprint planning, a meeting between the
student and the adviser was scheduled. This served as a status meeting to keep the
adviser up to date, and allowed for a discussion of what the next steps of the project
should be, so this could be included in the revised plan. These meetings were the
main contact between the adviser and student throughout the work period.

Working on the Thesis

The project work was mainly divided into a preliminary research phase, an algorithm
design and implementation phase, and a writing phase. The preliminary research
spanned the two first sprints, and the intention was that after the phase, a sufficient,
if not complete, overview of the research field should have been obtained, such that
the work of designing the algorithm could begin.

The algorithm design and implementation phase consisted of several sprints that
each should deliver on the goals set for each sprint. While many projects have a
somewhat set idea of what functionalities should be in the system, the main challenge
of this system was not to implement what we wanted it to do, but rather to design
how it should do it. Therefore, in contrast to a traditional system, each sprint was
oriented towards both designing, implementing and evaluating a specific algorithm,
which the subsequent sprint would improve on. The idea of this approach of iteratively
designing and, hopefully, improving on the algorithm was to reduce the risk of no
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functioning algorithm being created at the end of the phase. Instead, a simple but
working algorithm was implemented during the first couple of sprints, and was then
iteratively improved during subsequent sprints, but always working.

While working on the project, the design and implementation phase changed both
in terms of the time allotted, and the goals, or milestones, set for it. While in the
beginning, as seen from the initial plan in figure A.1, two milestones were set for
the algorithm, where most of the different metrics should be supported after sprint
6, and that the capabilities should be expanded until the end of sprint 10, when the
whole implementation should be done. As can be seen from the final plan in figure
A.2, this layout changed quite a bit. First of all, the two aforementioned milestones
were removed fairly early, and replaced by 5 iterations of the algorithm, where the
fifth and final iteration was planned to finish after sprint 8, instead of ten. This also
made the phases of the algorithm design and implementation more distinct from the
writing phase, even though, as can be seen from the final plan, there was still some
overlap in certain writing activities.

At the beginning of the design and implementation phase, the main idea was
actually already very similar to the one in the final algorithm, namely to iteratively
move toward a set of target values for each metric by recalculating the weights for each
new generated pattern. The way of doing this was however initially a bit different
from the approach taken in the end. Instead of calculating a predefined target value
following a seemingly realistic Poisson distribution, the idea was that the algorithm
would automatically terminate generation so that the generated models would follow
such a distribution. This idea however turned out to be too difficult and complex, so
after sprint 6, a different approach had to be taken, leading to the main idea of the
final algorithm being adopted. Otherwise, the project work very well followed the
gradual improvement of the algorithm for each completed sprint.

When the implementation of the algorithm was finished, the bulk of the thesis
writing was undertaken, parallel to obtaining the final results. As can be seen from
the final plan, several goals were not met in the sprints, but were still finished, thanks
to some buffer time in the final sprint and at the cost of a Christmas vacation. While
there were many differences between the initial and final project plan, this was the
intention from the beginning. As more information about what would be the best
way to process came to light, the project plan would change to accommodate this
new information, by planning at the last responsible moment.
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Figure A.1: The initial project plan. Each sprint has certain goals, which describe
what the main purpose of the sprint is to achieve or produce, and a
sprint description, which lists the smaller tasks that are part of the
sprint, attached to it. The description is just meant for the student
working on the project to read and maintain. Also, notice the few goals,
which can be seen as milestones of the project at this early stage.
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Figure A.2: The final project plan.
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