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Preface

This work summarizes the thesis project entitled \Exploring Process Mining in 10T Environments™,
written by the author as part of his Msc. Program in Computer Science and Engineering at the
Applied Mathematics and Computer Science Department of the Technical University of Denmark.
This report investigates the application of process mining in Internet of Things (IoT) environments.

In 10T environments a network of inter-connected devices equipped with sensors operating au-
tonomously is responsible for collecting and sharing data over the internet. The Business Process
Management (BPM) eld o ers a set of disciples allowing to design, implement, execute, and ana-
lyze business processes. There is an increasing interest in Bridging the gap between the loT world
and BPM world to improve the execution of business processes. In the past decade process mining
has been successfully used in several BPM contexts; however, its application in 10T environments
is still not entirely understood.

Process mining can be applied as a bottom-up approach of looking at BPM-IoT relation. By
transforming sensor data to log events, it is possible to obtain event logs; thus enabling all process
mining capabilities. This work proposes a new approach aiming at mapping sensor data to business
process activities to generate comprehensive event logs.

To achieve this goal, a new process mining scope where business processes are supported with loT
devices is introduced. Within this scope, a use case scenario illustrating the work- ow in an loT
environment is presented, and a business process simulator allowing to imitate the interactions
between sensors and business processes is designed and implemented.

Besides, this work investigates also a common challenge within the process mining community that
is to infer the event log scheme. While designing the sensor data mapping approach this issue was
faced and solved. Consequently, a new state-of-art approach aiming at automatically inferring log
scheme from event logs is proposed as part of this thesis project.

December, 2017 Amine Abbad Andaloussi
Copenhagen, Denmark
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Chapter 1

Introduction

This chapter is an introduction to this thesis report. Section[1.] brie y emphasis on the relationship
between Process Mining and loT, and highlights the mutual bene ts, and challenges raised from
bridging the gap between the two elds. Section[1.2 introduces the context of thesis report.
Section[1.3 de nes the research scope and challenges considered by this report. Finally Section
introduces a use case scenario that will be used throughout the report as running example to
illustrate the proposed approaches.

1.1 Process Mining and loT: a Bottom-Up Approach

During the past two centuries, our world has experienced a huge industrial revolution. Starting
from the Power Steam at the 18th century (Industry 1.0), the Mass Production, Assembly Line,
and Electricity at the beginning of the 20th century (Industry 2.0), Automation and Computers at

the end of the 20th century (Industry 3.0) and recently Cyber-Physical Systems including Internet

of Things (loT), Big Data, and Cloud Computing (Industry 4.0). Nowadays, our world becomes
massively interconnected using sensors and actuators embedded in smart devices connected to the
internet, which are responsible for monitoring their external environment, and enacting when it is
needed. The massive amount of data generated from IoT devices created a mutual bene t relation
between business process management (BPM) eld and l1oT domain [23].

The BPM eld aims at enabling process automation, and process analysis to improve the way
business processes are managed within an organisation [42, p. 3]. Exploring 10T data in process
analysis allows BPM to provide a comprehensive overview of the business process executionl [23].
For instance, the sensor data coming from IoT devices can help to track the progress of manual
activities in a business process, thus providing ne-grained insights. Furthermore, loT data helps to
reduce the human interactions with business processes which implies less human-related errors and
more time-saving. Bridging the gap between the two elds is not only advantageous to BPM but
also bene cial to 10T. Indeed, BPM o ers a robust process management platform to loT networks,
which allows monitoring, managing, and optimising the interactions between loT devices from a
process-oriented perspective [23].

So far the relationship between BPM and IoT is described from a top-down view (from business
processes to loT data), where the business process management system (BPMS) is seen as a central
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orchestrator controlling the process execution with the support of IoT data. However, there exists
another perspective to look at the relationship between BPM and IoT. In fact, instead of considering
the top-down view, it is possible to use a bottom-up view (from loT data to business processes).
This perspective consists at exploring, aggregating and learning from the raw data generated by
lIoT devices, in order to infer high-level business process activities that can be used by process
mining algorithms to support the decision making process [42].

The bottom-up approach relies mainly on the ability of process mining techniques to deal with
sensor data. As process mining algorithms require event logs, a possible way to bridge the gap
between process mining and sensor data is to aggregate sensor data to infer log events, thus
enabling all process mining capabilities. The BPM loT manifesto [23, p. 6] Published recently,
highlights several challenges raised by this approach. Among them, the mapping of sensor data to
process activities, knowing that a sensor data entry can be relevant to one process activity as it
can be relevant to several process activities (one-one relation, one-many relation). Another critical
challenge is to discover the corresponding process instance for such process activities, knowing that
several process instances might run concurrently. The literature shows that authors have tried to
tackles these challenges from di erent perspectives using several techniques such as interaction
mining [36] and human habits and behaviour analysis [19] [7] [16] [17]. The literature review in
Chapter 5 provides a comprehensive overview of these techniques.

1.2 Thesis Context

This thesis ts into the intersection of process mining with the IoT eld. Precisely, it establishes a
strong tie between the BPM world and the 10T world using process mining techniques as a bottom-
up approach to discover the work- ow of business processes in 10T environments. Since the entry
level for all process mining techniques is an event log [42], this work aims at setting up a framework
that allows generating comprehensive event logs from the 10T environment data sources.

The process of generating comprehensive event logs relies extensively on merging and mapping
sensor data with event logs, for this purpose several approaches are proposed. To ensure a good
understandability of these approaches, a set of preliminary concepts and techniques are introduced
in Chapter 2. Namely, a new process mining scope where 0T devices play a central role in the
process mining game is introduced. In addition several fundamental process mining notions such
as the event log components and the control- ow discovery quality dimensions are recapitulated.
Furthermore, a classi cation of sensor data according to their mapping characteristics is introduced.

The availability of experimental data is crucial to try out the proposed approaches, although, some
event logs and sensor data log are publicly available, it is still challenging to obtain real-world log
les recording the interactions between loT devices and information system in loT environment.

As alternative, synthetic logs can serve to evaluate the proposed approaches, however, as it will
be presented in the literature review of Chapter 3 the existing business process simulators do
not provide enough simulation mechanisms to imitate interactions between sensors and business
processes, thus, designing and implementing a business process simulator able to cope with sensor
data in an BPM setting is also one of the subjects investigated.

This work is suitable for IoT environments containing one or many information systems supported

by a network of 10T devices. To illustrate such I0T environments, a use case scenario inspired from
real-world settings is presented in Section 1.4. The aim of the mapping and merging approaches
proposed for this kind of 10T environments is to analysis the correlations between log events and
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between sensor data entries coming from di erent data sources to obtain an accurate mapping. To
do so, it is necessary to group events belonging to the same process execution into cases without any
domain-knowledge. Chapter 4 is allocated to investigate the way the case identi er attribute can be
inferred automatically from an event log. Consequently, a new state-of-art approach consisting at
using control- ow discovery quality dimensions to infer case identi ers is introduced, the approach
shows promising results on both synthetic logs and real-world event logs.

Chapter 5 introduces a merging and mapping approach aiming at merging event logs, and mapping
sensor data to events. The approach treats each sensor type de ned in Chapter 2 independently.
The work presented in this chapter is inspired by recent publications in this area. As result, a
comprehensive event log is generated from the sensor logs and the event logs recording the work-
ow of the use case scenario. The obtained log is used to evaluate the e ectiveness of the proposed
approach by comparing the discovered process model with the original use model. Figure 1.1
summarizes this section and depicts the scope of this thesis project.

Figure 1.1: Scope of this thesis project. The green triangle refers to the starting point of the chart,
and the red circles show the chapter numbers discussing the corresponding topics.
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1.3 Research Problem

The thesis context described in Section 1.2 highlights the research aspects considered to enable
process mining in loT environments. Therefore, it becomes clear that the main research problem
is the following:

In an IoT environment, given a set of sensor data logs generated by 10T devices and
a set of event logs recorded by information systems, the primary aim is to map sensor
data with log events in order to construct a comprehensive event log le providing
detailed insights about the execution of the business process in question, which also
implies enabling process discovery as a process mining feature.

This work investigates the research problem in a divide and conquer manner. As described in
Section 1.2 the main research problem is divided into smaller sub-problems that are solved inde-
pendently with the support of existing work presented in the literature review of each chapter.

1.4 Use Case

Designing a use case scenario to illustrate an IoT environment comes as a primary need to realize
this work. As mentioned in Section 1.2, obtaining real-world data sets showing the interactions
between IoT devices and information systems in an IoT environment is very challenging. Neverthe-
less, developing a strategic use case scenario to investigate this subject is also complex. As source
of inspiration, the smart factory example referred in the BPM-loT manifesto [23, p. 2] provides a
great perception of how loT can bene t from BPM.

Kiva robots represent a good example of 10T environments deployed in smart factories. They are
part of the Kiva warehouse management system [50] that is a pick-pack-and-ship solution aiming at
providing mobile storage shelves that can be moved by robots. The Kiva robots prevent warehouse
employees from walking to pick up items, instead, a set of autonomous robots are responsible for
picking up shelves of inventory and carrying them to employees. Amazon is among the companies
deploying Kiva robots in their large warehouses. According to Business Insidef thanks to Kiva
robots, Amazon has cut up their operating expensive by 20%, increased their e ciency, reduced
shipments cycle times, and grown up the size of their inventories considerably.

The use case scenario presented in this work is inspired by the Kiva robots deployed at Amazon
warehouses. For the sake of simplicity, a prototype process of these robots is modelled using BPM
notation (BPMN 2) to emphasis only on the parts relevant to the context of this thesis. As the main
interest is about exploring the interactions between sensors and business processes, the use case
scenario contains a set of RFID sensors and Accelerometer sensors responsible for coordinating the
work- ow between three processes. The sensor types are chosen for a strategic purpose. Indeed,
the RFID sensors symbolize sensors that provide discrete data stream while Accelerometer sensors
symbolize sensors that provide continuous data stream. For instance, an Accelerometer sensor is
meant to deliver real-time acceleration coordinates of an object; thus it is providing a continuous
data stream, while an RFID sensor is only intended to react once a matching RFID tag is detected,
therefore the data stream provided in this case is discrete.

1Seehttps://www.amazonrobotics.com/
2See http://www.businessinsider.com/kiva-robots-save-money-for-amazon-2016-62r=US&IR=T&IR=T
3See http://www.bpmn.org
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As it will be presented in Chapter 3, the use case scenario introduced in this section is simulated
to generate a set of log les. In this context, it is assumed that a warehouse managed by an
information system is equipped with a set of robots and smart shelves. Under the assumption that
some shelves contain fragile products, an Accelerometer is plugged on each shelf to detect shakes
that may damage the products on the shelf. Moreover, a collection of RFID sensors and RFID
tags are assumed to be deployed all over the warehouse to ensure the communication between
the di erent processes (i.e., sending and receiving requests, and noti cations), and to track the
progress of manual activities (i.e., activities done by hand). This variety of components records
all their operations in log les which are generated using a simulation program developed for this
purpose.

Figure 1.2 depicts the use case scenario. Thélerk processstarts when a clerk receives an order.
The clerk requests the product from an information system, which identi es the product's shelf
and automatically assigns a robot to pick it up. Afterwards, a product request is sent to the robot.
Once the request is received, thdRobot processchecks if the robot is already under the requested
shelf, if not, the robot put-down its current shelf, and go to the appropriate shelf. Once the shelf
is reached, the robot noti es the Smart Shelf processto start recording the Accelerometer data in
order to detect shakes that may happen in case the shelf is shaken while being moved by the robot.
Afterwards, the robot starts immediately moving the shelf to the clerk dock. In case a shake is
detected while the shelf is being moved, theSmart Shelf processnoti es the Robot processwhich
reduces the speed of the robot to prevent the product from being damaged. Also, th8mart Shelf
processupdates a product artifact with all the products on the shelf that were shaken. Once the
shelf is delivered to the clerk dock, the clerk collects the product from the shelf before the robot
can dispose it. The clerk uses the product artifact to check if the product was shaken, if true an
extra check is performed. Finally, the product is packaged.

10
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Figure 1.2: Use Case BPMN model
11



Chapter 2

Preliminaries

This chapter de nes and formalizes the preliminary concepts used throughout this thesis report.
Section 2.1 presents process mining and describes the classical process mining scope, then it high-
lights its limitations, and introduces an enhanced process mining scope. Section 2.2 formalizes the
event log components. Section 2.3 presents the control- ow quality dimensions and illustrates how

12
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these dimensions could be used to evaluate process models and nally Section 2.4 introduces a new
classi cation of the sensors.

2.1 Process Mining

Process mining is an emerging eld that bridges the gap between model-based process analysis
and data-oriented analysis. It uni es data mining and machine learning concepts with process
modelling and analysis approaches in order to discover, monitor, and enhance existing business
processes [42, p. 8]. The event log les generated by information systems are the most important
asset of any process mining algorithm. Over the last decade, event logs have become more and
more available, and new process mining algorithms have emerged, which opened up opportunities
for new application areas.

As shown in the Figures 2.1, the availability of event logs allows to perform the following process
mining operations: (a) Discovery of a process model from an event log, (blConformance checking
between a documented model and discovered model, and (d}valuation and extension of the
existing process model. These three operations all share the same purpose that is to bring the digital
world closer to the physical world. By looking at the classical process mining scope illustrated in
Figure 2.1a, one can clearly notice that the information system plays a central role in the scope,
since, it provides a close insight into the executed process activities. However, in real-world,
this assumption is not always correct, especially if a signi cant portion of the business process is
performed outside the information system (i.e., people doing manual work). In such circumstances,
it becomes challenging to track the process control- ow and to record the executed events at a ne-
grained level. An alternative solution is depicted in Figure 2.1b. Hereby, the information system
is supported by loT devices which serve as a medium to track the events that happen outside the
information system scope. Therefore, it becomes possible to obtain comprehensive event log les
which describe the business process execution at a ne-grained level. As mentioned in Chapter 1,
one of the main challenges of this approach is the merging of information system log les, and
sensor data log les, which is one of the core subjects investigated in this thesis report.

2.2 Event Log Components

This section describes some of the fundamental process mining de nitions and necessary notations
used to explain the approaches presented in this thesis report. As mentioned in Section 2.1 an
event log is the golden asset of any process mining algorithm. In general, many process mining
approaches assume the availability of a structured event log; therefore it is essential to clarify the
general structure of an event log before de ning its components.

An event log writes the events executed by one or many process instances. In the context of
business process management (BPM), process instances are referred as cases. Each case contains
a set of events preferably ordered by their time of occurrence, and each event is composed of a set
of attributes. Table 2.1 presents a fragment of an event log describing an order to cash process.
The rst column is the Case Id which is a unique identi er assigned to each distinct case in the

log. The Second column is theTimestamp which represents the moment in time when the event
occurred. The timestamp is often divided into start-timestamp, and end-timestamp. The Third
column is the Event Name Finally, the last column is the Ressourcewhich is the working entity
responsible for handling the event. The presented event log does not re ect a generic structure for

13
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(a) Classical Process Mining Scope [42]

(b) New Process Mining Scope

Figure 2.1: Comparison between two process mining scopes.

14
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all existing event logs; however, some attributes are considered common in all event logs such as
the Case Id the Timestamp, and the Event Name [42].

Case ld Timestamp Event Name Ressource
1 01-12-2017:08.15 Receive Order Paul

1 01-12-2017:08.50 Prepare order Paul

1 01-12-2017:10.25 Package order Eric

2 01-12-2017:09.20 Receive Order Eric

2 02-12-2017:10.15 Request product from supplier Jacob

2 02-12-2017:11.35 Receive product Martin

2 02-12-2017:14.54 Prepare order Leon

3 02-12-2017:10.11 Receive order Nadia

3 03-12-2017:13.40 Cancel order Nadia

Table 2.1: Event log example

2.2.1 Event, Case, Event Log Scheme, and Event Log

In this section formal de nitions for event case event log schemeand event log are provided.
These de nitions are combined from existing work available in the literature [34] [51].

De nition 2.2.1  (Sequence) Given a setA, a nite sequence overA of length n is a mapping
s2(1;n] N)!A ,anditis represented by a string, i.e.,s = Is;;s,;:::;Syi. Over a sequences
the following functions are de ned:

selection operator (): s(i)=si; 81 i n;

j sl = n (i.e., the length of the sequence).

De nition 2.2.2  (Event). Let A be the set of all possible activities, andC be the set of all possible

a2 A represents the activity associated to the event;
c 2 C represents the case Id;

ts 2 N represents the start timestamp;

te 2 N represents the end timestamp;

di;:::;dn is alist of additional event attributes, where 81 i  m;d; 2 D, whereD; being
the set of all possible attributes.

E=AC N ND D . iscalled the event universe. In an eveng, the following projection
functions are dened: ,(e)= a, c¢(e)=¢ (€ =1ts, (€ =teand 4(e)=di;81 i m.
If e does not contain the attribute value d; for somei 2 [1;m] N, 4(e)=7?.

De nition 2.2.3  (Trace, Case) A trace is de ned as a nite sequence of events . = hey;e;:::;¢6 i 2
E suchthat81 i j |; c«(e)=c¢c"81 j< |, t(c(g) t( c(g+1)). In the context of
this thesis report, eachcaseis a grouping of events belonging to the same process execution and
having same case id. Thus, eackaseis a distinct trace.

15
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De nition 2.2.4  (Event Log Scheme) A Event Log SchemeS(E) is a nite set f"caseid';"activity ";

"starttime ";"endtime"; "attribute ;" ::: "attribute ,"g such that jS(E)j= 4 + n. In an event log

scheme the projection function s(e) is de ned with s2 S(E) and e 2 E such that - acivity *(€) =
a(e): " caseid " (e) = c(e): " starttime (e) = ts(e)- "endtime " (e) = te(e) and - attribute i"(e) =
4,(€);81 i n The event log scheme is used to de ne the header of aBvent Log.

De nition 2.2.5 (Event Log). An Event Log L is de ned as a tupleL = ( S(E); T) such that S(E)
is an event log scheme and is a set of traces.

De nition 2.2.6  (Sensor Log, Sensor Data Entry) Let E be the set of all possible sensor data
entry identiers, S be the set of all possible sensor data entry sources, and be the set of all
possible sensor data entry values. A sensor lo@ is an ordered sequence of sensor data entries,
where each sensor data entry is a tuple = (s;t;v), with s 2 S is the sensor data entry source,
t 2 N is the sensor data entry timestamp, andv 2 V is the sensor data entry value.

2.3 Control- ow Discovery Quality Dimensions

The availability of an event log allows generating di erent process models depending on the dis-
covery algorithm used. The generated models can be evaluated based on the following four quality
dimensions: Fitness, Precision, Generalization, and Simplicity [43].

A model with high tness allows all the traces in an event log to be replayed. A model is simple if
it describes the behaviours inferred from the traces in the simplest way. Fitness and simplicity are
not enough to evaluate a process model [42, p. 151]. As example Figure 2.2 depict&lawer Model
as BPMN diagram generated from the event log shown in Table 2.1. In this model, all possible
sequence of events can be replayed.

16
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Figure 2.2: Flower Model generated from the example event log shown in Table 2.1.

Imprecise models (i.e., ower models) are referred adJnder tting models [42]. To avoid such
models, it is necessary to consider precision. Indeed Precision restricts the allowed behaviours in
a model. Nevertheless, a model should not be too restricted to the behaviours of the event log
to allow also for the unseen behaviours (i.e., slightly di erent behaviours not yet recorded in the
event log); otherwise, the model iOver tting [42]. To balance between under tting and over tting,
generalization is considered in parallel with precision. Indeed generalization allows the model to
be exible with the unseen behaviours.

The control- ow discovery quality dimensions described in this chapter are the main building block

of a state-of-art approach aiming at automatically inferring case ids from event logs. The following
sub-sections illustrate di erent techniques allowing to measure the four quality dimensions. As it
will be presented in Section 4.4.4 (cf. Chapter 4), these techniques have been chosen because they
have demonstrated high accuracy in inferring case ids. Sections 2.3.1, 2.3.2, 2.3.3, and 2.3.4 explain
Fitness, Precision, Generalization, and Simplicity respectively.

2.3.1 Fitness

Fitness represents the ability of a process model to reproduce the control- ow of the traces recorded
in the event log. Measuring tness can be performed using several approaches. Rozinat et al. in [38]
measure tness by replying the log events onto a Petri-net [30] to detect possible mismatches.
"Alignment-based Replay Fitness"is an alternative approach proposed by van der Aalst in [1] to
quantify tness. It uses the alignment technique [42] to align each trace of the event log with the
closest trace that the model can generate. This way it becomes possible to quantify the extent to
which the traces observed in the log can be reproduced in the given process model.

Finding the optimal alignment implies assigning a cost to any misalignment found while replaying

17
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a log trace onto the process model, such that when a trace is about to diverge from the process
model, a move to the next event in the trace or in the process model (asynchronous move) is
performed and the total alignment cost is increased. It is possible to assign di erent costs to each

process activity or each move type (move on model or move on trace). In general, it is assumed
that deviations from the replayed log traces are more expensive than deviations from the process
model [9].

The total tness score is de ned as the sum of each trace alignment cost multiplied by its frequency
and divided by the log-model alignment cost without synchronous moves [9]. Letpbe the number of
distinct traces in a log, ¢; the cost of tracei, and f; the frequency of tracei, then i”:O ¢ fiisthe
sum of each trace alignment cost multiplied by its corresponding frequency. Alscblee. the number
of events in tracei, and T the cost of an asynchronous move on the trace, then , f; e T

is the total move on log cost. Moreover letl be the total number of traces in the log, M the cost
of an asynchronous move on the model, and the number of events of the shortest trace in the
model, thenl s M is the cost of executing the process model without synchronous moves. The
total tness score is computed as shown in Equation 1. The optimal alignment approach and total
tness calculation are illustrated in Example 2.3.1.

P

n C| f
fit =1 P i=0 ! 1
itness ( in:O e T+l s M Q)

Figure 2.3: Example of BPMN model.

Trace Frequency
ABCDF 40
ABCEF 40
AEBCF 20
ABDEF 10
ABBCEF 10

Table 2.2: Log traces and their corresponding frequency

Example 2.3.1. Figure 2.3 shows a possible BPMN model generated from the event log shown
in Table 2.2. Note that by using di erent control- ow discovery algorithms [42], di erent process
models can be obtained, therefore, the BPMN models used in this example and the following
examples are not necessarily the only models.
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It is clear that the model allows only for two possible traces thatareABCDF and ABCE F.
An optimal alignment for each trace of Table 2.2 is shown in alignment Tables 2.3, 2.4, 2.5, 2.6,
and 2.7 respectively.

From the alignments shown in Tables 2.3 and 2.4, it is notable that tracesA BC D F and AB

C E F are perfectly aligned with the process model depicted in Figure 2.3, hence the alignment
cost is 0. However, the traces aligned in Tables 2.5, 2.6, and 2.7 cannot be fully replayed on the
process model (Figure 2.3). Therefore, asynchronous move operations (labelled with> symbol)
are introduced to obtain an optimal alignment; consequently, an alignment cost is assigned to each
asynchronous move operation depending on its type. Assuming that an asynchronous move on the
model cost 2, and an asynchronous move on the trace cost 5, the total alignment cost for track

B C D F is 0O; the total alignment cost for trace A B C E F is 0; the total alignment cost for trace

A E B C F is 7; the total alignment cost for trace AB D E F is 7, and the total alignment cost
fortrace ABBCEF is 2.

To calculate the total tness score, one needs to calculate the sum of each trace alignment cost

multiplied by its corresponding frequency, divided by the log-model alignment cost without syn-

chronous moves. In this example] be the total number of traces in the log is 120,M the cost of

an asynchronous move on the model is 2, and the number of events of the shortest trace in the

model is 5. Using Equation 1 the total tness score calculations are shown in Equation 2.

2 (0 40)+(0 40)+(7 20+(2 10)

fitness =1 5(40 5 5@ 5 5+@0 5 5r 2:0:93 )
(20 5 5)+(10 6 5)+120 5 2

Finally, the total tness score for this example is 0.93.

Model A B C D
Trace A|B|C|D

Table 2.3: Alignment between process model Figure 2.3 and tracA BC D F

Model A B  C
Trace A|B|C|E

Table 2.4: Alignment between process model Figure 2.3 andtracA BCE F

Model A > B C DjE
Trace A E B |C >>

Table 2.5: Alignment between process model Figure 2.3 andtracA EB C F

19



Exploring Process Mining in 1oT Environments Amine Abbad Andaloussi

Model A B, 6 C D B >
Trace A|B | > D E

Table 2.6: Alignment between process model Figure 2.3 and tracA BD E F

Model A B > C. E
Trace A|B B C|E|F

Table 2.7: Alignment between process model Figure 2.3 andtracA BB CE F

2.3.2 Precision

The precision quality dimension is used to quantify the extra behaviours allowed by the generated
process model that are not recorded in the log. In case the process model contains loops, this will
generate in nite behaviours. Therefore, counting the number of all possible traces is impossible. As
solution one can estimate only the allowed behaviors which can be done using several approaches
such as theEscaping edgesechnique [9]. Using this technique, a decision choice is de ned as a
decision point in the process model (i.e., gateway) where di erent control- ows are possible, and
an escaping edge is de ned as a decision choice in the process model that was never seen in the
log.

The total precision score can be obtained from a partial state space that shows the possible tran-
sitions within the process model. Figure 2.5 depicts an example of partial state space generated
from the process model shown in Figure 2.4 and the event log presented in Table 2.8. Each state
represents a visited event, each transition represents a possible control- ow from that event, and
each label attached to a speci c state represents the number of traces in the log having similar
control- ow. For instance, in the partial state space (Figure 2.5), there are 60 traces with the
control-ow A B C D E. Note that the escaping edges in this example are represented with crossed
transitions.

Given a partial state space, the total precision score is the sum of each visited state multiplied
by the di erence between the total number of outgoing edges from the state in the partial state

space and the number of outgoing edges from the state recorded in the log. In other words, let

represent the number of states in a partial state spacey; represents a visited statei, o; represents

the total number of outgoing edges from statei in the partial state space, and u; represents the

number of outgoing edges from state recorded in the log, then the total precision can be computed
as shown in Equation 3.

P n
E=) Vi (Oi ui)
=N

precision = 1
izo Vi O

©)

Example 2.3.2 illustrates the escaping edge approach.

20






	Preface
	Acknowledgements
	Acknowledgements
	Introduction
	Process Mining and IoT: a Bottom-Up Approach
	Thesis Context
	Research Problem
	Use Case

	Preliminaries
	Process Mining
	Event Log Components
	Event, Case, Event Log Scheme, and Event Log

	Control-flow Discovery Quality Dimensions
	Fitness
	Precision
	Generalization
	Simplicity

	Sensors Classification

	Process Simulation
	Overview
	Background and Related Work
	Simulation Model
	Queuing
	Randomness

	Implementation
	General Assumptions
	Configuration Parameters
	Use Case Parameters
	Randomness and Queuing parameters

	Log Files Generation
	Multi-Threading

	Conclusion

	Event Log Scheme Identification
	Introduction
	Background and Related work
	Methodological Approach
	Preliminaries
	Assumptions
	Approach
	Compute Grouping Ratio for Each Attribute
	Compute Quality Score for Each Attribute

	Running Example

	Evaluation
	Implementation
	Evaluation Procedure
	Data Sets
	Results

	Discussion
	Conclusion

	Data Mapping and Merging
	Overview
	Background and Related work
	Methodological Approach
	General Assumptions
	Running Example
	Active Sensor Data Merging
	Temporal Relations Rules
	Text Mining and Similarity Scoring
	Event Log Scheme Identification
	Hierarchical Merging

	Decorative Sensor Data Mapping

	Implementation
	Evaluation
	Discussion
	Conclusion

	Conclusion
	References


