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Preface

This work summarizes the thesis project entitled “Exploring Process Mining in IoT Environments”,
written by the author as part of his Msc. Program in Computer Science and Engineering at the
Applied Mathematics and Computer Science Department of the Technical University of Denmark.
This report investigates the application of process mining in Internet of Things (IoT) environments.

In IoT environments a network of inter-connected devices equipped with sensors operating au-
tonomously is responsible for collecting and sharing data over the internet. The Business Process
Management (BPM) field offers a set of disciples allowing to design, implement, execute, and ana-
lyze business processes. There is an increasing interest in Bridging the gap between the IoT world
and BPM world to improve the execution of business processes. In the past decade process mining
has been successfully used in several BPM contexts; however, its application in IoT environments
is still not entirely understood.

Process mining can be applied as a bottom-up approach of looking at BPM-IoT relation. By
transforming sensor data to log events, it is possible to obtain event logs; thus enabling all process
mining capabilities. This work proposes a new approach aiming at mapping sensor data to business
process activities to generate comprehensive event logs.

To achieve this goal, a new process mining scope where business processes are supported with IoT
devices is introduced. Within this scope, a use case scenario illustrating the work-flow in an IoT
environment is presented, and a business process simulator allowing to imitate the interactions
between sensors and business processes is designed and implemented.

Besides, this work investigates also a common challenge within the process mining community that
is to infer the event log scheme. While designing the sensor data mapping approach this issue was
faced and solved. Consequently, a new state-of-art approach aiming at automatically inferring log
scheme from event logs is proposed as part of this thesis project.

December, 2017
Copenhagen, Denmark

Amine Abbad Andaloussi
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Chapter 1

Introduction

This chapter is an introduction to this thesis report. Section 1.1 briefly emphasis on the relationship
between Process Mining and IoT, and highlights the mutual benefits, and challenges raised from
bridging the gap between the two fields. Section 1.2 introduces the context of thesis report.
Section 1.3 defines the research scope and challenges considered by this report. Finally Section
1.4 introduces a use case scenario that will be used throughout the report as running example to
illustrate the proposed approaches.

1.1 Process Mining and IoT: a Bottom-Up Approach

During the past two centuries, our world has experienced a huge industrial revolution. Starting
from the Power Steam at the 18th century (Industry 1.0), the Mass Production, Assembly Line,
and Electricity at the beginning of the 20th century (Industry 2.0), Automation and Computers at
the end of the 20th century (Industry 3.0) and recently Cyber-Physical Systems including Internet
of Things (IoT), Big Data, and Cloud Computing (Industry 4.0). Nowadays, our world becomes
massively interconnected using sensors and actuators embedded in smart devices connected to the
internet, which are responsible for monitoring their external environment, and enacting when it is
needed. The massive amount of data generated from IoT devices created a mutual benefit relation
between business process management (BPM) field and IoT domain [23].

The BPM field aims at enabling process automation, and process analysis to improve the way
business processes are managed within an organisation [42, p. 3]. Exploring IoT data in process
analysis allows BPM to provide a comprehensive overview of the business process execution [23].
For instance, the sensor data coming from IoT devices can help to track the progress of manual
activities in a business process, thus providing fine-grained insights. Furthermore, IoT data helps to
reduce the human interactions with business processes which implies less human-related errors and
more time-saving. Bridging the gap between the two fields is not only advantageous to BPM but
also beneficial to IoT. Indeed, BPM offers a robust process management platform to IoT networks,
which allows monitoring, managing, and optimising the interactions between IoT devices from a
process-oriented perspective [23].

So far the relationship between BPM and IoT is described from a top-down view (from business
processes to IoT data), where the business process management system (BPMS) is seen as a central
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orchestrator controlling the process execution with the support of IoT data. However, there exists
another perspective to look at the relationship between BPM and IoT. In fact, instead of considering
the top-down view, it is possible to use a bottom-up view (from IoT data to business processes).
This perspective consists at exploring, aggregating and learning from the raw data generated by
IoT devices, in order to infer high-level business process activities that can be used by process
mining algorithms to support the decision making process [42].

The bottom-up approach relies mainly on the ability of process mining techniques to deal with
sensor data. As process mining algorithms require event logs, a possible way to bridge the gap
between process mining and sensor data is to aggregate sensor data to infer log events, thus
enabling all process mining capabilities. The BPM IoT manifesto [23, p. 6] Published recently,
highlights several challenges raised by this approach. Among them, the mapping of sensor data to
process activities, knowing that a sensor data entry can be relevant to one process activity as it
can be relevant to several process activities (one-one relation, one-many relation). Another critical
challenge is to discover the corresponding process instance for such process activities, knowing that
several process instances might run concurrently. The literature shows that authors have tried to
tackles these challenges from different perspectives using several techniques such as interaction
mining [36] and human habits and behaviour analysis [19] [7] [16] [17]. The literature review in
Chapter 5 provides a comprehensive overview of these techniques.

1.2 Thesis Context

This thesis fits into the intersection of process mining with the IoT field. Precisely, it establishes a
strong tie between the BPM world and the IoT world using process mining techniques as a bottom-
up approach to discover the work-flow of business processes in IoT environments. Since the entry
level for all process mining techniques is an event log [42], this work aims at setting up a framework
that allows generating comprehensive event logs from the IoT environment data sources.

The process of generating comprehensive event logs relies extensively on merging and mapping
sensor data with event logs, for this purpose several approaches are proposed. To ensure a good
understandability of these approaches, a set of preliminary concepts and techniques are introduced
in Chapter 2. Namely, a new process mining scope where IoT devices play a central role in the
process mining game is introduced. In addition several fundamental process mining notions such
as the event log components and the control-flow discovery quality dimensions are recapitulated.
Furthermore, a classification of sensor data according to their mapping characteristics is introduced.

The availability of experimental data is crucial to try out the proposed approaches, although, some
event logs and sensor data log are publicly available, it is still challenging to obtain real-world log
files recording the interactions between IoT devices and information system in IoT environment.
As alternative, synthetic logs can serve to evaluate the proposed approaches, however, as it will
be presented in the literature review of Chapter 3 the existing business process simulators do
not provide enough simulation mechanisms to imitate interactions between sensors and business
processes, thus, designing and implementing a business process simulator able to cope with sensor
data in an BPM setting is also one of the subjects investigated.

This work is suitable for IoT environments containing one or many information systems supported
by a network of IoT devices. To illustrate such IoT environments, a use case scenario inspired from
real-world settings is presented in Section 1.4. The aim of the mapping and merging approaches
proposed for this kind of IoT environments is to analysis the correlations between log events and
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between sensor data entries coming from different data sources to obtain an accurate mapping. To
do so, it is necessary to group events belonging to the same process execution into cases without any
domain-knowledge. Chapter 4 is allocated to investigate the way the case identifier attribute can be
inferred automatically from an event log. Consequently, a new state-of-art approach consisting at
using control-flow discovery quality dimensions to infer case identifiers is introduced, the approach
shows promising results on both synthetic logs and real-world event logs.

Chapter 5 introduces a merging and mapping approach aiming at merging event logs, and mapping
sensor data to events. The approach treats each sensor type defined in Chapter 2 independently.
The work presented in this chapter is inspired by recent publications in this area. As result, a
comprehensive event log is generated from the sensor logs and the event logs recording the work-
flow of the use case scenario. The obtained log is used to evaluate the effectiveness of the proposed
approach by comparing the discovered process model with the original use model. Figure 1.1
summarizes this section and depicts the scope of this thesis project.

Figure 1.1: Scope of this thesis project. The green triangle refers to the starting point of the chart,
and the red circles show the chapter numbers discussing the corresponding topics.
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1.3 Research Problem

The thesis context described in Section 1.2 highlights the research aspects considered to enable
process mining in IoT environments. Therefore, it becomes clear that the main research problem
is the following:

In an IoT environment, given a set of sensor data logs generated by IoT devices and
a set of event logs recorded by information systems, the primary aim is to map sensor
data with log events in order to construct a comprehensive event log file providing
detailed insights about the execution of the business process in question, which also
implies enabling process discovery as a process mining feature.

This work investigates the research problem in a divide and conquer manner. As described in
Section 1.2 the main research problem is divided into smaller sub-problems that are solved inde-
pendently with the support of existing work presented in the literature review of each chapter.

1.4 Use Case

Designing a use case scenario to illustrate an IoT environment comes as a primary need to realize
this work. As mentioned in Section 1.2, obtaining real-world data sets showing the interactions
between IoT devices and information systems in an IoT environment is very challenging. Neverthe-
less, developing a strategic use case scenario to investigate this subject is also complex. As source
of inspiration, the smart factory example referred in the BPM-IoT manifesto [23, p. 2] provides a
great perception of how IoT can benefit from BPM.

Kiva robots represent a good example of IoT environments deployed in smart factories. They are
part of the Kiva warehouse management system [50] that is a pick-pack-and-ship solution aiming at
providing mobile storage shelves that can be moved by robots. The Kiva robots prevent warehouse
employees from walking to pick up items, instead, a set of autonomous robots are responsible for
picking up shelves of inventory and carrying them to employees. Amazon 1 is among the companies
deploying Kiva robots in their large warehouses. According to Business Insider 2 thanks to Kiva
robots, Amazon has cut up their operating expensive by 20%, increased their efficiency, reduced
shipments cycle times, and grown up the size of their inventories considerably.

The use case scenario presented in this work is inspired by the Kiva robots deployed at Amazon
warehouses. For the sake of simplicity, a prototype process of these robots is modelled using BPM
notation (BPMN 3) to emphasis only on the parts relevant to the context of this thesis. As the main
interest is about exploring the interactions between sensors and business processes, the use case
scenario contains a set of RFID sensors and Accelerometer sensors responsible for coordinating the
work-flow between three processes. The sensor types are chosen for a strategic purpose. Indeed,
the RFID sensors symbolize sensors that provide discrete data stream while Accelerometer sensors
symbolize sensors that provide continuous data stream. For instance, an Accelerometer sensor is
meant to deliver real-time acceleration coordinates of an object; thus it is providing a continuous
data stream, while an RFID sensor is only intended to react once a matching RFID tag is detected,
therefore the data stream provided in this case is discrete.

1See https://www.amazonrobotics.com/
2See http://www.businessinsider.com/kiva-robots-save-money-for-amazon-2016-6?r=US&IR=T&IR=T
3See http://www.bpmn.org
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As it will be presented in Chapter 3, the use case scenario introduced in this section is simulated
to generate a set of log files. In this context, it is assumed that a warehouse managed by an
information system is equipped with a set of robots and smart shelves. Under the assumption that
some shelves contain fragile products, an Accelerometer is plugged on each shelf to detect shakes
that may damage the products on the shelf. Moreover, a collection of RFID sensors and RFID
tags are assumed to be deployed all over the warehouse to ensure the communication between
the different processes (i.e., sending and receiving requests, and notifications), and to track the
progress of manual activities (i.e., activities done by hand). This variety of components records
all their operations in log files which are generated using a simulation program developed for this
purpose.

Figure 1.2 depicts the use case scenario. The Clerk process starts when a clerk receives an order.
The clerk requests the product from an information system, which identifies the product’s shelf
and automatically assigns a robot to pick it up. Afterwards, a product request is sent to the robot.
Once the request is received, the Robot process checks if the robot is already under the requested
shelf, if not, the robot put-down its current shelf, and go to the appropriate shelf. Once the shelf
is reached, the robot notifies the Smart Shelf process to start recording the Accelerometer data in
order to detect shakes that may happen in case the shelf is shaken while being moved by the robot.
Afterwards, the robot starts immediately moving the shelf to the clerk dock. In case a shake is
detected while the shelf is being moved, the Smart Shelf process notifies the Robot process which
reduces the speed of the robot to prevent the product from being damaged. Also, the Smart Shelf
process updates a product artifact with all the products on the shelf that were shaken. Once the
shelf is delivered to the clerk dock, the clerk collects the product from the shelf before the robot
can dispose it. The clerk uses the product artifact to check if the product was shaken, if true an
extra check is performed. Finally, the product is packaged.

10
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Chapter 2

Preliminaries

This chapter defines and formalizes the preliminary concepts used throughout this thesis report.
Section 2.1 presents process mining and describes the classical process mining scope, then it high-
lights its limitations, and introduces an enhanced process mining scope. Section 2.2 formalizes the
event log components. Section 2.3 presents the control-flow quality dimensions and illustrates how
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these dimensions could be used to evaluate process models and finally Section 2.4 introduces a new
classification of the sensors.

2.1 Process Mining

Process mining is an emerging field that bridges the gap between model-based process analysis
and data-oriented analysis. It unifies data mining and machine learning concepts with process
modelling and analysis approaches in order to discover, monitor, and enhance existing business
processes [42, p. 8]. The event log files generated by information systems are the most important
asset of any process mining algorithm. Over the last decade, event logs have become more and
more available, and new process mining algorithms have emerged, which opened up opportunities
for new application areas.

As shown in the Figures 2.1, the availability of event logs allows to perform the following process
mining operations: (a) Discovery of a process model from an event log, (b) Conformance checking
between a documented model and discovered model, and (c) Evaluation and extension of the
existing process model. These three operations all share the same purpose that is to bring the digital
world closer to the physical world. By looking at the classical process mining scope illustrated in
Figure 2.1a, one can clearly notice that the information system plays a central role in the scope,
since, it provides a close insight into the executed process activities. However, in real-world,
this assumption is not always correct, especially if a significant portion of the business process is
performed outside the information system (i.e., people doing manual work). In such circumstances,
it becomes challenging to track the process control-flow and to record the executed events at a fine-
grained level. An alternative solution is depicted in Figure 2.1b. Hereby, the information system
is supported by IoT devices which serve as a medium to track the events that happen outside the
information system scope. Therefore, it becomes possible to obtain comprehensive event log files
which describe the business process execution at a fine-grained level. As mentioned in Chapter 1,
one of the main challenges of this approach is the merging of information system log files, and
sensor data log files, which is one of the core subjects investigated in this thesis report.

2.2 Event Log Components

This section describes some of the fundamental process mining definitions and necessary notations
used to explain the approaches presented in this thesis report. As mentioned in Section 2.1 an
event log is the golden asset of any process mining algorithm. In general, many process mining
approaches assume the availability of a structured event log; therefore it is essential to clarify the
general structure of an event log before defining its components.

An event log writes the events executed by one or many process instances. In the context of
business process management (BPM), process instances are referred as cases. Each case contains
a set of events preferably ordered by their time of occurrence, and each event is composed of a set
of attributes. Table 2.1 presents a fragment of an event log describing an order to cash process.
The first column is the Case Id which is a unique identifier assigned to each distinct case in the
log. The Second column is the Timestamp which represents the moment in time when the event
occurred. The timestamp is often divided into start-timestamp, and end-timestamp. The Third
column is the Event Name. Finally, the last column is the Ressource which is the working entity
responsible for handling the event. The presented event log does not reflect a generic structure for
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(a) Classical Process Mining Scope [42]

(b) New Process Mining Scope

Figure 2.1: Comparison between two process mining scopes.
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all existing event logs; however, some attributes are considered common in all event logs such as
the Case Id, the Timestamp, and the Event Name [42].

Case Id Timestamp Event Name Ressource
1 01-12-2017:08.15 Receive Order Paul
1 01-12-2017:08.50 Prepare order Paul
1 01-12-2017:10.25 Package order Eric
2 01-12-2017:09.20 Receive Order Eric
2 02-12-2017:10.15 Request product from supplier Jacob
2 02-12-2017:11.35 Receive product Martin
2 02-12-2017:14.54 Prepare order Leon
3 02-12-2017:10.11 Receive order Nadia
3 03-12-2017:13.40 Cancel order Nadia

Table 2.1: Event log example

2.2.1 Event, Case, Event Log Scheme, and Event Log

In this section formal definitions for event, case, event log scheme, and event log are provided.
These definitions are combined from existing work available in the literature [34] [51].

Definition 2.2.1 (Sequence). Given a set A, a finite sequence over A of length n is a mapping
s ∈ ([1, n] ⊂ N)→ A, and it is represented by a string, i.e., s = 〈s1, s2, . . . , sn〉. Over a sequence s
the following functions are defined:

• selection operator (·): s(i) = si, ∀ 1 ≤ i ≤ n;

• |s| = n (i.e., the length of the sequence).

Definition 2.2.2 (Event). Let A be the set of all possible activities, and C be the set of all possible
case ids. An event is a tuple e = (a, c, ts, te, d1, . . . , dm), where:

• a ∈ A represents the activity associated to the event;

• c ∈ C represents the case Id;

• ts ∈ N represents the start timestamp;

• te ∈ N represents the end timestamp;

• d1, . . . , dm is a list of additional event attributes, where ∀ 1 ≤ i ≤ m, di ∈ Di, where Di being
the set of all possible attributes.

E = A×C×N×N×D1×· · ·×Dm is called the event universe. In an event e, the following projection
functions are defined: πa(e) = a, πc(e) = c, πts(e) = ts, πte(e) = te and πdi(e) = di,∀ 1 ≤ i ≤ m.
If e does not contain the attribute value di for some i ∈ [1,m] ⊂ N, πdi(e) =⊥.

Definition 2.2.3 (Trace, Case). A trace is defined as a finite sequence of events σc = 〈e1, e2, . . . , e|σc|〉 ∈
E∗ such that ∀ 1 ≤ i ≤ |σ|, πc(ei) = c ∧ ∀ 1 ≤ j < |σc|, πt(σc(ej)) ≤ πt(σc(ej+1)). In the context of
this thesis report, each case is a grouping of events belonging to the same process execution and
having same case id. Thus, each case is a distinct trace.
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Definition 2.2.4 (Event Log Scheme). A Event Log Scheme S(E) is a finite set {”caseid”, ”activity”,
”starttime”, ”endtime”, ”attribute1” . . . ”attributen”} such that |S(E)|= 4 + n. In an event log
scheme the projection function πs(e) is defined with s ∈ S(E) and e ∈ E such that π”activity”(e) =
πa(e), π”caseid”(e) = πc(e), π”starttime”(e) = πts(e), π”endtime”(e) = πte(e) and π”attributei”(e) =
πdi(e),∀ 1 ≤ i ≤ n The event log scheme is used to define the header of an Event Log.

Definition 2.2.5 (Event Log). An Event Log L is defined as a tuple L = (S(E), T ) such that S(E)
is an event log scheme and T is a set of traces.

Definition 2.2.6 (Sensor Log, Sensor Data Entry). Let E be the set of all possible sensor data
entry identifiers, S be the set of all possible sensor data entry sources, and V be the set of all
possible sensor data entry values. A sensor log O is an ordered sequence of sensor data entries,
where each sensor data entry is a tuple o = (s, t, v), with s ∈ S is the sensor data entry source,
t ∈ N is the sensor data entry timestamp, and v ∈ V is the sensor data entry value.

2.3 Control-flow Discovery Quality Dimensions

The availability of an event log allows generating different process models depending on the dis-
covery algorithm used. The generated models can be evaluated based on the following four quality
dimensions: Fitness, Precision, Generalization, and Simplicity [43].

A model with high fitness allows all the traces in an event log to be replayed. A model is simple if
it describes the behaviours inferred from the traces in the simplest way. Fitness and simplicity are
not enough to evaluate a process model [42, p. 151]. As example Figure 2.2 depicts a Flower Model
as BPMN diagram generated from the event log shown in Table 2.1. In this model, all possible
sequence of events can be replayed.
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Figure 2.2: Flower Model generated from the example event log shown in Table 2.1.

Imprecise models (i.e., flower models) are referred as Underfitting models [42]. To avoid such
models, it is necessary to consider precision. Indeed Precision restricts the allowed behaviours in
a model. Nevertheless, a model should not be too restricted to the behaviours of the event log
to allow also for the unseen behaviours (i.e., slightly different behaviours not yet recorded in the
event log); otherwise, the model is Overfitting [42]. To balance between underfitting and overfitting,
generalization is considered in parallel with precision. Indeed generalization allows the model to
be flexible with the unseen behaviours.

The control-flow discovery quality dimensions described in this chapter are the main building block
of a state-of-art approach aiming at automatically inferring case ids from event logs. The following
sub-sections illustrate different techniques allowing to measure the four quality dimensions. As it
will be presented in Section 4.4.4 (cf. Chapter 4), these techniques have been chosen because they
have demonstrated high accuracy in inferring case ids. Sections 2.3.1, 2.3.2, 2.3.3, and 2.3.4 explain
Fitness, Precision, Generalization, and Simplicity respectively.

2.3.1 Fitness

Fitness represents the ability of a process model to reproduce the control-flow of the traces recorded
in the event log. Measuring fitness can be performed using several approaches. Rozinat et al. in [38]
measure fitness by replying the log events onto a Petri-net [30] to detect possible mismatches.
”Alignment-based Replay Fitness” is an alternative approach proposed by van der Aalst in [1] to
quantify fitness. It uses the alignment technique [42] to align each trace of the event log with the
closest trace that the model can generate. This way it becomes possible to quantify the extent to
which the traces observed in the log can be reproduced in the given process model.

Finding the optimal alignment implies assigning a cost to any misalignment found while replaying
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a log trace onto the process model, such that when a trace is about to diverge from the process
model, a move to the next event in the trace or in the process model (asynchronous move) is
performed and the total alignment cost is increased. It is possible to assign different costs to each
process activity or each move type (move on model or move on trace). In general, it is assumed
that deviations from the replayed log traces are more expensive than deviations from the process
model [9].

The total fitness score is defined as the sum of each trace alignment cost multiplied by its frequency
and divided by the log-model alignment cost without synchronous moves [9]. Let n be the number of
distinct traces in a log, ci the cost of trace i, and fi the frequency of trace i, then

∑n
i=0 ci×fi is the

sum of each trace alignment cost multiplied by its corresponding frequency. Also let ei the number
of events in trace i, and T the cost of an asynchronous move on the trace, then

∑n
i=0 fi × ei × T

is the total move on log cost. Moreover let l be the total number of traces in the log, M the cost
of an asynchronous move on the model, and s the number of events of the shortest trace in the
model, then l× s×M is the cost of executing the process model without synchronous moves. The
total fitness score is computed as shown in Equation 1. The optimal alignment approach and total
fitness calculation are illustrated in Example 2.3.1.

fitness = 1−
∑n
i=0 ci × fi

(
∑n
i=0 fi × ei × T ) + l × s×M

(1)

Figure 2.3: Example of BPMN model.

Trace Frequency

A B C D F 40
A B C E F 40
A E B C F 20
A B D E F 10
A B B C E F 10

Table 2.2: Log traces and their corresponding frequency

Example 2.3.1. Figure 2.3 shows a possible BPMN model generated from the event log shown
in Table 2.2. Note that by using different control-flow discovery algorithms [42], different process
models can be obtained, therefore, the BPMN models used in this example and the following
examples are not necessarily the only models.
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It is clear that the model allows only for two possible traces that are A B C D F and A B C E F.
An optimal alignment for each trace of Table 2.2 is shown in alignment Tables 2.3, 2.4, 2.5, 2.6,
and 2.7 respectively.

From the alignments shown in Tables 2.3 and 2.4, it is notable that traces A B C D F and A B
C E F are perfectly aligned with the process model depicted in Figure 2.3, hence the alignment
cost is 0. However, the traces aligned in Tables 2.5, 2.6, and 2.7 cannot be fully replayed on the
process model (Figure 2.3). Therefore, asynchronous move operations (labelled with >> symbol)
are introduced to obtain an optimal alignment; consequently, an alignment cost is assigned to each
asynchronous move operation depending on its type. Assuming that an asynchronous move on the
model cost 2, and an asynchronous move on the trace cost 5, the total alignment cost for trace A
B C D F is 0; the total alignment cost for trace A B C E F is 0; the total alignment cost for trace
A E B C F is 7; the total alignment cost for trace A B D E F is 7, and the total alignment cost
for trace A B B C E F is 2.

To calculate the total fitness score, one needs to calculate the sum of each trace alignment cost
multiplied by its corresponding frequency, divided by the log-model alignment cost without syn-
chronous moves. In this example, l be the total number of traces in the log is 120, M the cost of
an asynchronous move on the model is 2, and s the number of events of the shortest trace in the
model is 5. Using Equation 1 the total fitness score calculations are shown in Equation 2.

fitness = 1−


(0× 40) + (0× 40) + (7× 20 + (2× 10))

(40× 5× 5) + (40× 5× 5) + (20× 5× 5)+

(20× 5× 5) + (10× 6× 5) + 120× 5× 2

 = 0.93 (2)

Finally, the total fitness score for this example is 0.93.

Model A B C D F

Trace A B C D F

Table 2.3: Alignment between process model Figure 2.3 and trace A B C D F

Model A B C E F

Trace A B C E F

Table 2.4: Alignment between process model Figure 2.3 and trace A B C E F

Model A >> B C D || E F

Trace A E B C >> F

Table 2.5: Alignment between process model Figure 2.3 and trace A E B C F
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Model A B C D >> F

Trace A B >> D E F

Table 2.6: Alignment between process model Figure 2.3 and trace A B D E F

Model A B >> C E F

Trace A B B C E F

Table 2.7: Alignment between process model Figure 2.3 and trace A B B C E F

2.3.2 Precision

The precision quality dimension is used to quantify the extra behaviours allowed by the generated
process model that are not recorded in the log. In case the process model contains loops, this will
generate infinite behaviours. Therefore, counting the number of all possible traces is impossible. As
solution one can estimate only the allowed behaviors which can be done using several approaches
such as the Escaping edges technique [9]. Using this technique, a decision choice is defined as a
decision point in the process model (i.e., gateway) where different control-flows are possible, and
an escaping edge is defined as a decision choice in the process model that was never seen in the
log.

The total precision score can be obtained from a partial state space that shows the possible tran-
sitions within the process model. Figure 2.5 depicts an example of partial state space generated
from the process model shown in Figure 2.4 and the event log presented in Table 2.8. Each state
represents a visited event, each transition represents a possible control-flow from that event, and
each label attached to a specific state represents the number of traces in the log having similar
control-flow. For instance, in the partial state space (Figure 2.5), there are 60 traces with the
control-flow A B C D E. Note that the escaping edges in this example are represented with crossed
transitions.

Given a partial state space, the total precision score is the sum of each visited state multiplied
by the difference between the total number of outgoing edges from the state in the partial state
space and the number of outgoing edges from the state recorded in the log. In other words, let n
represent the number of states in a partial state space, vi represents a visited state i, oi represents
the total number of outgoing edges from state i in the partial state space, and ui represents the
number of outgoing edges from state i recorded in the log, then the total precision can be computed
as shown in Equation 3.

precision = 1−
∑n
i=0 vi × (oi − ui)∑n

i=0 vi × oi
(3)

Example 2.3.2 illustrates the escaping edge approach.
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Figure 2.4: Example of a possible BPMN model.

Figure 2.5: A transition system showing the partial state space of the possible transitions within
the process model depicted in Figure 2.4.

Trace Frequency

A B C D E F 30
A B C D E E F 30
A B C E F 20
A B C E D D E F 80

Table 2.8: Log traces and their corresponding frequency

Example 2.3.2. Given the process model depicted in Figure 2.4, and the corresponding event log
is shown in Table 2.8, it is possible to calculate the precision score for the process model using
Equation 3. Firstly, one needs to generate a transition system representing the partial space of the
possible transitions within the process model. Using both the process model (Figure 2.4) and the
corresponding event log (Table 2.8), the corresponding transition system is depicted in Figure 2.5.
Note that the escaping edges are crossed transitions. Using Equation 3 the total precision is
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calculated as shown in Equation 4. Indeed the calculation shows that the obtained process model
has low precision.

precision = 1−


160(1− 1) + 160(1− 1) + 160(2− 2) + 60(3− 2) + 60(3− 2)+

30(3− 2) + 100(3− 2) + 80(3− 2) + 80(3− 2) + 80(3− 2)

160(1) + 160(1) + 160(2) + 60(3) + 60(3)

+ 30(3) + 100(3) + 80(3) + 80(3) + 80(3)

 = 0.77 (4)

2.3.3 Generalization

The generalization dimension is used to quantify the extent to which the generated process model
can replay log traces that are not yet recorded in the event log [42]. There exist several approaches
to estimate generalization such as The frequency of use approach, which is based on the assumption
that a generic model is a model whose parts are all used with the same frequency [9]. In this
context, given a generated business process model (in BPMN for example), one needs to consider
the frequency of each node (i.e., activities and gateways). Buijs in [9] used a process tree as a
reference to determine the generalization score. However, for sake of simplicity this example uses
a BPMN model instead, thus, the same technique is adapted, but this time using a BPMN model
as reference.

The frequency of use can be calculated as follow: Let n represents the total number of nodes in
the model, i represents a node, vi represents the number of times node i was visited when the log
traces are replayed onto the process model, then the total generalization score can be calculated
as shown in Equation 5. Example 2.3.3 illustrates the frequency of use approach.

generalization = 1−
∑n
i=0

√
vi
−1

n
(5)

Example 2.3.3. Given the process model depicted in Figure 2.6, and the corresponding event
log shown in Table 2.9, it is possible to calculate the generalization score for the process model.
Firstly, one need to obtain the frequency of process model nodes, which can be done by counting
the number of times each node in the process model was visited in the event log. Table 2.10
presents the frequency of the nodes obtained from the process model depicted in Figure 2.6, and
the log traces shown in Table 2.9. Note that the table shows both activities and gateways of the
BPMN model. Finally, the generalization score can be calculated using Equation 5 as shown in
Equation 6

generalization = 1−


√

110
−1

+
√

110
−1

+
√

110
−1

+
√

90
−1

+
√

20
−1

+
√

50
−1

√
40
−1

+
√

110
−1

+
√

110
−1

+
√

90
−1

+
√

90
−1

+
√

110
−1

12

 = 0.88 (6)
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Figure 2.6: Example of possible BPMN model.

Trace Frequency

A B C D E H 50
A B C D F H 40
A B C G H 20

Table 2.9: Log traces and their corresponding frequency

Node Frequency

A 110
B 110
C 110
D 90
G 20
E 50
F 40
H 110
XORsplit(D,G) 110
XORsplit(E,F) 90
XORjoin(E,F) 90
XORjoin(XORjoin(E,F),G) 110

Table 2.10: Frequency of the nodes obtained from the process model depicted in Figure 2.6, and the
log traces shown Table 2.9. Note that XORsplit, and XORjoin refer to BPMN gateways considered
also as visited nodes.

2.3.4 Simplicity

The simplicity dimension is used to quantify the extent to which a generated process model is
simple. It is defined according to two main principles: (a) The the Occam’s Razor principle which
states “One should not increase, beyond what is necessary, the number of entities required to explain
anything.” (b) The understandability of the process model by the user [9]. Figl [21] analyzed the
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origin of the cognitive effort in comprehending process models in a systematic literature review
based on the results of several empirical studies conducted to identify the factors affecting the
understandability of process models. Furthermore, Reijers and Mendling in [37] pointed-out several
factors affecting the process model understanding. The factors can be classified into cognitive
factors such as abstraction level, model size, and hidden dependencies, and personal factors such
as user expertise, and personal reasoning capabilities. The simplicity dimension of a generated
process model is affected by the cited cognitive factors.

The literature presents several heuristics that could be used to estimate simplicity such as the
Simplicity by activity occurrence [9]. This heuristic assumes that the less duplicate activities there
are in a generated process model, the more simple it is.

Let d be the number of duplicated activities in a process model, m the number of missing activities
(activities present in the log file but not on the generated process model), n the number of nodes in
the process model, and a the number of distinct activities in the process model, then the simplicity
score can be expressed as shown in Equation 7. This approach is illustrated in Example 2.3.4.

simplicity = 1− d+m

n+ a
(7)

Example 2.3.4. By comparing the generated process model depicted in Figure 2.7, and its cor-
responding event log presented in Table 2.11, the variables of the simplicity Equation 7 can be
inferred. Clearly, the number of nodes n is 14, the number of distinct activities a is 6, the number
of duplicated activities d is 2, and the number of missing activities m is 1. Hence, simplicity can
be calculated using the formula on Equation 7 as shown in Equation 8.

simplicity = 1− 2 + 1

14 + 6
= 0.85 (8)
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Figure 2.7: Example of BPMN model obtained from an event log.

Trace Frequency

A B C D A F 30
A B C D B F 50
A B D K E C F 70

Table 2.11: Log traces and their corresponding frequency

2.4 Sensors Classification

The massive amount of data coming from IoT devices opened up the need for new approaches to
mine models representing sensors’ environment dynamics. As will be presented in the related work
Section 5.2 (cf. Chapter 5) the number of publications exploring process mining capabilities in this
area increased notably during the past years. Since then, several process discovery approaches [17],
and conformance checking approaches [39] have emerged in this context. To cope with sensor data
using process mining, a fine-grained analysis of sensor data properties is required.

By looking at the different environments where IoT devices are deployed, a new classification of
sensors that allow treating each sensor type independently of each other is introduced. In fact,
classifying sensors is not a new approach. The APUBS system [5] also tried to categorize sen-
sors to mine user-behaviors in smart environments (i.e., smart house). The provided classification
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distinguishes between object sensors (sensors plugged into physical object to track the human inter-
actions), environment sensors (sensors deployed over the external environment such as temperature
sensors), and position sensors (sensors used to provide information about the user position). This
thesis report generalizes the APUBS approach by considering only two types of sensors entitled
Active Sensors and Decorative Sensors. This generalization comes out in the context of merging
sensor data log files with information systems (IS) log files, such that active sensor data are consid-
ered as atomic events that are directly merged with IS events, whereas, decorative sensor data are
seen as sources of complementary knowledge that serve to decorate atomic events. More insight
about merging and mapping sensor data is provided in Chapter 5.

The active sensor type includes all the sensors used to report the interactions between users and
objects. In the presented use case scenario (cf. Chapter 1, Section 1.4), RFID sensors are classified
as active sensors because they are deployed to track clerks progress on manual activities such as
check if product was shacked activity, and package product activity. Furthermore, they are also
used to exchange data and trigger different sub-processes. The decorative sensor type includes
all sensors responsible for updating the process model with the state of the external environment.
Decorative sensors are used in the use case scenario to enrich the process model with a continuous
stream of information coming from the external environment. For instance, accelerometer sensors
are classified as decorative sensors because they are meant to report the acceleration coordinates
of shelves in real-time, which allow inferring possible shakes. Table 2.12 compares the features of
active sensors and decorative sensors.

Features Active S. Decorative S.

Discrete data stream
Continuous data stream
Message passing between processes
Track progress of manual activities
Track state changes in external environment

Table 2.12: Comparison between Active Sensors and Decorative Sensors

The classification provided in this report applies also to the sensor types proposed by the APBUS
system. The object sensors and position sensors in APBUS can be categorized as active sensors, and
the environment sensors can be classified as decorative sensors. Therefore, the new classification
aligns with the APUBS classifications except that it abstracts from the ambient systems (i.e.,
smart houses) application area and generalizes over all the other potential applications of IoT
devices where mapping sensor data to process models is important.
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Chapter 3

Process Simulation

This chapter describes the design and the implementation characteristics of the use case simulator.
Section 3.1 provides an overview of the simulation models. Section 3.2 presents the background
and the related work. Section 3.3 highlights the different concepts and mechanisms considered
when designing the simulator such as queuing and randomness. Finally, Section 3.4 describes the
key features of the implementation.
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3.1 Overview

The starting point of any process mining algorithm is an event log organized in a process-oriented
perspective [42, p. 95]. Such event logs are usually not available at first glance; thus, some pre-
processing of the data sources is required. Depending on the business process complexity, the data
necessary for process mining can be distributed across different data sources such as databases,
files, message logs, and sensors logs [17]. Due to the increasing demand for data sets to explore
process mining capabilities, several initiatives have been made by different communities such as the
BPM community, to share event logs and make them available publicly 1. However, the proposed
event logs are limited to some specific areas and do not reflect a wide variety of settings. Moreover,
requesting real-world data fitting some particular requirements and settings from companies can be
challenging, especially if the data required is considered as a competitive asset by the company [10].

In the context of IoT environments, although, sensors provide a massive amount of data about their
external environment, it is still challenging to find real-world log files that combine data coming
from both sensors and information systems. Moreover, the existing simulators and log generators
such as PLG [11] and PLG2 [10] do not provide enough simulation mechanisms to mimic the
interaction between sensors and business processes. Thus, it is necessary to design and implement
a tailored simulator where sensors and business processes continuously interact to achieve a set of
tasks.

3.2 Background and Related Work

Over the past fifty years, process simulation has been used in several computer science areas. A
known example is SIMULA language that was developed in 1965 to allow discrete event simu-
lation [25]. Since that time several simulation languages and tools have been developed. In the
business process management (BPM) field, many work-flow management systems such as IBM
WebSphere 2, and Adaptive Case management systems such as Exformatics DCR graphs 3 provide
simulation toolkits. However, none of these simulators is developed for the purpose to evaluate
process mining algorithms.

Van der Aalst et al. in [44] describe a set pitfalls of the current simulation techniques such as the
improper modeling of resources. The paper also provides a set guidelines to follow when designing
a process simulator especially from the resource perspective where a new manner of characterizing
resources availability is presented. Using CPN tools [24], the authors were able to demonstrate the
usefulness of the suggested resource characteristics in designing business process simulators.

Van Hee and Liu in [46] proposed a technique to generate random test data sets using Petri-
nets random classes. The top-down approach proposed uses stepwise construction rules such as
refinement rules to generate process models belonging a to a specific class randomly. Burattin and
Sperduti in [11] presented a process logs generator (PLG) tool that allows to generate event log
files from a business process model designed inside the tool or imported as a BPMN file. This work
overcomes the complexity of Petri-nets by using dependency graphs instead. The tool implements
a set of process patterns such sequence, concurrency, mutual exclusion, and repetition, and allows
to associate rules and probabilities to each pattern. The second version of PLG (PLG2) [10]

1Public events logs are available on https://data.4tu.nl/repository/collection:event_logs.
2See https://www-01.ibm.com/software/dk/websphere/
3See http://wiki.dcrgraphs.net/
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developed by Burattin takes the tool a step forward by enabling the generation and simulation of
multi-perspective process models in both offline and online settings. However, no existing simulator
allows mimicking the interactions between sensors and process instances in a BPM context.

3.3 Simulation Model

A business process simulator (BPS) is a computer model meant to imitate the behaviour of real-
world business processes [26, p. 223]; thus, allowing to evaluate, predict, analyze, and optimize
the performance of a process design in a controlled environment. It comes as an alternative to
developing complex mathematical models to evaluate the decision-making problems involved in a
business process.

Simulation models can be seen from the following three different perspectives: static or dynamic,
discrete or continuous, and deterministic or stochastic [26, p. 224]. A static model ignores the time
aspect; thus the process execution is independent of time, while a dynamic model considers the time
aspect. A deterministic model is a model where the simulation output can be correctly predicted
if the input is known, unlike a stochastic model where the simulation output is unknown apriori.
A discrete model allows coping with a discrete sequence of events where each event occurs at a
specific time instance and results in a state change within the system, while a continuous model
is meant to cope with continuous state changes. Simulating sensors interactions with business
processes requires a dynamic, stochastic, and continuous model, whereas, existing BPSs such as
PLG [11] deploy a dynamic, stochastic, and discrete model [26, p. 224].

3.3.1 Queuing

One of the main functionalities of a BPS is to imitate the execution of several process instances
sequentially or in parallel, which implies the interaction of several entities according to a set of rules
and standards to achieve a specific task. In this context, it is important to distinguish between
transient entities and resident entities [26, p. 225]. In a business process context, a transient entity
is a temporary job that flows from the initial state to the end state of a process such as a case,
while a resident entity is a long-lasting entity often responsible for handling transient entities such
as workstations, or resources [22, p. 232].

Exploiting the resources responsible for executing process instances is one of the important roles
of a BPS. Unless the number of resources is not restricted, a BPS should pool these resources
accordingly between the running process instances, which results in the necessity of queuing some
of the process instances until the required resources are available. Therefore, queuing is a BPS
component. Depending on the simulated use case, queuing should be controlled with several
approaches such as first-in-first-out (FIFO), last-in-first-out (LIFO), or priority queues [26, p. 275],
and designed in such a way that it can cope with frequent concurrency drawbacks such as deadlocks
and starvations.

Resource pooling and queuing strategies influence directly the total waiting time of a process
instance, which might be subject to simulation of as well (i.e., simulating a service system) [26].
Another essential property to consider in parallel with queuing is balking that is the behaviour
of allowing a process instance to leave the queue at any time (i.e., instance termination). This
property allows introducing some infrequent behaviours to the simulated process referred as noise
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in the process mining domain [42, p. 148]. Noise is a frequent phenomenon that is encountered in
real-world event logs, thus, it is important to consider it when designing a BPS.

Another important factor that affects the queuing time is resource availabilities which can be
defined with a set of parameters usually provided as input to the BPS. The same parameters are
used as process performance measures [18] to quantify cost per execution, resource utilization, and
waste in a business process. Among these parameters, the followings are considered:

• Arrival rate λ is the average number of process instances (i.e., cases) arriving per time
unit [44], which can be modelled using the Poisson process. Let T be the time between the
arrival of two consecutive cases, X(t) a random variable representing the number of cases
that arrive in a time interval t, and λ the probability of a case arriving within time interval t.
Then one can estimate X(t) using a Poisson distribution with mean value λt. The probability
that n cases arrive at t is defined in Equation 1.

P (X(t) = n) =
(λt)ne−λt

n!
(1)

Under the assumption that the cases arrival time is independent, exponential, and identically
distributed, the mean arrival rate for a Poisson process defined with X(t) such that t >= 0
is λ and the average time between two subsequent cases is 1

λ .

• Service rate µ is the average number of cases to be processed per time unit and the mean
processing time is 1

µ such that µ > 0

• Utilization rate ρ is obtained by dividing the arrival rate over the service rate (ρ = λ
µ ),

and refers to the probability that a resource is busy.

Other parameters such as chunk size, horizon, and availability rate [44] can be used to better
leverage the resources utilization, however, those parameters were abstracted from this design,
and the focus was mainly on the parameters described previously.

3.3.2 Randomness

Randomness is an important feature of any BPS. A typical manner of imitating randomness in
real-world business processes is to gather a data sample representing the overall population and
use it as a reference to generate similar data. However, in the absence of sample data, process
documentation and experts’ knowledge might allow to obtain some approximations that could be
used to adjust randomness in a BPS. For instance, by knowing the minimum and the maximum
activity service time, one can deploy a uniform distribution model [26, p. 340]. A more efficient
alternative to better leverage an activity service time in a simulation model in the presence of
more data is to use the Beta distribution [26, p. 341]. For example, given the knowledge from the
business process documentation that an activity requires a minimum of 10 minutes, a maximum of
30 minutes, and an average of 22 minutes to be completed, and considering the clerks estimation,
who affirms that the activity is more likely to take 15 minutes, the Beta distribution can be used
with following parameters: minimum a = 10, maximum b = 30, average x̄ = 22, and mode
c = 15. Beta distribution is calculated according to two parameters α and β. By determining
these parameters it is possible to calculate the mean µ and the mode c as shown in Equations 1
and 2.
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Figure 3.1: Beta Distribution with α = 0.85 and β = 0.57

µ = a+
α(b− a)

α+ β
(1)

c = a+
(α− 1)(b− a)

α+ β − 2
(2)

Given the true mean x̄, and the estimated mode c, it is possible to calculate α and β as shown in
Equations 3 and. 4

α =
(x̄− a)(2c− a− b)

(c− x̄)(b− a)
(3)

β =
α(b− x̄)

x̄− a
(4)

The Beta distribution allows to explore various properties provided by the distribution model. For
example, the uniform distribution can be obtained by setting α = 1 and β = 1. Moreover, a
random variable x obtained from the Beta distribution function can be scaled from the interval
[0, 1] to any interval [A,B] using the transformation shown in Equation 5.

A+ (B −A)x (5)

Now let’s consider the example where the minimum a = 10, the maximum b = 30, the average
x̄ = 22, and the mode c = 15. Using Equations 3 and 4, the obtained values are α = 0.85
and β = 0.57 respectively. The Beta distribution shape is depicted in Figure 3.1 where x is the
probability ratio and f(x) is the probability density.

The Beta distribution can be seen as the probability distribution of probabilities. Note that the x
values obtained from Figure 3.1 should be scaled to the range [10, 30] using the transformation in 5.
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Thus, in this example it is excepted that most of the randomly generated values will be within the
range of [24, 30]

Randomness is an indispensable feature in any BPS, the probability distribution models such as the
uniform distribution, and the beta distribution can be used to set activity service times randomly,
deferred choices decisions, and priorities.

3.4 Implementation

The implementation is developed in Java. It comprises the components depicted in Figure 3.2.
The Controller implements the Use Case Scenario described in Section 1.4 (cf. Chapter 1), and
the Simulation Model presented in Section 3.3. The Controller takes as input a set of configuration
parameters, and populate the Data Model holding the system entities (i.e., robots, shelves, and
products). The work-flow is handled by the Thread Pool component and the interactions between
the system entities are recorded into log files using the Logger component. Lastly, the simulation
run time is reduced to the order of milliseconds using the Artificial Clock component responsible
for reducing the system clock granularity.

The set of assumptions, and configuration parameters considered while developing the BPS are
presented in Sections 3.4.1, and 3.4.2 respectively. The approach to generating artificial log files is
described in Section 3.4.3. Furthermore, some technical details related to multi-threading, threads
pooling, and the artificial clock thread used to leverage the simulated control-flow are highlighted
in Section 3.4.4.

Figure 3.2: BPS Architecture

The BPS implementation is available at the Github Repository https://github.com/DTU-SE/

AmaSmart.
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3.4.1 General Assumptions

The assumptions considered while developing the BPS application are linked to the use case scenario
defined in Section 1.4 (cf. Chapter 1) and the simulation model explained in Section 3.3.

To recapitulate, in Section 1.4 a use case scenario illustrating an IoT environment was presented.
The scenario is inspired by the Kiva robots deployed at Amazon warehouses. The role of the Kiva
robots is to transport mobile shelves containing inventory products to clerks. The use scenario
has three processes that are Clerk Process, Robot Process, and Smart Shelf Process. As depicted
in Figure 1.2 (cf. Chapter 1), the Clerk Process is responsible for requesting products from an
information system, and assigning a robot to pick-up the shelf containing each product. Once the
robot delivers the shelf, the product is collected from the shelf, checked in case it was shacked while
being moved, and packaged. The Robot Process is responsible for bringing the shelf to the clerk
dock, and disposing of the clerk dock it once the product is collected from the shelf. The Smart
Shelf Process is responsible for interpreting the Accelerometer data provided by an Accelerometer
plugged into the shelf to infer shakes. A more detailed description of the use case scenario is
provided in Section 1.4 (cf. Chapter 1).

For the use case scenario the following assumptions are made:

• A stock contains a limited number of product types, and each product type has a unique
identifier.

• The product inventory is abstracted; thus, it is assumed to have an unlimited amount of
products of the same kind in the stock.

• The products are distributed over a set of shelves, each shelf contains a fixed number of
products, and each product is available on only one shelf.

• All shelves have the same products capacity that should not be exceeded.

• At any point in time, a shelf can be in one of the following states: idle or busy. A busy shelf
is a shelf being moved by a robot.

• If a shelf is busy, no other robot can access it until the shelf gets back to the idle state.

• Each shelf is equipped with an accelerometer that continuously reports some accelerometer
data from which shakes can be inferred.

• In case the accelerometer detects a shake, the robot decreases its current speed by half, which
increases the service time of activity move shelf to dock.

• In order to track the progress of manual activities (i.e., package product) and message passing
between subprocesses (i.e., receive product request from clerk) RFID sensors are used.

• Each RFID sensor has a chip identifier that reads the RFID code of the scanned element
(i.e., product, robot, or shelf), and the RFID code is assumed to be the element identifier.

Concerning the BPS the following assumptions are made:

• The simulator mimics the workflow of a distributed system that combines information systems
and sensors which interact together to process a case order.

• Each distributed system entity (i.e., clerk, robot, shelf) has a distinct process instance iden-
tifier.
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• The events happening within the distributed system are ordered according to a distributed
algorithm responsible for synchronizing the system’s logical clocks.

• Products are generated and distributed across the shelves randomly.

• Shelves are assigned to robots randomly.

• Many process instances (cases) are allowed to run concurrently.

• Cases are processed in a FIFO order.

• Each business process activity has a minimum service time, a maximum service time, an
average, and a mode (most likely service time). It is assumed that this information is provided
by domain experts.

• All sensors are assumed to respond instantly.

3.4.2 Configuration Parameters

To ensure a high flexibility to the BPS, a set of configuration parameters provided as input to
the simulator is defined. Although the control-flow is restricted to the use case scenario, it is
possible to play-out the simulation with different settings. This feature is important to evaluate
the algorithms presented in Chapters 4, and 5. The configuration parameters are divided into the
following three categories:

3.4.2.1 Use Case Parameters

The use case parameters are used to determine the number of products, shelves, and robots to be
considered for each simulation run. The following parameters are considered:

• Number of cases is the number of process instances generated per simulation run.

• Number of shelves is the number of shelves to be considered per simulation run.

• Products per shelf is the maximum product capacity per shelf.

• Number of robots is the number of robots to be considered per simulation run.

• Shake probability is the probability that a shelf will be shaken while being moved by a
robot.

3.4.2.2 Randomness and Queuing parameters

The randomness parameters are used to leverage randomness in the BPS. In this implementation
the following randomness parameters are considered:

• Service Time parameters are used to generate random activity service times. For each
activity, one should provide the minimum duration, the maximum duration, the average
duration, and the mode (most likely duration). Using these data a random estimation of the
service time is generated using a beta distribution function as described in Section 3.3.2.

• Arrival rate is the average number of cases arriving per time unit.

• Service rate is the average number of cases to be processed per time unit.
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• Balking rate is the average number of cases that suddenly terminate before being completed.

3.4.3 Log Files Generation

For the sake of evaluating the algorithms presented in Chapters 4, and 5, it is necessary to generate
a set of log files recording the interactions between the different entities of the BPS. Furthermore,
the generated files should comply with a standard event log format. A well-known event log
standard is the XES4 format designed by the IEEE Task Force on Process mining. As described
in Section 2.2.1 (cf. Chapter 2), an event log is a collection of cases, where each case comprises a
sequence of events, and each event is composed of a set attributes.

IS event log files record the events executed by the 3 sub-processes depicted in the BPMN model
in Figure 1.2 (cf. Chapter 1). Examples of the generated IS event log files are shown in Figure 3.3.

The generation of IS log files is done during the simulation run. At the beginning of the run the log
files are created and populated with the corresponding event log scheme (header). Then as process
instances run, the executed events are logged to their corresponding event log file. For sake of
simplicity, all IS event log files have similar event log scheme. As shown in Figure 3.3, they include
Case Id referring to the process instance identifier, a unique Event Id, a Start Timestamp, an End
Timestamp, an Event Name, an Event Type, a Subject Group, a Subject Id, an Object Group, and an
Object Id. The four last attributes correspond to the resources responsible for the event execution.
The subject and object attributes can be seen as a metaphor of ”who did what ?”.

The events recorded by the BPS in the Clerk Process Log (Figure 3.3a) are: Request Product,
Assign Robot, Check if product was shacked, and Product Delivered. The events recorded by the
BPS in the Robot Process Log (Figure 3.3b) are: Putdown Current Shelf, Go to appropriate shelf,
Move shelf to dock, Reduce Speed, and Move shelf from dock.

4See http://www.xes-standard.org.
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(a) Fraction of Clerk Process Log

(b) Fraction of Robot Process Log

Figure 3.3: Examples of IS event log files.

Sensor log files are used to record the progress of the manual activities and the message passing
between the 3 sub-process shown in the BPMN model Figure 1.2 (Chapter 1). Examples of gener-
ated sensor log files are depicted in Figure 3.4. From an implementation perspective, sensor data
is recorded the same way as normal events, however, the log scheme used is different depending on
the sensor type (active or decorative). As shown in Figures 3.4a, and 3.4b, in the RFID sensor logs,
the log scheme comprises, Chip Name, Timestamp, a scanned Item Id, and Entry Id. Concerning
the sensor logs referring to the accelerometer data depicted in Figure 3.4c, the log scheme contains
Shelf Id, Entry Id, and a Timestamp referring to the moment in time when a shake was recorded.

The sensor data recorded by the BPS in the Clerk RFID log (Figure 3.4a) are Collector referring
to the manual process activity Collect product from shelf ; Extra check referring to the manual
process activity Do extra check ; and PackageDone referring to the manual process activity Package
Product. The sensor data recorded by the BPS in the Robot RFID log (Figure 3.4b) are ShelfMoved
referring to the message passing Send shelf being moved to shelf - Receive shelf being moved from
robot between Clerk process and Robot process; ShelfDelivered referring to the message passing
Send shelf delivered - Receive shelf delivered/response from robot between Robot process and Clerk
process, and Robot process and Smart Shelf process; DisposeShelf referring to the message passing
Send dispose shelf - Receive dispose shelf from clerk between Clerk process and Robot process.
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Concerning the data recorded by the BPS in the Accelerometer log (Figure 3.4c), the accelorometer
coordinates’ values are abstracted, and only the timestamp when a shelf was shaken is recorded.

(a) Fraction of Clerk RFID log (b) Fraction of Robot RFID log

(c) Fraction of Accelerometer log

Figure 3.4: Examples of sensor log files.

3.4.4 Multi-Threading

The BPS uses multi-threading to mimic the workflow of the use case scenario, hence, the process
instances are handled using a group of threads that interact together and synchronize in order to
perform a set of tasks. As described in Section 3.3.1, It is important to distinguished between
transient entities and resident entities. In this context, all the resident entities such as the clerk,
the robot, and the shelf are implemented as threads.

The execution of a process instance requires the interaction of different threads. Therefore, a
wait/notify mechanism is implemented, which comprises a set of objects used to enable message
passing and synchronization between threads. Each object is replicated in a Hashmap structure and
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can only be accessed using a unique key, that is granted to the corresponding process instance. This
approach allows avoiding synchronization conflicts between different process instances. Another
important requirement to consider while dealing with multi-threading is to cope with deadlocks
and starvation. These two common issues are usually caused by the lack of priority handling
mechanisms. For this purpose, a thread pooling mechanism using a linked blocking queue5 is
implemented to order thread requests in a FIFO order.

Threads are also used to simulate the continuous data stream provided by sensors. For instance,
the accelerometer sensors are implemented as independent threads that report a continuous stream
allowing to notify shakes when a shelf is moved.

The system’s artificial clock is also implemented as a thread that is initiated at the beginning of the
simulation run with a pre-defined start time value. In order to optimize the simulation runtime, the
activity service times are reduced to the order of milliseconds. However, to obtain realistic log files,
it is mandatory to report timestamps in the normal order (minutes and hours). In this context,
the artificial clock thread is used as a logging time reference with reduced clock granularity.

3.5 Conclusion

This chapter investigates the design and implementation characteristics of the BPS which uses a
dynamic, stochastic, and continuous simulation model. Although the simulator is meant only to
simulate a specific use case scenario, it provides several simulation characteristics such as queuing
and randomness allowing for several settings.

Moreover, a set of configuration parameters is proposed to ensure a prominent flexibility. The
implementation of the BPS was conducted in Java. It consists of two main components that are
the use case scenario component which implements the functional requirements of our use case,
and the BPS component which implements the required simulation mechanisms.

Since the main goal of this simulator is to generate synthetic log files to evaluate the algorithms
presented in Chapters 4, and 5. A set of assumptions are made to simplify the implementation and
orient it to the desired purpose. The generated log files record the business process work-flow as
well as the sensor data captured in real time. The next step is to merge those log files to explore
the process mining capabilities.

5see https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
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Chapter 4

Event Log Scheme Identification

This chapter aims at solving the event log scheme identification problem by introducing a new
approach to label log files automatically. Section 4.1 introduces the problem and addresses its
challenges. Section 4.2 discusses the related work. Section 4.3 presents the event log scheme
identification approach along with the concepts used to explain it. Section 4.4 evaluates the
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proposed approach, and finally Section 4.5 discusses the obtained results.

4.1 Introduction

The event logs produced by information systems provide insights about the executed process in-
stances and allow to perceive the individual behaviour of each process instance. In process mining,
the individual behaviour is implied from the recorded control-flow that represents the order in which
events were executed, and the data-flow that represents the correlation between events’ attributes.
However, to explore process mining capabilities to mine the individual behaviour of each process
instance from an event log, it is necessary to distinguish between the recorded process instances.
This requirement gets more complicated in case of concurrent execution of process instances which
is, by the way, one of the fundamental principles of designing modern BPM systems [43]. Conse-
quently, the relation between events becomes uncertain, as two successive events in the log may
belong to different process instances. As solution, a (Case Id) should be attributed to each single
process execution.

The availability of case ids in an event log depends on its level of maturity, in fact, Van Der Aalst et
al. in the process mining manifesto [40] proposed a maturity ranking of event logs depending on the
level of logging information they provide. Nowadays, some process-oriented management systems
(i.e., ERP systems, CRM systems) provide mature event logs where the case ids are explicitly
mentioned. However, other management systems such as document management systems (DMS)
still lack the notion of case Id in their generated log files [12]. Therefore it is essential to design a
generic approach to infer the case ids from immature event log files to correlate events belonging
the same process instance.

This chapter addresses the challenge of inferring case ids as an initial stride toward a generic
approach allowing to infer all the event log scheme attributes (i.e., activity name, resource). By
exploring the control-flow discovery quality dimensions described in Section 2.3 (cf. Chapter 2) a
new approach to infer the case ids from event logs (ICI) is introduced and evaluated using both
synthetic and real-world event logs.

4.2 Background and Related work

The challenge of inferring case ids from event logs has obtained little attention from the BPM
community. The reason is that most of the literature introducing new process mining techniques
assume the existence of labelled log files where the case id is known beforehand. This thesis report
discards this assumption, and go on a quest for automatically inferring case ids. By looking at the
existing related work, it is notable that few publications [20], [47], [12], [8] have already raised this
challenge and proposed different approaches from different perspectives to solve the problem.

Ferreira et al. in [20] proposed an approach to transform an unlabeled log into a labelled log using
the Expectation-Maximization technique that aims at finding a solution that converges to a local
maximum of the likelihood function. This approach is considered by the authors as generic and
executable in different environments. However, inferring case ids using this technique might be
subject to uncertainty due to its probabilistic nature. Moreover, the first-order Markovian model
used is unable to represent some work-flow patterns such as loops and parallelism. An enhanced
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approach was suggested by Walicki and Ferreira [47], which suggests a sequence partitioning tech-
nique. However, the proposed technique shares the same limitations as the previous one [20] since
it is limited to only simple work-flow patterns, thus it does not support loops and parallelism.

Bayomie et al. in [8] proposed an approach to infer the case identifiers from unlabeled event logs.
The approach requires the reference process model used to document the business process, which
is often part of the documentation package delivered at design time. Afterwards, the reference
process model is used to generate a causal behavioural profile [48], which is similar to the footprint
tables introduced by the Alpha algorithm in [42, p. 130]. The later is used together with some
time heuristics inferred from the event log to build a decision tree where each node represents an
event from the event log and carries its conditional probability of belonging to the same case as
its parent node. Bayomie’s approach aims to generate a set of labelled event logs listed according
to a ranking score used to indicate their degree of trust. The method considers the problem of
inferring case ids from a different perspective since it assumes that none of the existing events’
attribute could be used as a case id. Thus it explores the data-flow correlations (time heuristics)
and control-flow correlations (causal behavioural profile) between events to group them by case.
Whereas the ICI approach digs into a more specific situation, where the case Id is assumed to be
implicitly present in the event log.

Burattin and Vigo in [12] share the same assumption as the ICI approach, by considering the case
id as a hidden attribute inside the log. The authors justify their assumption by the fact that it
is general enough for a broad range of real-world event logs. Their proposed approach consists of
filtering a set of event attributes considered as candidates for representing the case id in an event
log. The filtering is done to reduce the search space by applying some selection heuristics such as
selecting only the attributes with specific data types (i.e., ignoring timestamps), and using regular
expression constraints as a selection criterion. Afterwards, the approach exploits the amount of
data shared between attributes to construct chains, such that each chain links all similar attributes’
values across the log. The case ids are then, inferred by choosing the chain with maximal length
and minimal number of crossing attributes. By reducing the search space, the approach aims at
finding a set of possible combinations of attribute that might represent the case id. However, it
relies entirely on the similarity of attributes; thus, its accuracy is limited to a specific range of
event logs.

The ICI approach overcomes all the challenges of the previously cited approaches. Indeed, it does
not require any reference process model nor heuristics to infer the case ids. The aim is to introduce
a generic approach to infer the case id from any event log using the four quality metrics described
in Section 2.3 (cf. Chapter 2).

4.3 Methodological Approach

The ICI approach intents to automate the event log scheme identification process. Section 4.3.1
provides a formal definition of the notations used to describe the approach, Section 4.3.2 highlights
the underlying assumptions, Section 4.3.3 presents the approach, and Section 4.3.4 illustrates the
ICI approach by providing a running example.
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4.3.1 Preliminaries

The event Definition 2.2.2 provided in Chapter 2 assumes the existence of a case id c ∈ C in
order to construct the tuple e = (a, c, ts, te, d1, . . . , dm). Since the ICI approach assumes that the
case id is unknown a-priori, it is necessary to define a Raw Event as an event with unknown case id.

Definition 4.3.1 (Raw Event). A Raw Event is a tuple re = (a, ts, te, d1, . . . , dm), where:

• a ∈ A represents the activity associated to the event;

• ts ∈ N represents the start timestamp;

• te ∈ N represents the end timestamp;

• d1, . . . , dm is a list of raw event attributes, where ∀ 1 ≤ i ≤ m, di ∈ Di, Di being the set of all
possible attributes.

RE = A×N×N×D1×· · ·×Dm is called the raw event universe. In a raw event re, the following pro-
jection functions are defined: πa(re) = a, πts(re) = ts, πte(re) = te, and πdi(re) = di,∀ 1 ≤ i ≤ m.
If re does not contain the attribute value di for some i ∈ [1,m] ⊂ N, πdi(re) =⊥.

According to Definition 2.2.5 (cf. Chapter 2), an event log is defined as a tuple L = (S(E), T ) where
S(E) is an event log scheme and T is a set of traces. Given a set of raw events ER, the research
problem introduced in this chapter is to transform ER to a set of events EN to construct T and
identify S(E). For sake of simplicity, the research problem is reduced to the scale of identifying only
the case id ”caseid” ∈ S(E) as an initial stride toward a generic approach allowing to automatically
identify other event log scheme attributes.

4.3.2 Assumptions

The ICI approach is built upon the following assumptions:

• The case id is assumed to be implicitly mentioned in the event log. In other words, given
a raw event re = (a, ts, te, d1, . . . , dm) (Definition 4.3.1), a case id c is one of the raw event
attributes d1, . . . , dm.

• The case id is given by the same attribute of all raw events. In other words, if di is the case
id attribute of raw event re ∈ RE , then the case id attribute of all other events in RE is di.

• The event name attribute and the timestamp attribute of the event log are known apriori.

• Each event log file is assumed to record the control-flow of only one process model.

4.3.3 Approach

The preliminaries presented in Section 4.3.1 and the assumptions presented in Section 4.3.2 provide
a good starting point to describe the ICI approach. In this Section, it is important to emphasis
on the use of the four quality dimensions described in Section 2.3 (cf. Chapter 2) to infer the
case id. The control-flow discovery allows discovering process models reflecting the behaviours
seen in an event log [42, p. 125]. To ensure the correctness of the discovered model, one needs to
identify three main important attributes among the other event attributes, namely the case id, the
activity name, and the timestamp, which are important to define the control-flow of the discovered
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process model. In case one of these attributes is wrongly identified, the obtained model would
be inconsistent. For instance, by selecting a random event attribute as a case id it is most likely
that the discovered control-flow would not represent the original process model. Consequently, the
discovery algorithm used will produce some strange behaviours resulting in an inconsistent model.
Luckily, the control-flow four quality dimensions allow quantifying those behaviours.

In principle, the control-flow discovery quality dimensions are meant to evaluate and compare the
correctness of different discovery algorithms [9]. This chapter aims at going beyond the classical use
of quality dimensions by exploiting their ability to evaluate and compare different process models
obtained using the same process discovery algorithm but considering different event attributes as
case id.

To quantify the four quality dimensions of a process model, the ICI approach relies on the metrics
presented in Section 2.3 (cf. Chapter 2). The fitness score is calculated using the Alignment-based
Replay Fitness technique which quantifies the extent to which the event log traces can be replayed
on the discovered model (ref. Section 2.3.1). The precision score is calculated using the Escaping
edges technique which estimates the behaviours allowed by a process model (ref. Section 2.3.2).
The generalization score is calculated using the Frequency of use technique that is built on the
assumption that a generic model is a model whose parts are all used with the same frequency
(ref. Section 2.3.3). The simplicity score is calculated using the Simplicity by activity occurrence
approach which quantifies the simplicity of a process model by the number of duplicate activities
it contains (ref. Section 2.3.4).

The ICI approach includes the following steps: (a) Compute grouping ratio for each attribute. (b)
Compute the quality score for each attribute.

4.3.3.1 Compute Grouping Ratio for Each Attribute

To get close insight about which event attribute is more likely to represent the case id, the ICI
approach computes a grouping ratio for each attribute. It is used to quantify the extent to which
an attribute can be used to split events into groups, such that each group can be identified by a
unique value of the attribute. For instance, a case id attribute is used to group events belonging
to the same process execution by assigning them similar case id value, thus by grouping events
by case id, the obtained number of groups will correspond to the number of process executions
(cases). However, by choosing a different attribute to represent the case id (i.e., timestamp, event
id, resource), the obtained event groups might have smaller or larger size.

Let ER be a set of raw events. According to Definition 4.3.1, a raw event re is a tuple re =
(a, ts, te, d1, . . . , dm), with d1, . . . , dm being the list of raw event attributes, where ∀ 1 ≤ i ≤ m, di ∈ Di.
Ndi is defined as the set of unique values for attribute di such that Ndi = {πdi(re) | re ∈ ER}.
Then, the Grouping Ratio for attribute di is defined as gi = 1− |Ndi

|
|ER| such that |Ndi | is the size of

set Ndi , and |ER| is the size of the set ER that is the total number of raw events it contains.

4.3.3.2 Compute Quality Score for Each Attribute

In this step raw events are transformed into events with known case id that is one of the event
attributes, and then an event log L is generated. Afterwards, a process discovery algorithm can be
applied to the event log L to discover the corresponding process model. Once the model is obtained,
the quality dimension metrics are used to measure fitness, precision, generalization, and simplicity.
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The measurements are summed up together with the the distance to the average grouping ratio
then averaged to get a quality score, which is used to rank the process model corresponding to each
candidate attribute. Finally, the candidate attribute with the highest rank is selected to be the
real case id attribute.

Let W be the set of candidate raw event attributes, and ER be a set of raw events. ER can be
transformed into a set of events EN as follows: for each candidate attribute w ∈ W, a raw event
re ∈ ER is transformed to an event e ∈ EN such that πa(e) = πa(re), πts(e) = πts(re), πte(e) =
πte(re), πdi(e) = πdi(re),∀ 1 ≤ i ≤ m (m the number of additional attributes), and πc(e) = w.
After creating the set of events EN , an event log can be generated using definition 2.2.5 (cf.
Chapter 2).

Let RW be the average grouping ratio of the candidate attributes in W, and Ri the grouping ratio
of a candidate attribute w ∈ W. Then the distance to the average grouping ratio for a candidate
attributes w ∈ W is defined as DTAG = 1 − Abs(Ri − RW) where Abs() is an absolute value
function.

Algorithm 1 describes the inferCaseId() function used to infer the case id. The function takes as
input ER the set of raw events, and W the set the candidate event attributes, and returns the real
case id attribute c ∈ W. The algorithm uses the following functions:

• generateLog(ER, w): This function transforms the set of raw events ER to a set of events
EN where the case id c = w ∈ W, then generate an event log Log using Definition 2.2.5 (cf.
Chapter 2).

• DoMiner(Log): This function takes as input the event log, and apply a process discovery
algorithm (i.e., Inductive Miner) to generate a process model.

• DTAGRatio(W, w): This function computes the distance to average grouping ratio for a
candidate attribute w ∈ W.

• ComputeF itness(Model), ComputePrecision(Model), ComputeGeneralization(Model), and
ComputeSimplicity(Model): These functions are used to compute the fitness score, the pre-
cision score, the generalization score, and simplicity score for a process model respectively.

Besides the algorithm defines G as a mapping from the set of candidate events W to the set of real
numbers R such that each w ∈ W is mapped to a real number r ∈ R representing its quality score.
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Algorithm 1: Infer Case id

1 Function inferCaseId (ER,W)
Input : ER the set of raw events, W the set the candidate attributes
Output: real case id attribute c

2 begin
3 highestScore← 0 // initialize highest score

4 c← null // initialize real case id

5 G← null // initialize map G
6 /* Iterate over all candidate attributes in W */

7 foreach w ∈ W do
8 Log ← generateLog(ER,w) // generate log file

9 Model ← DoMiner(Log) // apply process discovery algorithm

10 Gr ← DTAGRatio(W,w) // compute the distance to average grouping ratio

11 Ft ← ComputeFitness(Model) // compute fitness score

12 Pr ← ComputePrecision(Model) // compute precision score

13 Ge ← ComputeGeneralization(Model) // compute generalization score

14 Si ← ComputeSimplicity(Model) // compute simplicity score

15 QualityScore ← (Gr + Ft+ Pr +Ge+ Si)/5 // compute quality score

16 G(w)← QualityScore // Map the obtained quality score to w

17 /* Iterate over all the keys of Map G */

18 foreach key w ∈ G do
19 if G(w) > highestScore then
20 highestScore ← G(w) // assign G(w) to highestScore
21 c← w // consider w as the real case id

22 return c

4.3.4 Running Example

To illustrate the ICI approach the Robot Process log file generated by the BPS is used. A small
portion of the robot process log is depicted in Figure 3.3b (cf. Chapter 3). The log file used
comprises 7250 events. Assuming that the case id column in the log file is unknown, the aim is to
infer it using the ICI approach explained in Section 4.3.3.

The first step is to compute the grouping ratios using the formula shown in Section 4.3.3.1 used
to calculate the grouping ratio of each event attribute (log column) in the log file. The results are
shown in Table 4.1.

The grouping ratios presented in Table 4.1 provide a brief insight about which event attributes
might represent the case id. By analyzing the obtained grouping ratios, one can notice the following:
Event Id attribute has score 0, which is trivial since the event Id is a unique identifier for each
event. Start Timestamp and End Timestamp have very low grouping ratios because some events
happened concurrently. However, Event Name, Event type, Subject Group, and Object Group have
very high grouping ratios. Assuming that a case id should group not too many and too few events
one would expect that only Case Id, Subject Id, and Object Id might represent the real case Id
column.

The second step is to compute the quality score for the candidate attributes in theW. Hence, each
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Event Attribute Grouping Ratio

CaseId 0.7694
EventId 0.0000
StartT 0.0079
EndT 0.1696
Event Name 0.9993
Event Type 0.9999
Subject Group 0.9999
Subject Id 0.9862
Object Group 0.9999
Object Id 0.9334

Table 4.1: Grouping ratios for robot process log (cf. Figure 3.3b Chapter 3)

candidate attribute is considered as a case id. For the sake of simplicity it is assumed that the event
name attribute and the start timestamp attribute are known; thus they are excluded from the set
of candidate attributesW. The corresponding process model is generated using a process discovery
algorithm. In this example, the ”Inductive Miner with Infrequent and all operators (IMfa)” [28] is
used to discover the process model. IMfa is considered as one of the least bias discovery algorithms
toward the four quality dimensions [28]. Finally, the distance to the average grouping ratio and the
four quality dimension metrics explained in Section 2.3 (cf. Chapter 2) (Alignment-based Replay
Fitness, Escaping edges, Frequency of use, Simplicity by activity occurrence) are computed for
each candidate attribute and the quality score is derived as shown in Table 4.2.

Candidate Col. Grouping Ratio DTAG ratio Fitness Precision Simplicity Generalization Quality Score Rank

Case Id 0.7694 0.9172 0.9998 1.0000 1.0000 0.9726 0.9779 1
Event Id 0.0000 0.3135 1.0000 1.0000 1.0000 0.9747 0.8576 5
End Timesstamp 0.1697 0.4831 0.9543 0.9171 1.0000 0.9767 0.8663 4
Event Type 0.9999 0.6867 0.7975 0.4927 1.0000 0.8450 0.7644 6
Subject Group 0.9999 0.6867 0.7975 0.4927 1.0000 0.8450 0.7644 6
Subject Id 0.9862 0.7003 0.9997 0.8077 1.0000 0.9596 0.8935 2
Object Group 0.9999 0.6867 0.7975 0.4927 1.0000 0.8450 0.7644 6
Object Id 0.9334 0.7532 0.9991 0.7343 1.0000 0.9738 0.8921 3

Table 4.2: Quality score for each candidate attribute, calculated from the quality dimension metrics
presented in Section 2.3 (cf. Chapter 2)

By ranking the obtained quality scores shown in Table 4.2, it is clear that the ”Case Id” attribute
represents the real case Id attribute in the event log because it has the highest quality score. This
example demonstrates that the ICI approach provides accurate results and allows to infer the case
id on a synthetic log generated by the BPS. The next section uses real-world event logs to evaluate
the ICI approach.
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4.4 Evaluation

To evaluate the ICI approach on a larger scale, several real-world event logs were obtained from
the 4TU public database 1. With the purpose of obtaining a ground truth to evaluate the accuracy
of ICI approach, the event logs used are all labelled; thus the real case id attribute is known.
This section reports the results obtained by applying the ICI approach on several real-world log
files. Section 4.4.1 describes the implementation, Section 4.4.2 explains the evaluation procedure,
Section 4.4.3 briefly describes the used data sets, and Section 4.4.4 presents the evaluation results.

4.4.1 Implementation

Figure 4.1: ICI plugin Architecture

The ICI plugin integrates two main packages from the open-source process mining framework
ProM 2 that are the Inductive Miner 3 which implements the IMfa algorithm, and the Evolutionary
Tree Minner 4 which implements the necessary metrics used to evaluate the control-flow four quality
dimensions. The ICI plugin requires as input a log file in CSV format, and the index columns of
the event name, and the timestamp attributes. The plugin generates a set of candidate case ids,
and then executes the algorithm to infer the real case id attribute. An overview of the ICI plugin
architecture is depicted in Figure 4.1.

The ICI implementation is available at the Github Directory https://github.com/aminobest/

ActiveAndDecorativeSensorMerging/tree/master/src/iciPlugin.

1see the collection of real-world event logs at 4TU Center for Research Data http://data.4tu.nl/repository/

collection:event_logs_real
2see www.promtools.org/
3see https://svn.win.tue.nl/repos/prom/Packages/InductiveMiner/
4see https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/
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4.4.2 Evaluation Procedure

Most of the event logs obtained from the 4TU database are available in XES format, thus, the
event log scheme is already known. A process mining tool named ”Disco”5 was used to convert the
event logs from XES to CSV format. Also, to reduce the plugin execution time and avoid memory
overheads only the first 10,000 events (ordered by timestamp) in the event logs were considered.

The procedure starts with iterating through each candidate attributes and computing its grouping
ratio, before considering it as a case id. Then, by manually providing the event name and the
timestamp columns index, the IMfa variant of the inductive miner is used to generate a process
tree, that is used to compute the four quality metrics.

During the initial testing of the ICI plugin, a memory overhead was noticed causing the plugin
to crash. The overhead is caused when attributes with very high or very low grouping ratios are
considered as case ids. Consequently, the inductive miner consumes a huge amount of memory
to mine the corresponding process model, which results in a memory overhead causing the whole
plugin to crash. As solution, a light-weighted version of the plugin was developed to evaluate the ICI
approach in a semi-automated way. This version returns the grouping ratio and the four quality
metrics for an individual candidate attribute. Therefore, for each candidate attribute a plugin
instance is wrapped into a job script and submitted to a high-performance computing machine
(DTU HPC 6). This technique allows preventing memory overheads from propagating and to try
different benchmarks. After a set of trials, the following optimal system configuration was chosen:
12Gb of RAM, and 1 processor with 4 cores.

4.4.3 Data Sets

The data sets considered to evaluate the ICI approach are the following:

• BPI challenge 2012 event log 7 records a loan application process.

• BPI challenge 2013 event log 8 records Volvo IT incidents and management problems.

• BPI challenge 2014 event log 9 records the incidents encountered in one of the RaboBank
systems.

• BPI challanges 2017 event log 10 records the loan application process of a Dutch finacial
institute.

• Hospital billing event log 11 is obtained from the financial modules of an ERP system used
by a regional hospital.

• Credit requirements event log 12 records information regarding a credit requirement process
in a bank.

• Helpdesk anonymized event log 13 records the work-flow of a call center

5see https://fluxicon.com/disco/
6see http://www.hpc.dtu.dk
7See http://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f
8See http://data.4tu.nl/repository/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
9See http://data.4tu.nl/repository/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35

10See http://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
11See http://data.4tu.nl/repository/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
12See http://data.4tu.nl/repository/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5
13See https://data.mendeley.com/datasets/nm9xkzhpm4/1
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• Sepsis event log 14 records the treatment process of hospital patients with sepsis symptoms.

• Receipt phase of environmental permit event log 15 records the application process for an
environmental permit.

Since only the first 10,000 events are considered for the evaluation, a shorter version of the real-
world event log files is generated, and made available online 16.

4.4.4 Results

The evaluation results are reported in Tables 4.3, 4.4, and 4.5. For each log file event attribute the
following ratios are computed: grouping ratio (GR), distance to average grouping ratio (DTAG),
alignment-based replay fitness (Fr), precision using escaping edges improved technique (Pi), gener-
alization using frequency of use technique (Gv), Simplicity by activity occurrence technique (Sm),
and quality score. To demonstrate the accuracy of the ICI approach, the real case id attribute (con-
sidered as ground truth) should always have the highest quality score among the other attributes.
Indeed, the evaluation results show that the case id attribute always has the highest quality score.
The results are discussed in details in Section 4.5.

14See http://data.4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
15See http://data.4tu.nl/repository/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
16See https://github.com/aminobest/ActiveAndDecorativeSensorMerging/tree/master/ICI%20evaluation/

eventsLogsWithTop1000events.
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Log file Candidate Col. GR DTAG Fr Pi Sm Gv Quality Score Rank

BPI challenge 2012 Case ID 0.9565 0.8995 0.9097 0.7346 1.0000 0.9170 0.8922 1
Activity 0.9964 0.8596 N/A N/A N/A N/A 0.0000 6
Resource 0.9948 0.8612 0.9918 0.2393 1.0000 0.8326 0.7850 5
Complete Timestamp 0.0563 0.2003 N/A N/A N/A N/A 0.0000 6
(case) AMOUNT REQ 0.9907 0.8653 0.9998 0.4074 1.0000 0.9076 0.8360 2
concept:name 0.9976 0.8584 0.9109 0.6615 1.0000 0.5169 0.7895 3
lifecycle:transition 0.9997 0.8563 0.9967 0.2737 1.0000 0.8184 0.7890 4

BPI challenge 2013 Case ID 0.9438 0.9655 0.9926 0.4574 1.0000 0.9678 0.8766 1
Activity 0.9989 0.9104 N/A N/A N/A N/A 0.0000 12
Resource 0.9278 0.9815 0.9910 0.4358 1.0000 0.9640 0.8744 2
Complete Timestamp 0.0181 0.1088 N/A N/A N/A N/A 0.0000 12
concept:name 0.9997 0.9096 0.7763 0.6627 1.0000 0.5665 0.7830 11
impact 0.9997 0.9096 0.9588 0.6001 1.0000 0.8457 0.8628 3
lifecycle:transition 0.9989 0.9104 1.0000 0.6683 1.0000 0.6604 0.8478 5
org:group 0.9625 0.9468 0.9795 0.3874 1.0000 0.9345 0.8496 4
org:role 0.9978 0.9115 0.9792 0.2891 1.0000 0.8772 0.8114 9
organization country 0.9982 0.9111 0.9792 0.2889 1.0000 0.8621 0.8083 10
organization involved 0.9977 0.9116 0.9792 0.2894 1.0000 0.8796 0.8120 8
product 0.9801 0.9292 0.9788 0.3571 1.0000 0.9588 0.8448 6
resource country 0.9975 0.9118 0.9792 0.2903 1.0000 0.8814 0.8125 7

BPI challenge 2014 Incident ID 0.9696 0.7900 0.9977 0.3541 1.0000 0.8922 0.8068 1
DateStamp 0.3970 0.6374 N/A N/A N/A N/A 0.0000 4
IncidentActivity Number 0.0000 0.2404 1.0000 1.0000 1.0000 0.7271 0.7935 2
IncidentActivity Type 0.9964 0.7632 N/A N/A N/A N/A 0.0000 4
Assignment Group 0.9891 0.7705 0.9861 0.2568 1.0000 0.8846 0.7796 3
KMnumber 0.9902 0.7694 N/A N/A N/A N/A 0.0000 4
Interaction ID 0.9749 0.7847 N/A N/A N/A N/A 0.0000 4

BPI challanges 2017 Case ID 0.9464 0.8905 0.9806 0.7591 1.0000 0.9370 0.9134 1
Activity 0.9976 0.8393 N/A N/A N/A N/A 0.0000 19
Resource 0.9927 0.8442 0.9980 0.3487 1.0000 0.9305 0.8243 5
Start Timestamp 0.0001 0.1632 N/A N/A N/A N/A 0.0000 19
Complete Timestamp 0.0001 0.1632 1.0000 0.9966 1.0000 0.9235 0.8167 7
(case) ApplicationType 0.9998 0.8371 0.9818 0.2648 1.0000 0.9082 0.7984 10
(case) LoanGoal 0.9987 0.8382 0.9932 0.3230 1.0000 0.9255 0.8160 8
(case) RequestedAmount 0.9916 0.8453 0.9858 0.5070 1.0000 0.9489 0.8574 2
Accepted 0.9974 0.8395 0.9917 0.2344 1.0000 0.8623 0.7856 16
Action 0.9993 0.8376 0.9644 0.2690 1.0000 0.7672 0.7676 18
CreditScore 0.9819 0.8550 0.9918 0.2428 1.0000 0.8967 0.7972 12
EventID 0.0943 0.2574 1.0000 1.0000 1.0000 0.9135 0.8342 3
EventOrigin 0.9026 0.9343 0.9383 0.3726 1.0000 0.8503 0.8191 6
FirstWithdrawalAmount 0.9837 0.8532 0.9918 0.2446 1.0000 0.8967 0.7973 11
MonthlyCost 0.9653 0.8716 0.9919 0.2500 1.0000 0.8975 0.8022 9
NumberOfTerms 0.9861 0.8508 0.9918 0.2436 1.0000 0.8951 0.7962 14
OfferID 0.9222 0.9147 0.9952 0.3271 1.0000 0.8964 0.8267 4
OfferedAmount 0.9814 0.8555 0.9918 0.2431 1.0000 0.8955 0.7972 13
Selected 0.9967 0.8402 0.9917 0.2344 1.0000 0.8623 0.7857 15
lifecycle:transition 0.9995 0.8374 0.9991 0.1837 1.0000 0.9059 0.7852 17

Table 4.3: Quality score for each event log candidate attribute (Part 1)
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Log file Candidate Col. GR DTAG Fr Pi Sm Gv Quality Score Rank

Sepsis Case ID 0.9313 0.9567 0.9064 0.4008 1.0000 0.9238 0.8375 1
Activity 0.9984 0.9762 N/A N/A N/A N/A 0.0000 31
Complete Timestamp 0.3560 0.3814 N/A N/A N/A N/A 0.0000 31
Age 0.9984 0.9762 0.0000 0.0000 1.0000 0.0000 0.3952 7
CRP 0.9662 0.9916 0.0000 0.0000 1.0000 0.0000 0.3983 3
Diagnose 0.9883 0.9863 0.0000 0.0000 1.0000 0.0000 0.3973 5
DiagnosticArtAstrup 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DiagnosticBlood 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DiagnosticECG 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DiagnosticIC 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DiagnosticLacticAcid 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DiagnosticLiquor 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DiagnosticOther 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DiagnosticSputum 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DiagnosticUrinaryCulture 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DiagnosticUrinarySediment 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DiagnosticXthorax 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
DisfuncOrg 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
Hypotensie 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
Hypoxie 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
InfectionSuspected 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
Infusion 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
LacticAcid 0.9923 0.9823 0.0000 0.0000 1.0000 0.0000 0.3965 6
Leucocytes 0.9659 0.9913 0.0000 0.0000 1.0000 0.0000 0.3983 4
Oligurie 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
SIRSCritHeartRate 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
SIRSCritLeucos 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
SIRSCritTachypnea 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
SIRSCritTemperature 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
SIRSCriteria2OrMore 0.9997 0.9749 0.0000 0.0000 1.0000 0.0000 0.3950 8
lifecycle:transition 0.9999 0.9747 0.0000 0.0000 1.0000 0.0000 0.3949 30
org:group 0.9974 0.9772 0.9806 0.4605 1.0000 0.7337 0.8304 2

Hospital billing Case ID 0.7968 0.8497 0.9544 0.9233 1.0000 0.8196 0.9094 1
Activity 0.9997 0.9473 N/A N/A N/A N/A 0.0000 19
Resource 0.9907 0.9564 0.9942 0.5711 1.0000 0.9082 0.8860 2
Complete Timestamp 0.0093 0.0623 N/A N/A N/A N/A 0.0000 19
actOrange 1.0000 0.9471 0.8370 0.4489 1.0000 0.6616 0.7789 11
actRed 1.0000 0.9471 0.8370 0.4489 1.0000 0.6616 0.7789 11
blocked 1.0000 0.9471 0.9805 0.4262 1.0000 0.6615 0.8031 7
caseType 0.9999 0.9472 0.0000 0.0000 1.0000 0.0000 0.3894 17
closeCode 0.9996 0.9475 0.9362 0.4777 1.0000 0.8035 0.8330 4
diagnosis 0.9879 0.9592 0.0000 0.0000 1.0000 0.0000 0.3918 16
flagA 1.0000 0.9471 0.9805 0.4262 1.0000 0.6615 0.8031 7
flagB 1.0000 0.9471 0.9805 0.4262 1.0000 0.6615 0.8031 7
flagC 1.0000 0.9471 0.8370 0.4489 1.0000 0.6616 0.7789 11
flagD 1.0000 0.9471 0.0000 0.0000 1.0000 0.0000 0.3894 18
isCancelled 1.0000 0.9471 0.9686 0.5058 1.0000 0.6711 0.8185 5
isClosed 1.0000 0.9471 0.9809 0.4396 1.0000 0.7038 0.8143 6
lifecycle:transition 1.0000 0.9471 N/A N/A N/A N/A 0.0000 19
msgCode 0.9999 0.9471 N/A N/A N/A N/A 0.0000 19
msgCount 0.9999 0.9472 0.8371 0.4489 1.0000 0.5749 0.7616 15
msgType 1.0000 0.9471 N/A N/A N/A N/A 0.0000 19
speciality 0.9996 0.9474 0.9805 0.4316 1.0000 0.8185 0.8356 3
state 0.9998 0.9472 0.9812 0.5063 1.0000 0.5779 0.8025 10
version 0.9999 0.9472 0.8370 0.4489 1.0000 0.6065 0.7679 14

Table 4.4: Quality score for each event log candidate attribute (Part 2)
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Log file Candidate Col. GR DTAG Fr Pi Sm Gv Quality Score Rank

Credit requirements Case ID 0.8750 0.7289 0.9916 1.0000 1.0000 0.9718 0.9384 1
Activity 0.9992 0.6047 N/A N/A N/A N/A 0.0000 4
Resource 0.9993 0.6046 0.9442 0.6677 1.0000 0.4905 0.7414 3
Start Timestamp 0.1339 0.5300 N/A N/A N/A N/A 0.0000 4
Complete Timestamp 0.0120 0.4081 0.9983 0.8900 1.0000 0.9821 0.8557 2

Helpdesk anonymized Case ID 0.8167 0.8859 0.9643 0.9729 1.0000 0.9494 0.9545 1
Activity 0.9991 0.9317 N/A N/A N/A N/A 0.0000 14
Resource 0.9978 0.9330 0.9988 0.1464 1.0000 0.7702 0.7697 9
Complete Timestamp 0.1891 0.2583 N/A N/A N/A N/A 0.0000 14
concept:name 0.9991 0.9317 1.0000 0.6680 1.0000 0.4680 0.8136 8
customer 0.9686 0.9622 0.9302 0.5364 1.0000 0.8786 0.8615 2
lifecycle:transition 0.9998 0.9310 0.0000 0.0000 1.0000 0.0000 0.3862 13
org:resource 0.9978 0.9330 0.9988 0.1464 1.0000 0.7702 0.7697 9
product 0.9979 0.9329 0.9401 0.4979 1.0000 0.8761 0.8494 3
responsible section 0.9993 0.9315 0.9439 0.3858 1.0000 0.8335 0.8189 6
seriousness 0.9995 0.9313 0.0000 0.0000 1.0000 0.0000 0.3863 11
service level 0.9995 0.9313 0.0000 0.0000 1.0000 0.0000 0.3863 11
service type 0.9996 0.9312 0.9420 0.4402 1.0000 0.8291 0.8285 4
support section 0.9993 0.9315 0.9436 0.3855 1.0000 0.8335 0.8188 7
workgroup 0.9995 0.9313 0.8955 0.4410 1.0000 0.8353 0.8206 5

Receipt env. Permit Case ID 0.8328 0.9850 0.9843 0.7017 1.0000 0.8838 0.9110 1
Activity 0.9969 0.8209 N/A N/A N/A N/A 0.0000 10
Resource 0.9944 0.8234 1.0000 0.0717 1.0000 0.7770 0.7344 6
Complete Timestamp 0.0000 0.1822 N/A N/A N/A N/A 0.0000 10
(case) channel 0.9994 0.8184 0.0000 0.0000 1.0000 0.0000 0.3637 8
(case) department 0.9997 0.8181 N/A N/A N/A N/A 0.0000 10
(case) group 0.9991 0.8187 0.0000 0.0000 1.0000 0.0000 0.3637 7
(case) responsible 0.9955 0.8223 0.9967 0.2582 1.0000 0.8714 0.7897 2
concept:instance 0.0000 0.1822 1.0000 1.0000 1.0000 0.7638 0.7892 4
concept:name 0.9969 0.8209 0.9999 0.6836 1.0000 0.3957 0.7800 5
lifecycle:transition 0.9999 0.8179 0.0000 0.0000 1.0000 0.0000 0.3636 9
org:group 0.9988 0.8189 0.9795 0.3507 1.0000 0.7992 0.7897 3

Table 4.5: Quality score for each event log candidate attribute (Part 3)

The material used to evaluate the ICI approach is available at the Github Di-
rectory https://github.com/aminobest/ActiveAndDecorativeSensorMerging/tree/master/

ICI%20evaluation.

4.5 Discussion

This section discusses the evaluation results of the event logs shown in Tables 4.3, 4.4, 4.5. Clearly,
the ICI approach demonstrates a high accuracy in inferring the case id in all the event logs con-
sidered for the evaluation. However, it is still important to highlight few cases where the quality
score of other event attributes is very close to the case id attribute score. For instance, in BPI
challenge 2013, the quality scores for Case ID attribute and Resource attribute are 0.8766 and
0.8744 respectively (less than 0.01 difference). To explain this inconsistency in the quality scores,
the process mining tool Disco was used. By inspecting the statistics provided by the tool for the
process model where the case id corresponds the real case id attribute, the number of cases and
resources are 954 and 776 respectively, which can also be noticed from the grouping ratios of Case
ID attribute and Resource attribute that are 0.9438 and 0.9278 respectively. This small difference
in the quality score can be explained with the fact that the initial cut applied to the event log
considers only the top 10,000 events which is not enough to perceive the overall behaviour of the
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model. Alternatively, a cut of 40,000 events is applied to the BPI challenge 2013 event log, the
corresponding quality scores are shown in Table 4.6.

Log file Candidate Col. GR DTAG Fr Pi Sm Gv Quality Score Rank

BPI Chal. 2013 40,000 events Case ID 0.9438 0.9581 0.9641 0.8205 1.0000 0.9480 0.9381 1
Activity 0.9989 0.9030 N/A N/A N/A N/A 0.0000 6
Resource 0.9278 0.9741 0.9001 0.4056 1.0000 0.8938 0.8347 2
Complete Timestamp 0.0181 0.1162 N/A N/A N/A N/A 0.0000 6
concept:name 0.9997 0.9022 0.0000 0.0000 1.0000 0.0000 0.3804 5
impact 0.9997 0.9022 N/A N/A N/A N/A 0.0000 6
lifecycle:transition 0.9989 0.9030 N/A N/A N/A N/A 0.0000 6
org:group 0.9625 0.9394 1.0000 0.2431 1.0000 0.9354 0.8236 4
org:role 0.9978 0.9041 N/A N/A N/A N/A 0.0000 6
organization country 0.9982 0.9037 N/A N/A N/A N/A 0.0000 6
organization involved 0.9977 0.9042 N/A N/A N/A N/A 0.0000 6
product 0.9801 0.9218 0.9996 0.2387 1.0000 0.9709 0.8262 3
resource country 0.9975 0.9118 N/A N/A N/A N/A 0.0000 6

Table 4.6: Quality scores for BPI challenge 2013 with a cut of 40,000 events

As shown in Table 4.6, by increasing the size of the cut from 10,000 events to 40,000 events,
the difference between the quality scores for Case ID attribute and Resource attribute increased
drastically (0.9381, and 0.8347 respectively). In a perfect scenario, one would avoid applying
any cut to the event log to perceive the overall behaviour in the log, However, as explained in
section 4.4.2, memory overhead issues are common especially while dealing with large event logs.
Indeed, just by increasing the cut size to 40,000, the ICI plugin failed to compute the quality score
for some candidate attributes (i.e., impact and organization country).

BPI challenge 2014 represents another example where the difference in quality scores between
Case ID attribute and IncidentActivityNumber attribute is insignificant (0.8068, and 0.7935 re-
spectively). However, the grouping ratio of IncidentActivityNumber attribute is 0; hence, the
attribute contains only unique values. Consequently, the generated model would appear like a
flower model where all the log traces can be replayed, thus, the fitness will certainly equal to 1. [42,
p. 151]. To avoid such cases, the candidate attributes with a grouping ratio equals to 0 could be
filtered out before running the ICI plugin.

In overall, the evaluation results demonstrate that the ICI approach can be potentially accurate
on a wide range of event logs. However, the set of selected event logs is still considerably small,
thus, the accuracy of the ICI approach cannot be generalized. Nevertheless, the results shown in
Section 4.4.4 provide a clear insight into the aspects that should be enhanced. Mainly, the following
two important challenges should be addressed: (a) Avoiding memory overhead by filtering out the
candidate attributes with too low or too high grouping ratios. (b) Defining an optimal cut size
proportional to each event log characteristics (i.e., number of resources).

4.6 Conclusion

To sum up this chapter, the ICI approach aims at proposing a new technique to automatically infer
the case id from an event log by exploring the control-flow discovery quality dimensions capabilities.
Unlike the existing techniques mentioned in Section 4.2, the ICI approach does not require any
domain-specific heuristics. Under the assumption that a case id is implicitly mentioned in the
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event log, the ICI approach allowed to correctly identify the case Id for the Robot Process event
log generated by the BPS.

The approach was tested using several real-world event logs obtained from a public database to
demonstrate its accuracy on a larger scale. The results show a high potential for inferring the
case id despite the drawbacks discussed in Section 4.5. As future work, the drawbacks related to
memory overhead and optimal cut size have the highest priority to ensure a more generic well-
functioning of the ICI approach. Furthermore, several heuristics could be applied to filter out the
candidate event attributes based on their data types (i.e., ignoring timestamps) and based on their
grouping ratios.

Identifying the event log scheme is among the requirements of the data merging approach proposed
in the next chapter. Indeed, by applying the ICI approach on the IS log files generated by the
BPS, it is possible to iterate across all the log files and merge events belonging to the same case.
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Chapter 5

Data Mapping and Merging

This chapter aims at solving the data mapping and merging challenge in order to generate a
comprehensive event log file that includes all the events that occurred in an IoT environment, thus,
enabling process mining capabilities to discover and analyze the overall process model. Section 5.1
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provides an overview on the data data mapping and merging problem. Section 5.2 discusses the
related work. Section 5.3 presents the data mapping and merging approach along with the concepts
used to explain it. Section 5.4 describes the implementation. Section 5.5 evaluates the approach,
and finally Section 5.6 discusses the obtained results.

5.1 Overview

Process mining allows the discovery and the analysis of process models in the presence of an event
log. The availability of event logs depends on the maturity of the management systems used.
Nowadays, the new era of distributed systems enables to design composite systems that operate in
a distributed manner; thus, each system entity is entirely responsible for producing its own time-
stamped documentation recording its execution trace. To explore the process mining capabilities on
a larger scale, it is necessary to be able to reconstruct a comprehensive end-to-end business process
by merging all event logs generated by the different system entities. In an ideal environment, all
the system entities would agree upon a unique case id and provide similar well-structured event
logs that facilitate the merging procedure. Unfortunately, it is not always the case, thus a pre-
processing of the event logs is required to apply the merging successfully. In this context, it is to
necessary to define the granularity level at which the merging should be applied.

Claes and Poels in [15] described the following levels of granularity: raw data level which includes
raw data stored in database tables or files, structured data level which includes event logs produced
by information systems, and model level which includes pre-defined process models. In an IoT
environment where a network of IoT devices is deployed to support the work-flow of information
systems, the sensor data generated by IoT devices are usually stored at the raw data level, whereas,
the case events generated by information systems are typically stored at the structured data level.
Therefore, the required merging technique should perform on both raw data level and structured
data level taking into account the complex relationships between the interacting sub-processes, and
the characteristics of the different sensor types. The sensors classification proposed in Section 2.4
(cf. Chapter 2) provides a good starting point to define a generic approach allowing to map each
sensor type to the corresponding business process appropriately. Ultimately this mapping is only
feasible with the availability of sophisticated merging techniques based on text mining and temporal
relations allowing to maximize the matching between the events recorded across several log files.

The research problem addressed in this chapter is: How to merge raw data log files coming from
sensors with structured data log files produced by information systems? The presented approach
is built upon the event log merging concepts and sensor data to process model mapping techniques
discussed in the literature presented in the next section to design a robust approach that enables
merging log files with different granularity levels in an IoT context.

5.2 Background and Related work

The challenges addressed in this chapter are of great significance for the BPM community. Indeed,
the process mining manifesto [40] accorded great importance to the event logs merging problem
and lists it among the open challenges to be addressed to augment the usability of process mining
techniques in distributed environments. Not surprisingly, the BPM-IoT manifesto [23] (C-13)
published recently also emphasized the need to bridge the gap between sensor data and event logs
to exploit the high volume of information provided by sensors to mine robust process models.
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The literature has tackled the event log merging problem from different perspectives. At the
structural data level, Cales and Poels in [15] proposed a rule-based merging approach that includes
two main steps. The first step consists of defining a set of merging rules specifying the traces
matching criteria. The rules are provided as statements indicating the common proprieties between
traces or events belonging to the same process execution. To match two traces belonging to different
log files, a set of criteria has to be satisfied. These criteria are usually expressed as relations
between attribute values. The approach proposes a descriptive language that can be used to select
attributes, containers (i.e., event, trace, log), and operators (i.e., add/or) to formulate a wide range
of rules. The second step consists of merging the traces conforming the merging rules provided
by the user. By this mean, all the possible traces combinations are evaluated using the Method
Evaluation Model (MEM) proposed by Moody in [32] to find an optimal match. The MEM model
uses an Actual effectiveness function that quantifies the extent to which two merged event logs
respects the specified merging rules. In fact, the function computes the number of insertions and
deletions required on events/traces to obtain a full matching with merging rules. The less are
the operations; the highest is the chance that the two traces/events belong to the same process
execution. The drawback of this approach is that it assumes the presence of similar case ids among
the log files, which contradicts with real-world situations where each distributed system entity
uses its own case id. Furthermore, the rule-based approach requires experts domain knowledge to
formulate consistent merging rules.

Cales and Poels in another work [14] initiated a new approach to cope with the event logs merging
problem by using genetic algorithms. Precisely, the authors suggest to perform merging according
to an Artificial Immune System (AIS) algorithm which is inspired by the vertebrate immune
system. The algorithm implements an affinity function to identify the generation with the highest
matching score. The affinity function aims at maximizing the values of the indicators used to
judge the coherence and the correctness of merged logs. The authors performed a series of tests to
evaluate the AIS approach; however, the results showed that the approach faces some drawbacks,
such as the inability to cope with concurrent traces and the likelihood to converge towards a local
optima. Xu et al. in [51] proposed an enhanced version of the AIS approach by designing a
Hybrid Artificial Immune System which integrates a simulated annealing that ensures a diversity
for the coming generations, thus avoiding the local optima issue. The simulated annealing is the
key feature since not only the solutions with higher affinity are considered for the clonal of next
generations but also other solutions with medium affinity are considered, which allows maintaining
a certain level of diversity in the population. By enhancing the genetic algorithm part, the hybrid
AIS approach demonstrated a higher performance compared to the former AIS approach. Moreover
the hybrid AIS approach optimizes the affinity function by considering Allen’s interval algebra [4]
to use temporal relations between process instances as a coherence indicator for merged logs.
However, the approach assumes a one-to-one mapping between events; thus it does not consider
other complex relations such as one-to-many relation. Furthermore, genetic algorithms are known
to be time consuming [31].

Nooijen et al. in [33] proposed an event log merging technique built upon the data-centric and
artifact-centric approach. The work relates to the data-centric systems use case, where relational
databases are used to keep track of process execution information. In fact, ERP systems such as
SAP Business 1, Microsoft Dynamics AX 2 , or Oracle E-business 3 lacks the notion of case id,
thus, the data need to be pre-processed to obtain standard event logs that can be used for process
mining. As relational databases allow to explore relations between data objects using primary

1See https://www.sap.com/products/business-one.html
2See https://community.dynamics.com/ax
3See http://www.oracle.com/us/products/applications/ebusiness/overview/index.html
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keys and foreign keys, the proposed merging approach aims at discovering the business process
entities, their scheme, and the life-cycle model implied by each process entity. Given a structured
database, the corresponding scheme is extracted, then using a K-means Clustering algorithm, the
artifact scheme can be identified such that all the tables containing similar artifact information
are grouped together. Afterwards, an event log scheme mapping describing the time evolution for
each artifact is generated to build an event log compatible with any process discovery algorithm.
The artifact-centric approach has a potential to be used in the IoT context, especially if the IoT
sensor interactions can be organized in a data-centric structure. However, the presented use case
faces some challenges in term of primary/foreign keys mapping. Namely, the log files generated
by the BPS lacks primary keys, since each log file has its own case ids. Moreover, the notion of
foreign keys does not apply to the BPS log files because no unique shared event attribute allows
gathering all traces belonging to the same process execution.

Raichelson and Soffer in [35] proposed a state-of-art event logs merging technique that overcomes
most of the issues mentioned in the previous works. The approach digs into the text mining field
to perform a merging that abstracts from the four types of relationships (one-to-one, one-to-many,
many-to-one, many-to-many). Moreover, it does not require any experts domain knowledge to
tuneup the mapping. As initial step, the approach considers event logs as plain text files and uses
the Term Frequency-Inverse Document Frequency (TF-IDF) technique to filter out the frequent
words in each trace. The output from this step is a ”bag of words” representing the important
keywords for each trace. Then by using a simple similarity function that counts the common words
between two strings of different plain text files, it is possible to obtain the similarity score for
each combination of two traces. To strengthen the effectiveness of this approach, the authors use
the temporal relations introduced in Allen’s interval algebra to ignore cases that are not matching
temporally. The work presented in this chapter extends this approach by filling several gaps to build
a robust log merging approach. Precisely, the approach presented in this chapter aims at enhancing
the similarity function by trying several techniques. Moreover, the approach is extended to operate
in larger scale by enabling merging event logs with sensor data logs. To do so, the original algorithm
is revised and strengthened. Furthermore, the Log Scheme Identification technique introduced in
Chapter 4 is used to automate the merging process by implicitly inferring the case id for the event
logs participating in the merging process.

As mentioned in Section 2.4 (Cf. Chapter 2), there exists two types of sensors: Active Sensors
and Decorative Sensors. The merging of Active sensor data is built upon Raichelson’s approach as
explained previously since the Active sensor data are considered as atomic events; thus, they can
be directly merged. However, the Decorative sensor data require a different approach since they
are only meant to enrich the events attributes by providing extra information (i.e., temperature
at certain time/location). Senderovich et al. in [6] proposed an interaction mining approach
to map location data with business process instances. In fact, the authors introduced a new
”knowledge layer” between sensor data and event logs. The approach was implemented in a hospital
environment where employees and patients got equipped with 900 real-time location sensors to
track the subjects involved in business processes. Then by using the location data recorded by
the sensors, their timestamps, and the profile of the interacting subject (employees and patients)
the approach allowed to infer the current process activities. The approach is formulated as an
Optimal matching problem where an Integer Linear program (ILP) was deployed to map subjects
interactions to process instances. The evaluation of the approach shows that the accuracy depends
on the amount of process knowledge provided. Indeed it is bounded to domain-specific applications
where a well-documented business process is available apriori; thus the optimal matching problem
task is to find the best alignment between the subjects interactions and the documented process.
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Eck et al. in [19] addressed the challenge of applying process discovery techniques to mine human
behaviours using sensor data. They propose an approach to generate event logs from sensor data.
The key aspect of this work is about segmenting sensor data and mapping each segment to a
corresponding process activity. The segmentation of sensor data problem has been raised by several
authors in the past [7] [16], most of these techniques rely on classifiers used to recognize process
activities. In this context, a considerable amount of data is required to train the classifiers. Eck’s
approach overcomes this requirement by dividing sensor data time series into small windows with
a specific length. By comparing the time windows, it is possible to detect points-of-change where
the observed behaviour changes suddenly. The points-of-change allow identifying the end and start
of process activities. This approach allows to distinguish between the different activities included
in a business process from the observed points-of-change; however, it is still necessary to label the
activities to generate an event log, which apparently requires domain-specific knowledge from the
user. The approach was evaluated in a specific case study where new prototypes of Philips baby
bottles were equipped with sensors to evaluate their ease of usability. The approach allowed to
successfully mine the users’ behaviour and provided great insights into the design of the new smart
device. However, since the approach requires experts knowledge to identify process activities, its
application remains limited to domain-specific areas.

Dimaggio et al. in [17] introduced an approach to mine human habits, using a well-known process
discovery algorithm called Fuzzy Miner [13]. The reason behind this choice is the unstructured
nature of human habits; thus, any other discovery algorithm will result in a ”spaghetti” model [42]
where the high number of connections between activities increases the complexity of the process and
makes it impossible to analyze. Luckily, the fuzzy miner allows to cope with unstructured processes
using the zoom in/out feature inspired from the cartography field. Dealing with unstructured
processes while using sensor data to track user behaviours is a challenge [17]; thus the fuzzy
miner can always be considered as an effective process discovery technique. Nevertheless, the need
to transform sensor data logs to event logs persists. In this context, the authors emphasis on
segmenting different process instances from sensor data logs by trying to find correlations between
sensor events belonging to the same process instance. Since the approach deals with human habits,
each process instance represents the behaviour of one user. It starts when an event is triggered
by that user (i.e., wake up), and ends when another event is triggered by the same user (sleep).
Then, by using the topological information of sensors and by analyzing the users’ movements, it is
possible to distinguish between the different process instances. Once the different process instances
are identified, generating an event log becomes straight-forward since the approach considers only
active sensor data; thus each sensor data entry recorded in the sensor log is regarded as a distinct
atomic event. Dimaggio approach has two main contributions that are: dealing with unstructured
processes, and splitting sensor data into process instances, the approach was tested using real-
world sensor data and demonstrated a good accuracy. However, the assumptions implied by this
approach make its usage limited to only active sensors type.

The decorative sensor mapping approach proposed in this chapter is valid for both types of sensor
data, as well as it does not require any knowledge from domain experts. By this mean, decorative
sensor data are mapped according to a multi-dimensional framework, where each dimension refers
to a field (i.e., time, location) of possible intersections between decorative sensor data and process
events. Concerning active sensor data, as described previously, they are merged with IS events
using text mining techniques and Allen’s interval algebra. More insights about this approach will
be provided in the coming sections.
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5.3 Methodological Approach

The Active and Decorative Sensor Merging (ADSM) approach proposed in this chapter aims at
defining two phases approach that (a) merges active sensor data with IS event log files, (b) and
maps decorative sensor data to merged events. The approach described is structured as follows:
Section 5.3.1 lists the set of assumptions considered by the ADSM approach. Section 5.3.2 presents
a running example that will be referred to in the coming sections to illustrate the techniques used
in the ADSM approach. Section 5.3.3 explains the various concepts and techniques used to design
the active sensor data merging phase. Section 5.3.4 describes the decorative sensor data mapping
phase and the concepts implied to explain it.

5.3.1 General Assumptions

This section presents the assumptions considered while designing the ADSM approach. The fol-
lowing assumptions are made:

• The IoT environment studied is assumed to contain the following data sources: IS data,
active sensor data, and decorative sensor data.

• The devices deployed in the IoT environment all have synchronized clocks.

• A main event log file generated by an information system is assumed to be available and
known.

• Event logs use different case identifiers.

• No common event attribute can be used as a foreign key to map traces across different logs.

• The time granularity of events is available in a fine-grained order.

• Each event is handled by only one resource.

• Sensors are assumed to report data instantly with no delay.

5.3.2 Running Example

To illustrate the various steps and techniques used to enable data mapping and merging, this
running example is provided. As mentioned in Section 5.3.1, three data sources will be considered
in this running example (IS data, active sensor data, decorative sensor data). Using the BPS (Cf.
Chapter 3), and the use case scenario described in Section 1.4 (Cf. Chapter 1), small data sets
representing each data source type are generated.

To illustrate the event logs merging techniques, the Clerk Process Log (Table 5.1) and the Robot
Process Log (Table 5.2) are used. Both logs are assumed to be generated by information systems;
thus, they respect the standard event log structure presented in Definition 2.2.5 (Cf. Chapter 2).
Besides, as mentioned in the general assumptions in Section 5.3.1, the two event logs have different
case ids. However, to have a ground truth on which it is possible to check the accuracy of the
merging approaches, the case id values are composed of an integer and a suffix. The integer part
allows identifying traces belonging to the same process execution across the two event logs. For
example, in the Clerk Process Log (Table 5.1) the events identified with the event ids 001, 002,
003, and 004 belong to the case identified with case id 0CP. Meanwhile, in the Robot Process Log
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(Table 5.2) events 010, 011, 012, 013 belong to the case 0RP. Hence, one can intuitively infer
that case 0CP in the Clerk Process Log, and case 0RP in the Robot Process Log belongs to the
same process execution. To avoid any bias especially with the similarity score function, the case
id attributes are not considered in calculating the similarity score.

Case Id Event Id Start Time. End Time. Event Name Event type Subject Group Subject Id Object Group Object Id

0CP 001 2017-11-05 08:00:00 2017-11-05 08:05:00 Request product process activity clerk 1c product 0p
0CP 002 2017-11-05 08:10:15 2017-11-05 08:10:40 Assign robot process activity robot 1r shelf 7s
0CP 003 2017-11-05 08:25:00 2017-11-05 08:30:00 Check if the product was checked process activity clerk 1c product 0p
0CP 004 2017-11-05 08:32:00 2017-11-05 08:32:15 Product Delivered process activity clerk 1c product 0p
1CP 005 2017-11-05 08:02:00 2017-11-05 08:04:30 Request product process activity clerk 1c product 1p
1CP 006 2017-11-05 08:11:15 2017-11-05 08:12:20 Assign robot process activity robot 2r shelf 32s
1CP 007 2017-11-05 08:44:00 2017-11-05 08:50:00 Check if the product was checked process activity clerk 1c product 1p
1CP 008 2017-11-05 08:55:00 2017-11-05 08:59:15 Product Delivered process activity clerk 1c product 1p
2CP 035 2017-11-05 08:51:00 2017-11-05 08:53:00 Request product process activity clerk 1c product 2p
2CP 036 2017-11-05 08:54:00 2017-11-05 08:55:00 Assign robot process activity robot 3r shelf 61s
2CP 037 2017-11-05 09:40:00 2017-11-05 09:50:00 Check if the product was checked process activity clerk 1c product 2p
2CP 038 2017-11-05 09:53:00 2017-11-05 09:57:00 Product Delivered process activity clerk 1c product 2p

Table 5.1: Clerk Process Log example used for the running example

Case Id Event Id Start Time. End Time. Event Name Event type Subject Group Subject Id Object Group Object Id

0RP 010 2017-11-05 08:11:00 2017-11-05 08:13:00 Putdown current shelf process activity robot 1r shelf 5s
0RP 011 2017-11-05 08:14:00 2017-11-05 08:17:23 Go to appropriate shelf process activity robot 1r shelf 7s
0RP 012 2017-11-05 08:18:00 2017-11-05 08:23:00 Move shelf to dock process activity robot 1r shelf 7s
0RP 013 2017-11-05 08:37:31 2017-11-05 08:42:00 Move shelf from dock process activity robot 1r shelf 7s
1RP 018 2017-11-05 08:12:00 2017-11-05 08:13:11 Putdown current shelf process activity robot 2r shelf 24s
1RP 019 2017-11-05 08:14:15 2017-11-05 08:22:10 Go to appropriate shelf process activity robot 2r shelf 32s
1RP 020 2017-11-05 08:23:00 2017-11-05 08:35:00 Move shelf to dock process activity robot 2r shelf 32s
1RP 021 2017-11-05 08:25:00 2017-11-05 08:25:05 Reduce Speed process activity robot 2r shelf 32s
1RP 022 2017-11-05 08:43:31 2017-11-05 08:48:00 Move shelf from dock process activity robot 2r shelf 32s
2RP 210 2017-11-05 08:56:00 2017-11-05 08:57:00 Putdown current shelf process activity robot 3r shelf 75s
2RP 211 2017-11-05 09:00:00 2017-11-05 09:10:00 Go to appropriate shelf process activity robot 3r shelf 61s
2RP 212 2017-11-05 09:11:00 2017-11-05 09:25:00 Move shelf to dock process activity robot 3r shelf 61s
2RP 213 2017-11-05 09:30:31 2017-11-05 09:35:00 Move shelf from dock process activity robot 3r shelf 61s

Table 5.2: Robot Process Log example used for the running example

In order to illustrate the merging of active sensor data with IS events, the Clerk RFID Sensor Log
file (Table 5.3) is considered. This file represents the active sensor data source, it contains several
entries where each entry is identified with an Entry Id representing the entry unique identifier, a
Chip Name referring to which sensor is used, a Timestamp recording the moment in time where
the sensor is triggered, and an Item Id representing the value captured by the sensor. The ground
truth for the Clerk RFID Sensor Log can be inferred from an extra attribute named Ground Truth
Case Id used specifically for this purpose. This attribute value is not considered by any of the
approaches described in this chapter, the only reason for using it is to have a ground truth to check
the accuracy of the merging approaches. For example, the entries 041 and 042 have Ground Truth
Case Id value 0 which means that they belong the same process execution containing the cases
0CP and 0RP from Clerk Process Log and Robot Process Log respectively.
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Entry Id Chip Name Timestamp Item Id Ground Truth Case Id

041 collector 2017-11-05 08:24:45 0p 0
042 packageDone 2017-11-05 08:31:45 0p 0
055 collector 2017-11-05 08:43:30 1p 1
056 packageDone 2017-11-05 08:54:01 1p 1
057 collector 2017-11-05 09:39:35 2p 2
058 packageDone 2017-11-05 09:52:25 2p 2

Table 5.3: Clerk RFID Sensor Log example used for the running example

Lastly, to illustrate decorative sensor data source, the Accelerometer Sensor Data Log (Table 5.4)
is used. The two important inputs provided by each data entry are the Shelf Id that is the identifier
of the shelf being shacked, and the Timestamp that represents the moment in time the shake was
recorded. As mentioned in Section 3.4, the accelerometer coordinates’ values are abstracted, and
only the timestamps when shelves are shaken are recorded. Similarly to the active sensor data log,
the ground truth is obtained from an extra attribute named Ground Truth Case Id used specifically
for this purpose.

EntryId Shelf Id Timestamp Ground Truth Case Id

456 24s 2017-11-05 08:19:10 5
457 32s 2017-11-05 08:24:59 1
458 11s 2017-11-05 09:14:42 6
460 7s 2017-11-05 09:10:12 7

Table 5.4: Accelerometer Sensor Data Log example used for the running example

5.3.3 Active Sensor Data Merging

The merging of active sensor data is performed according to a set of generic techniques allowing
to correlate several events stored in different log files. In this context, a main event log file is
required; indeed, it is considered as the skeleton of the new merged event log. As stated in the
general assumptions Section 5.3.1, the main event log is obtained from the primary information
system supporting the IoT environment. Given a main event log and a set of log files (sensor
logs and event logs), Allen’s interval algebra [4] is used to select the candidate traces matching
temporally with the main trace, then by using text mining approaches it is possible to correlate
events belonging to the same process execution. Before presenting the full merging approach, it
is necessary to explain each component independently. Section 5.3.3.1 describes Allen’s temporal
rules, Section 5.3.3.2 highlights several similarity scoring functions to be used in order to ensure
a high matching accuracy, Section 5.3.3.3 recapitulates the scheme identification approach in the
context of event log merging, and Section 5.3.3.4 presents the hierarchical merging approach.

5.3.3.1 Temporal Relations Rules

Allen in [4] introduced a temporal representation that includes 13 temporal relations to cope
with temporal intervals in a hierarchical manner based on constraints propagation techniques. In
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the events merging context, the temporal relations are used to decide whether two traces match
temporally under the following assumptions: (a) each trace represents the execution flow of a
distinct process, (b) a trace either belongs to the main process X or belongs to the sub-process
Y , (c) the sub-process Y is triggered by the main process X. Table 5.5 depicts the 13 temporal
relations, and point out the cases where a match is positive. Note that according to the general
assumption defined in Section 5.3.1, the time granularity of events is assumed to be available in a
fine-grained order; otherwise relations 9, 10, 13 might not hold.

Id Case Relation Illustration Match Comment

1 Main process overlaps with
sub-process with

X o Y
X

Y
True Match found

2 Sub-process starts and
ends during main process

Y d X
Y

X
True Match found

3 Sub-pr. starts during main
pr., finishes with main pr.

Y f X
Y

X
True Match found

4 Main process ends before
sub-process process starts

X < Y
X

Y
False Y cannot provide feedback

to X

5 Sub-process ends before
main process starts

Y > X
Y

X
False X starts after Y, no trig-

gering

6 Main process meets sub-
process

X m Y
X

Y
False Y cannot provide feedback

to X

7 Sub-process meets main
process

Y m X
Y

X
False X starts after Y, no trig-

gering

8 sub-process overlaps with
main process

Y o X
Y

X
False Y starts before X, no trig-

gering

9 Main process starts simul-
taneously with sub-process

X s Y
X

Y
False Both processes started at

same time, no triggering

10 Sub-process starts simulta-
neously with main process

Y s X
Y

X
False Both processes started at

same time, no triggering

11 Main process starts and
ends during sub-process

X d Y
X

Y
False Y starts before X, no trig-

gering

12 Main pr. starts during
sub-pr., finishes with sub-
pr.

X f Y
X

Y
False Y starts before X, no trig-

gering

13 Main process equal sub-
process

X = Y
X

Y
False X and Y start and end at

the same time, no trigger-
ing

Table 5.5: Allen’s Temporal Relations

In the process of merging IS event logs, the ADSM approach iterates over the traces of each event
log in order to temporally match traces belonging to different event logs. Given a main event
log Lm = (S(Em), Tm), where S(Em) is an event log scheme, and Tm is a set of traces, and a
sub event log Ls = (S(Es), Ts), where S(Es) is an event log scheme, and Ts is a set of traces (cf.
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Definition 2.2.2, Chapter 2). For each trace tm ∈ Tm, and for each trace ts ∈ Ts, tm and ts
are checked against the 13 temporal relations. In case a positive match is found, ts is seen as a
candidate matching trace with tm.

The process of merging active sensor data with IS event logs is different from the previous one. Since
the active sensor data cannot be grouped into traces, traces from the main event log are checked
against single sensor data entries from the sensor log. Given a main event log Lm = (S(Em), Tm),
where (S(Em) is an event log scheme , and Tm is a set of traces (cf. Definition 2.2.2, Chapter 2),
and a sensor log Os. For each trace tm ∈ Tm, and for each sensor data entry os ∈ Os (cf.
Definition 2.2.6, Chapter 2), if os starts within the time interval of trace tm, then os is seen as a
candidate matching event with tm

The running example introduced in Section 5.3.2 is used to the illustrate the temporal relations.
In this context, the Clerk Process Log (Table 5.1) is set as main log, and the aim is to find the
corresponding temporally matching traces in Robot Process Log (Table 5.2) , and Clerk RFID
Sensor Log (Table 5.3). Since both Clerk Process Log, and Robot Process Log are event logs,
the matching will be done according to Allen’s relations. Consequently, only the cases respecting
relations 1, 2, or 3 on Table 5.5 are selected. Table 5.6 shows the start-time and end-time of each
trace, note that each trace corresponds to one case (cf. Definition 2.2.3, Chapter 2). Table 5.7
illustrates the selection process.

Case Id Start-time End-time

0CP 2017-11-05 08:00:00 2017-11-05 08:32:15
1CP 2017-11-05 08:02:00 2017-11-05 08:59:15
2CP 2017-11-05 08:51:00 2017-11-05 09:57:00
0RP 2017-11-05 08:11:00 2017-11-05 08:42:00
1RP 2017-11-05 08:12:00 2017-11-05 08:48:00
2RP 2017-11-05 08:56:00 2017-11-05 09:35:00

Table 5.6: Time Intervals for traces in Clerk Process Log (Table 5.1) and Robot Process Log
(Table 5.2)
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Main L. trace Sub L. trace Allen’s Rule Illustration Selected

0CP 0RP 1- X o Y
0CP (08:00:00 - 08:32:15)

0RP (08:11:00 - 08:42:00)
True

0CP 1RP 1- X o Y
0CP (08:00:00 - 08:32:15)

1RP (08:12:00 - 08:48:00)
True

0CP 2RP 4- X < Y
0CP (08:00:00 - 08:32:15)

2RP (08:56:00 - 09:35:00)
False

1CP 0RP 2- Y d X
0RP (08:11:00 - 08:42:00)

1CP (08:02:00 - 08:59:15)
True

1CP 1RP 2- Y d X
1RP (08:12:00 - 08:48:00)

1CP (08:02:00 - 08:59:15)
True

1CP 2RP 1- X o Y
1CP (08:02:00 - 08:59:15)

2RP (08:56:00 - 09:35:00)
True

2CP 0RP 5- Y > X
0RP (08:11:00 - 08:42:00)

2CP (08:51:00 - 09:57:00)
False

2CP 1RP 5- Y > X
1RP (08:12:00 - 08:48:00)

2CP (08:51:00 - 09:57:00)
False

2CP 2RP 2- Y d X
2RP (08:56:00 - 09:35:00)

2CP (08:51:00 - 09:57:00)
True

Table 5.7: Selection process according to Allen’s temporal relations

According to Table 5.7 the candidate traces for 0CP are: 0RP, 1RP, the candidate traces for 1CP
are 0RP, 1RP, 2RP, and the only candidate trace for 2CP is 2RP.

To match sensor data entries from the Clerk RFID Sensor Log with traces from Clerk Process Log,
for each trace in Clerk Process Log, all the active sensor data entries starting within the trace time
interval are selected as candidate matching events. The selection results are shown in Table 5.8.

Main log Case Id Start-time End-time Sensor Log Matching Data Entries Id

0CP 2017-11-05 08:00:00 2017-11-05 08:32:15 041, 042
1CP 2017-11-05 08:02:00 2017-11-05 08:59:15 041, 042, 055, 056
2CP 2017-11-05 08:51:00 2017-11-05 09:57:00 056, 057, 058

Table 5.8: Time interval selection results between main event log Clerk Process Log (Table 5.1)
and sensor log Clerk RFID Sensor Log (Table 5.3)

According to Table 5.8 the candidate data entry ids for 0CP are: 041, 042, the candidate data
entry ids for 1CP are: 041, 042, 055, 056 and data entry ids for 2CP are: 056, 057, 058. The next
step is to use text mining techniques to find the optimal matching.

5.3.3.2 Text Mining and Similarity Scoring

After knowing the potentially matching traces/data-entries with the main event log, text mining
can be used to define a similarity scoring function to quantify the similarity between the matching
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traces/data-entries. In this context, Term frequency–inverse document frequency (TF-IDF) is used.

TF-IDF is a numerical statistical approach that allows evaluating the importance of words in
documents [29, p. 8]. The primary usage of this techniques comes out to solve the document
categorization problem where several documents are required to be classified based on their subjects
of interest. TF-IDF approach proposes to assign a weight to each word based on its occurrence
in the document, which allows identifying keywords with highest weights, which are used to infer
documents’ subjects. In contrast to Raichelson approach where TF-IDF is used to filter out
irrelevant words in the event log, the ADSM approach uses TF-IDF as a weighting factor in the
similarity scoring function. In other words, each candidate trace/data-entry is transformed to
plain text, then each word in the plaintext is assigned a weight representing its importance in the
corresponding log, which is considered by the similarity function.

The similarity function using TF-IDF is defined as follows: Let pei and pej be two plain text strings
resulting from converting two candidate traces/data-entries to plain-text, and logi, logj be the
documents containing pei and pej respectively. The similarity function simTF (pei, pej , logi, logj)
is sum of the weights of the common words in pei and pej . Algorithm 2 allows to compute
simTF (pei, pej), using the function getWeights(word, log) that takes as input a word, and a log
and provides as output a weight value that represents the word importance in the log.

Algorithm 2: Smilarity function using TF-IDF

1 Function simTF(pei, pej , logi, logj)
Input : pei, and pej are two plain text events, and logi, and logj are the documents containing

pei and pej respectively
Output: score Similarity score using TF-IDF weights

2 begin
3 C ← ∅ // Set of common words between pei and pej
4 score ← 0 // initialize the score

5 /* Iterate over the words in pei */

6 foreach wi ∈ pei do
7 /* Iterate over the words in pej */

8 foreach wj ∈ pej do
9 if wi = wj and wi /∈ C then

10 score ← score +
getWeights(wi,logi)+getWeights(wj ,logj)

2 // update score

11 C ← C ∪ wi // add wi to the set of common words C

12 return score

Another approach to quantify similarity is the Jaccard index [29, p. 94], which measures the
similarity between two finite sets. Let A and B be two finite sets, the Jaccard index is the size
of the intersection of the two sets, divided by the union of the two sets. Let A and B be two

finite sets, the Jaccard index is defined as follows: J(A,B) = |A∩B|
|A∪B| = |A∩B|

|A|+|B|−|A∩B| , such that

0 ≤ J(A,B) ≤ 1, and if A ← ∅ and B ← ∅ then J(A,B) = 1. The Jaccard index is used
by the ADSM approach as follows: Let pei and pej be two plain text strings resulting from
converting two candidate traces/data-entries to plain-text, the similarity function using Jaccard
index is J(pei, pej).

Once the similarity scores are computed using simTF (pei, pej , logi, logj) or J(pei, pej), it is crucial
to set a selection ratio to define which traces/data-entries represents a good match. To do so,
the only the top n% traces/data-entries with high similarity scores are selected. In the running
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example, the selection ratio is set to 0.2; thus, only the top 20% traces/data-entries with high
similarity scores are selected.

In order to illustrate the two similarity functions simTF (pei, pej , logi, logj), and J(pei, pej), the
candidate traces/data-entries selected from the example of the previous section (Tables 5.7, and 5.8
) are used. Table 5.7 shows the candidate traces for merging Clerk Process Log (Table 5.1) with
Robot Process Log (Table 5.2). After converting each trace in Clerk Process Log and Robot Process
Log to plain text, the similarity scores are calculated as reported in Table 5.9.

Main log Case Id Sub log Candidate Case Id simTF (pei, pej , logi, logj) J(pei, pej)

0CP 0RP 1.7931 0.1625
0CP 1RP 1.5151 0.0278
1CP 0RP 1.6129 0.0278
1CP 1RP 1.6774 0.0295
1CP 2RP 1.6129 0.0278
2CP 2RP 1.7931 0.0295

Table 5.9: Similarity scores for the candidate traces matching temporally between Clerk Process
Log (Table 5.1) and Robot Process Log (Table 5.2)

According to the results shown in Table 5.9, the similarity scores using simTF (pei, pej , logi, logj)
for 1CP-0RP, 1CP-1RP, and 1CP-2RP are 1.6129, 1.6774, and 1.6129 respectively. By setting the
selection ratio to 0.2, only 1CP-1RP is selected. Similarly for 0CP-0RP, and 2CP-2RP using both
similarity functions. Hence the results align with the ground truth provided in the Section 5.3.2.
Table 5.10 shows the event log obtained by merging Clerk Process Log (Table 5.1) and Robot
Process Log (Table 5.2) using the Jaccard similarity function J().

New C.Id Case Id Event Id Start Time. End Time. Event Name Event type Subject Group Subject Id Object Group Object Id

26109 1CP 5 2017-11-05 08:02:00 2017-11-05 08:04:30 Request product clerk 1c product 1p process activity
26109 1CP 6 2017-11-05 08:11:15 2017-11-05 08:12:20 Assign robot robot 2r shelf 32s process activity
26109 1RP 18 2017-11-05 08:12:00 2017-11-05 08:13:11 Putdown current shelf robot 2r shelf 24s process activity
26109 1RP 19 2017-11-05 08:14:15 2017-11-05 08:22:10 Go to appropriate shelf robot 2r shelf 32s process activity
26109 1RP 20 2017-11-05 08:23:00 2017-11-05 08:35:00 Move shelf to dock robot 2r shelf 32s process activity
26109 1RP 20 2017-11-05 08:25:00 2017-11-05 08:25:05 Reduce Speed robot 2r shelf 32s process activity
26109 1RP 21 2017-11-05 08:43:31 2017-11-05 08:48:00 Move shelf from dock robot 2r shelf 32s process activity
26109 1CP 7 2017-11-05 08:44:00 2017-11-05 08:50:00 Check if the product was checked clerk 1c product 1p process activity
26109 1CP 8 2017-11-05 08:55:00 2017-11-05 08:59:15 Product Delivered clerk 1c product 1p process activity
8864 0CP 1 2017-11-05 08:00:00 2017-11-05 08:05:00 Request product clerk 1c product 0p process activity
8864 0CP 2 2017-11-05 08:10:15 2017-11-05 08:10:40 Assign robot robot 1r shelf 7s process activity
8864 0RP 10 2017-11-05 08:11:00 2017-11-05 08:13:00 Putdown current shelf robot 1r shelf 5s process activity
8864 0RP 11 2017-11-05 08:14:00 2017-11-05 08:17:23 Go to appropriate shelf robot 1r shelf 7s process activity
8864 0RP 12 2017-11-05 08:18:00 2017-11-05 08:23:00 Move shelf to dock robot 1r shelf 7s process activity
8864 0CP 3 2017-11-05 08:25:00 2017-11-05 08:30:00 Check if the product was checked clerk 1c product 0p process activity
8864 0CP 4 2017-11-05 08:32:00 2017-11-05 08:32:15 Product Delivered clerk 1c product 0p process activity
8864 0RP 13 2017-11-05 08:37:31 2017-11-05 08:42:00 Move shelf from dock robot 1r shelf 7s process activity
73408 2CP 35 2017-11-05 08:51:00 2017-11-05 08:53:00 Request product clerk 1c product 2p process activity
73408 2CP 36 2017-11-05 08:54:00 2017-11-05 08:55:00 Assign robot robot 3r shelf 61s process activity
73408 2RP 210 2017-11-05 08:56:00 2017-11-05 08:57:00 Putdown current shelf robot 3r shelf 75s process activity
73408 2RP 211 2017-11-05 09:00:00 2017-11-05 09:10:00 Go to appropriate shelf robot 3r shelf 61s process activity
73408 2RP 212 2017-11-05 09:11:00 2017-11-05 09:25:00 Move shelf to dock robot 3r shelf 61s process activity
73408 2RP 213 2017-11-05 09:30:31 2017-11-05 09:35:00 Move shelf from dock robot 3r shelf 61s process activity
73408 2CP 37 2017-11-05 09:40:00 2017-11-05 09:50:00 Check if the product was checked clerk 1c product 2p process activity
73408 2CP 38 2017-11-05 09:53:00 2017-11-05 09:57:00 Product Delivered clerk 1c product 2p process activity

Table 5.10: Event log obtained by merging Clerk Process Log and Robot Process Log using the
Jaccard similarity function J()

The same approach can be applied to compute the similarity scores between the traces from Clerk
Process Log, and the candidate sensor data entries from Clerk RFID Sensor Log (Table 5.8). After
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converting the traces/data-entries to plain text, the similarity scores are calculated as reported in
Table 5.11.

Main log Case Id Sub log Candidate Entry id simTF (pei, pej , logi, logj) J(pei, pej)

0CP 041 2.0000 0.0025
0CP 042 2.0000 0.0025
1CP 041 1.7727 0.0
1CP 042 1.7727 0.0
1CP 055 2.0000 0.0025
1CP 056 2.0000 0.0025
2CP 056 1.6363 0.0
2CP 057 1.8571 0.0025
2CP 058 1.8571 0.0025

Table 5.11: Similarity scores between the traces from Clerk Process Log (Table 5.1), and the
candidate sensor data entries from Clerk RFID Sensor Log (Table 5.3)

According to the results shown in Table 5.11, the similarity scores using simTF (pei, pej , logi, logj)
for 1CP-041, 1CP-042, 1CP-055 and 1CP-056 are 1.7727, 1.7727, 2, and 2 respectively. By
setting the selection ratio to 0.2, only 1CP-055, and 1CP-056 are selected. Similarly for the others
using both similarity functions. Hence the results align with the ground truth provided in the
Section 5.3.2. Table 5.12 shows the event log obtained by merging Clerk Process Log (Table 5.1)
and Clerk RFID Sensor Log (Table 5.3) using Jaccard similarity function.

New C.Id Case Id Event Id Start Time. End Time. Event Name Event type Subject Group Subject Id Object Group Object Id

87562 0CP 1 2017-11-05 08:00:00 2017-11-05 08:05:00 Request product clerk 1c product 0p process activity
87562 0CP 2 2017-11-05 08:10:15 2017-11-05 08:10:40 Assign robot robot 1r shelf 7s process activity
87562 41 41 2017-11-05 08:24:45 2017-11-05 08:24:45 collector 0p
87562 0CP 3 2017-11-05 08:25:00 2017-11-05 08:30:00 Check if the product was checked clerk 1c product 0p process activity
87562 42 42 2017-11-05 08:31:45 2017-11-05 08:31:45 packageDone 0p
87562 0CP 4 2017-11-05 08:32:00 2017-11-05 08:32:15 Product Delivered clerk 1c product 0p process activity
62996 1CP 5 2017-11-05 08:02:00 2017-11-05 08:04:30 Request product clerk 1c product 1p process activity
62996 1CP 6 2017-11-05 08:11:15 2017-11-05 08:12:20 Assign robot robot 2r shelf 32s process activity
62996 55 55 2017-11-05 08:43:30 2017-11-05 08:43:30 collector 1p
62996 1CP 7 2017-11-05 08:44:00 2017-11-05 08:50:00 Check if the product was checked clerk 1c product 1p process activity
62996 56 56 2017-11-05 08:54:01 2017-11-05 08:54:01 packageDone 1p
62996 1CP 8 2017-11-05 08:55:00 2017-11-05 08:59:15 Product Delivered clerk 1c product 1p process activity
86355 2CP 35 2017-11-05 08:51:00 2017-11-05 08:53:00 Request product clerk 1c product 2p process activity
86355 2CP 36 2017-11-05 08:54:00 2017-11-05 08:55:00 Assign robot robot 3r shelf 61s process activity
86355 57 57 2017-11-05 09:39:35 2017-11-05 09:39:35 collector 2p
86355 2CP 37 2017-11-05 09:40:00 2017-11-05 09:50:00 Check if the product was checked clerk 1c product 2p process activity
86355 58 58 2017-11-05 09:52:25 2017-11-05 09:52:25 packageDone 2p
86355 2CP 38 2017-11-05 09:53:00 2017-11-05 09:57:00 Product Delivered clerk 1c product 2p process activity

Table 5.12: Event log obtained by merging Clerk Process Log andClerk RFID Sensor Log using
Jaccard similarity function.

5.3.3.3 Event Log Scheme Identification

The application of the ADSM approach requires knowledge about some attributes shared among all
the log files, namely, the timestamp, and the case id. The timestamp (i.e., start/end time) is crucial
to apply Allen’s temporal relations to check whether two traces match temporally. Therefore, this
attribute is mandatory to have in any log file (i.e., event log, sensor log).

The other important attribute is the case id because it allows to group events belonging to the
same process execution in each event log, for the purpose to identify the traces to be processed by
both Allen’s temporal relations and the similarity scoring function. In this context, case ids can
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be inferred from event logs using the ICI approach introduced in Chapter 4, whereas concerning
sensor log files no case id attribute is required.

Another optional attribute is the event identifier which allows distinguishing between events. How-
ever, since this attribute is not always present in log files, the ADSM implementation can generate
internal event ids.

5.3.3.4 Hierarchical Merging

The ADSM approach allows for a hierarchical merging of log files, by this means it aims at finding
the best merging order to merge several log files. The hierarchical merging is built upon the
scores computed using the similarity functions introduced in Section 5.3.3.2, such that among all
the possible merging combinations the combination with the highest average similarity score is
considered.

Precisely, let Ls be the set of log files, and ls(i) = Lsi , ∀ 1 ≤ i ≤ |Ls| be a selection operator
on Ls, p = (m, s, a, score) be a merging tuple where m ∈ Ls represents the main log, s ∈ Ls
represents the sub log with s 6= m , a represents the log file generated by merging m with s,
and score ∈ R represents the average similarity score of a that is the sum of the similarity scores
obtained by merging m with s using the Jaccard Similarity function or the TF-IDF similarity
function (Section 5.3.3.2) divided by the number of candidate traces/log-entries selected by Allen’s
temporal rules. In a merging tuple p, the following projection functions are defined: πm(p) = m,
πs(p) = s, πa(p) = a, and πscore(p) = score. Also Let P be a set of merging tuples p, max(P ) be
the tuple with the highest similarity score πscore(p) , mergeF iles(m, s) be a merging function that
takes as input a main log file m ∈ Ls and a sub log file s ∈ Ls and returns a tuple p.

Given j the index of the main log file in Ls, then m = ls(j) correspond to the main log file in Ls.
(1) For each log file s ∈ Ls, if s 6= m then a merging tuple p = mergeF iles(m, s) is generated,
and appended to the set of merging tuples P . Once (1) is completed, the merging tuple with the
highest score ph = max(P ) is obtained. Afterwards, the logs πm(ph), πs(ph) contributing in the
merging process are subtracted from the log set Ls, and πa(ph) the new generated log is appended
to Ls and set as main event log. The same approach is done iteratively until the size of Ls is equal
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to 1. Algorithm 3 implements the hierarchical merging approach.

Algorithm 3: Hierarchical Merging Algorithm

1 Function Hmerger(mainlogIndex, Ls)
Input : mainlogIndex the index of the initial main log file in Ls , and Ls the set of log files
Output: log Merged log file

2 begin
3 m← ls(mainlogIndex) // get the main log using the selection operator ls(i)

4 /* Iterate until the size of Ls is equals to 1 */

5 while |Ls| 6= 1 do
6 P ← ∅ // initialize set of merging tuples

7 /* Iterate over Ls the set of logs */

8 foreach s ∈ Ls do
9 if s 6= m then

10 p← mergeFiles(m,s) // merge logs m, and s
11 P ← P ∪ p // append p to the set of merging tuples P

12 ph ← max(P ) // get the merging tuple with the highest merging score

13 Ls ← Ls \ πm(ph) // remove main log πm(ph) from Ls
14 Ls ← Ls \ πs(ph) // remove sub log πs(ph) from Ls
15 Ls ← Ls ∪ πa(ph) // append merged log πa(ph) to Ls
16 m← πa(ph) // set the merged log as main log

17 return m

To illustrate the hierarchical merging approach, the logs files presented in the running example
Section 5.3.2 are used. Given CP the Clerk Process Log (Table 5.1), RP the Robot Process Log
(Table 5.2), and CR the Clerk RFID Sensor Log (Table 5.3), then the logs set Ls = {CP,RP,CR}.

Suppose that CP is the main log file, in the first while loop iteration (Lines 5 - 16), the first
foreach iteration (Line 8 - Line 11) CP cannot be merged with itself (Line 9). The second iteration
CP is merged with RP , the resulting merging tuple is p0 = (CP,RP,CP -RP, 1.6502) where
πscore(p0) = 1.6502 is obtained using the similarity function J() (Line 10). The third iteration
CP is merged with CR, the resulting merging tuple is p1 = (CP,CR,CP -CR, 1.8773) where
πscore(p1) = 1.8773 is obtained using the similarity function J() (Line 10).

Clearly πscore(p1) > πscore(p0), which means that the average score from merging CP and CR is
the highest, thus, ph = p1 (Line 12). Afterwards, πm(ph) = CP , and πs(ph) = CR are removed
from Ls (Lines 13 - 14), and the new merged log πa(ph) = CP -CR is appended to Ls, also πa(ph)
is set as main log for the next iteration (Line 16). At this stage the logs set Ls = {RP,CP -CR}.

In the next while loop iteration CP -CR and RP are merged, and the generated merging tuple is
p0 = (CP -CR,RP,CP -CR-RP, 1.7941) where πscore(p0) = 1.7941 is obtained using the similarity
function J(). in this case there exists only one merging tuple, thus ph = p0. Afterwards, both
CP -CR and RP are removed from Ls and the new merged log CP -CR-RP is appended to Ls,
also CP -CR-RP is set as main log for the next iteration. However, this time the size of Ls is
1 (Ls = {CP -CR-RP}). therefore no more while loop iterations are possible. Finally the log
CP -CR-RP is returned (Line 17). Table 5.14 shows the final log CP -CR-RP .
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New C.Id Case Id Event Id Start Time. End Time. Event Name Event type Subject Group Subject Id Object Group Object Id

53269 0CP 1 2017-11-05 08:00:00 2017-11-05 08:05:00 Request product clerk 1c product 0p process activity
53269 0CP 2 2017-11-05 08:10:15 2017-11-05 08:10:40 Assign robot robot 1r shelf 7s process activity
53269 0RP 10 2017-11-05 08:11:00 2017-11-05 08:13:00 Putdown current shelf robot 1r shelf 5s process activity
53269 0RP 11 2017-11-05 08:14:00 2017-11-05 08:17:23 Go to appropriate shelf robot 1r shelf 7s process activity
53269 0RP 12 2017-11-05 08:18:00 2017-11-05 08:23:00 Move shelf to dock robot 1r shelf 7s process activity
53269 41 41 2017-11-05 08:24:45 2017-11-05 08:24:45 collector 0p
53269 0CP 3 2017-11-05 08:25:00 2017-11-05 08:30:00 Check if the product was checked clerk 1c product 0p process activity
53269 42 42 2017-11-05 08:31:45 2017-11-05 08:31:45 packageDone 0p
53269 0CP 4 2017-11-05 08:32:00 2017-11-05 08:32:15 Product Delivered clerk 1c product 0p process activity
53269 0RP 13 2017-11-05 08:37:31 2017-11-05 08:42:00 Move shelf from dock robot 1r shelf 7s process activity
70923 2CP 35 2017-11-05 08:51:00 2017-11-05 08:53:00 Request product clerk 1c product 2p process activity
70923 2CP 36 2017-11-05 08:54:00 2017-11-05 08:55:00 Assign robot robot 3r shelf 61s process activity
70923 2RP 210 2017-11-05 08:56:00 2017-11-05 08:57:00 Putdown current shelf robot 3r shelf 75s process activity
70923 2RP 211 2017-11-05 09:00:00 2017-11-05 09:10:00 Go to appropriate shelf robot 3r shelf 61s process activity
70923 2RP 212 2017-11-05 09:11:00 2017-11-05 09:25:00 Move shelf to dock robot 3r shelf 61s process activity
70923 2RP 213 2017-11-05 09:30:31 2017-11-05 09:35:00 Move shelf from dock robot 3r shelf 61s process activity
70923 57 57 2017-11-05 09:39:35 2017-11-05 09:39:35 collector 2p
70923 2CP 37 2017-11-05 09:40:00 2017-11-05 09:50:00 Check if the product was checked clerk 1c product 2p process activity
70923 58 58 2017-11-05 09:52:25 2017-11-05 09:52:25 packageDone 2p
70923 2CP 38 2017-11-05 09:53:00 2017-11-05 09:57:00 Product Delivered clerk 1c product 2p process activity
92494 1CP 5 2017-11-05 08:02:00 2017-11-05 08:04:30 Request product clerk 1c product 1p process activity
92494 1CP 6 2017-11-05 08:11:15 2017-11-05 08:12:20 Assign robot robot 2r shelf 32s process activity
92494 1RP 18 2017-11-05 08:12:00 2017-11-05 08:13:11 Putdown current shelf robot 2r shelf 24s process activity
92494 1RP 19 2017-11-05 08:14:15 2017-11-05 08:22:10 Go to appropriate shelf robot 2r shelf 32s process activity
92494 1RP 20 2017-11-05 08:23:00 2017-11-05 08:35:00 Move shelf to dock robot 2r shelf 32s process activity
92494 1RP 21 2017-11-05 08:25:00 2017-11-05 08:25:05 Reduce Speed robot 2r shelf 32s process activity
92494 55 55 2017-11-05 08:43:30 2017-11-05 08:43:30 collector 1p
92494 1RP 22 2017-11-05 08:43:31 2017-11-05 08:48:00 Move shelf from dock robot 2r shelf 32s process activity
92494 1CP 7 2017-11-05 08:44:00 2017-11-05 08:50:00 Check if the product was checked clerk 1c product 1p process activity
92494 56 56 2017-11-05 08:54:01 2017-11-05 08:54:01 packageDone 1p
92494 1CP 8 2017-11-05 08:55:00 2017-11-05 08:59:15 Product Delivered clerk 1c product 1p process activity

Table 5.13: Log CP -CR-RP obtained using the hierarchical merging algorithm

5.3.4 Decorative Sensor Data Mapping

The mapping of decorative sensor data is performed according to an n-dimensional framework,
where each dimension represents a field of intersection between decorative sensor data log and
event log. Generally, the dimensions can be obtained from the attributes of the decorative sensor
log file. For instance, the Accelorometer Sensor Data log shown in Table 5.4 has 2 attributes (Shelf
Id and Timestamp) that can be represented in the framework. Thus, the framework will have two
dimensions that are Shelf Id and Timestamp

The Decorative Sensor Data Mapping (DSDM) approach aims at finding the intersection between
the decorative sensor data, and the log events according to the dimensions inferred from the
decorative sensor data log attributes. To do so, both decorative sensor data and log events are
projected on the n-dimensional framework. Every time a decorative data entry intersects with
an event, the event is decorated with an extra attribute to emphasize on the intersection. The
intersection dimensions are categorized into the following two types: (a) discrete dimensions (i.e.,
Shelf Id attribute in Accelorometer Sensor Data Log), (b) continuous dimensions (i.e., Timestamp
attribute in Accelorometer Sensor Data Log).

Given the set of decorative sensor log attributes corresponding to the framework dimensions, the
first step is to find all log events that can be represented in the framework, knowing that an
event can only be represented in the framework, if it contains common attributes with the deco-
rative sensor data log. In this context, it is important to distinguish between discrete attributes
(corresponding to discrete dimension), and continuous attributes (corresponding to continuous di-
mension). For discrete attributes, the matching events in the event log need to share the same
attribute values as the ones in the decorative sensor data log. While, for continuous attributes,
the events from the event log and the data entries from the decorative sensor log need to intersect
within the common attribute domain. For instance, Shelf Id attribute in the Accelorometer Sensor
Data Log is a discrete attribute corresponding to a discrete dimension. Therefore, to find events
from the CP -CR-RP Log (Table 5.14) that can be represented on the Shelf Id dimension, it is
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mandatory to look for those that have the same shelf Ids as the sensor data entries in the Ac-
celorometer Sensor Data Log. Another example is the Timestamp attribute in the Accelorometer
Sensor Data Log that is a continuous attribute corresponding to a continuous dimension. There-
fore, to find events from the CP -CR-RP Log that can be represented in the Timestamp dimension,
it is mandatory to look for those that meet in time with the sensor log data entries. For the sake
of simplicity, only time is considered as a continuous attribute, however, the same approach can
be applied to other continuous data types.

Precisely, Let LD be a set representing a decorative sensor log, D ∈ LD be a set represent-
ing a decorative data entry, and d ∈ D be a decorative attribute tuple such that d = (v, t)
where t ∈ {”discrete”, ”continuous”} represents the decorative attribute types set, and v ∈ V
represents the decorative attribute value in the values universe V. In a decorative attribute
tuple d, the following projection functions are defined: πv(d) = v, πt(d) = t. Also let findE-
ventsWithKeyWord(eventlog,keyword) be a function that given an event log eventlog and a key-
word keyword, it returns all events in eventlog that contains keyword, and findEventsInTimeInter-
val(eventlog,timestamp) be a function that given an event log eventlog and a time value timestamp,
it returns all events in eventlog that were running at timestamp.

Given a decorative sensor log LD and an event log L (cf. Definition 2.2.5, Chapter 2), let ed
be a set containing the events in L matching with the discrete attributes values of LD, and
ec be a set containing events in L matching with the continuous attributes values in LD. For
each data entry D in LD, and for each attribute tuple d in D, if πt(d) = ”discrete” then
findEventsWithKeyWord(L,πv(d)) returns all events in L (which can be obtained by iterating
over all cases in L) that contain the keyword πv(d), which are appended to the set ed. Otherwise if
πt(d) = ”continuous”, then findEventsInTimeInterval(L, πv(d)) returns all events in L that were
running at πv(d), which are appended to the set ec.

Let ei = ed ∩ ec be a set containing the shared events between ed and ec. The set ei contains the
candidate events for intersection with data entries in LD. Algorithm 4 summarizes the procedure
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to obtain ei.

Algorithm 4: Finding events compatible with the n-dimensional framework

1 Function DecorativeMapping(LD,L)
Input : LD decorative sensor log, L event log
Output: ei The set of events that can be projected into the n-dim framework

2 begin
3 ed← ∅ // events in L matching with discrete attributes in LD
4 ec← ∅ // events in L matching with continuous attributes in LD
5 /* Iterate over all data entries in LD */

6 foreach D ∈ LD do
7 /* Iterate over all attribute tuples in D */

8 foreach d ∈ D do
9 if πt(d) = ”discrete” then

10 /* append the events containing the value πt(d) to ed */

11 ed← ed ∪ findEventsWithKeyWord(L,πv(d))

12 else if πt(d) = ”continuous” then
13 /* append the events containing the value πt(d) to ec */

14 ec← ec ∪ findEventsInTimeInterval(L, πv(d))

15 /* ei is the intersection of the sets ed and ec */

16 ei← ed ∩ ec
17 return ei

Once ei is generated using Algorithm 4, it becomes possible to map the decorative data entries to
the log events. Let isKeyWordInEvent(event,keyword) be a function that given an event event, and
a keyword keyword, it returns True if event contains keyword, or False otherwise, and isEven-
tRunning(event,timestamp) be a function that given an event event and a time value timestamp,
it returns True if event was running during timestamp, or False otherwise. Also Let addAtr-
ribute(event, marking) be a function that given an event event and a string value marking, it ap-
pends a new attribute to event containing the value marking, and returns event, and replace(Log,
eOld , eNew) be a function that given an event log Log, an event eOld, and an event eNew,
it replaces eOld with eNew in Log, and returns Log. Then, for each decorative data entry
D ∈ LD, and for each event e ∈ ei, a flag (Boolean variable) eventIntersecting = True is ini-
tialized to know if e is intersecting with all attributes in D, then for each attribute tuple d ∈ D,
if (πt(d) = ”discrete” AND isKeyWordInEvent(e, πv(d))) OR (πt(d) = ”continuous” AND
isEventRunningAtT ime(e, πv(d))) then event e is intersecting with attribute d, thus eventIn-
tersecting = eventIntersecting AND True, otherwise eventIntersecting = eventIntersecting AND
False. Since all the data entry attributes have to intersect with the event attributes the AND
logical operator is used in the flag eventIntersecting such that once it get False, it remains False
forever.

Finally, if eventIntersecting = True, e is saved in temporary variable eOld, and eNew = addAtrribute(e,
marking) is used to mark the event e, finally replace(Log, eOld , eNew) is used to replace eOld
with eNew in the event log. Algorithm summarizes the decorative mapping approach given LD
a decorative sensor log, L an event log, ei a set of events that can be projected into the n-dim
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framework, and marking a value to mark events in ei in case they match with data entries in LD.

Algorithm 5: Decorative Sensor Data Mapping

1 Function DecorativeMapping(LD,L, ei,marking)
Input : LD decorative sensor log, L event log, ei set of events that can be projected into the

n-dim framework, marking value to mark events in ei in case they match with data
entries in LD

Output: L decorated event log
2 begin
3 /* Iterate over all data entries in LD */

4 foreach D ∈ LD do
5 /* Iterate over all events in ei */

6 foreach e ∈ ei do
7 /* Initialize a Boolean variable to know if e is intersecting with all

attributes D */

8 eventIntersecting← True
9 /* Iterate over all attributes in D */

10 foreach d ∈ D do
11 if (πt(d) = ”discrete” ∧ isKeyWordInEvent(e,πv(d))) ∨ (πt(d) = ”continuous” ∧

isEventRunningAtTime(e,πv(d)) ) then
12 /* Event e is intersecting with attribute d */

13 eventIntersecting ← (eventIntersecting ∧ True)

14 else
15 eventIntersecting ← ( eventIntersecting ∧ False)

16 /* check if e is intersecting with all attributes of data entry D */

17 if eventIntersecting then
18 eOld ← e // save e temporary

19 /* add extra attribute to e with value marking */

20 eNew ← addAtrribute(e,marking)
21 /* Replace Event eOld with Event eNew in Log L */

22 L← replace(L,eOld,eNew)

23 return L

To illustrate this approach, the decorative log Accelerometer Sensor Data (Table 5.4), and the event
log CP -CR-RP (Table 5.14) are used. The first step is generate the sets ed and ec containing the
events in CP -CR-RP matching with the discrete, and continuous attributes values in Accelerometer
Sensor Data respectively. using Algorithm 4, the set ed is expected to have events containing one
of the following shelf ids: 24s, 32s, 11s, 7s (Table 5.4), as result ed contains the following events:
18, 6, 19, 20, 21, 22, 2, 11, 12, 13 (Table 5.14), and the set is ec is expected to have events that
were running one of the following timestamps: 2017-11-05 08:19:10, 2017-11-05 08:24:59, 2017-11-
05 09:14:42, 2017-11-05 09:10:12 (Table 5.4), as result ec contains the following events: 12, 19, 20,
212 (Table 5.14).

Figure 5.1 depicts a 2-dimensional framework showing intersections between Accelerometer Sensor
Data (Table 5.4) and CP -CR-RP (Table 5.14). The Y axis represents the shelfs of the set ed,
and X axis represents timestamps projected into a continuous time interval. The Blue, Red, Green
lines refers to events in set ed, events in set ec, and data entries in set LD. A log event and a sensor
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data entry intersect in the framework if and only if the log event belongs to the set ei = ed ∩ ec,
and intersects in all dimensions with the sensor data entry attributes.

In this example, the events in sets ed and ec can be projects into the 2-dimensional framework as
depicted in Figure 5.1 (Blue lines and Red lines respectively). The set ei = ed ∩ ec represents the
candidate events for intersection with data entries in the Accelerometer Sensor Data (Table 5.4)
that are 19, 20, and 12.

Figure 5.1: 2-dimensional framework showing the intersections between Accelerometer Sensor Data
(Table 5.4) and CP -CR-RP (Table 5.14). The number next to each colored line refers to the event
id/data entry id in the parent log file.

As shown in Figure 5.1, there exists only one intersection (Green line) where event 20 from
CP -CR-RP , and event 457 from Accelerometer Sensor Data intersect on both Timestamp, and
Shelf Id dimensions. As result event 20 will be decorated with a marking value. In this example,
the marking value chosen is ”shacked”. The final event log generated by the ADSM approach
(using the running example Section 5.3.2) is shown in Table 5.14. Note that event 20, is now
decorated with value ”shacked”, which means that the shelf was shaken while it was moving to the
dock.
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New C.Id Case Id Event Id Start Time. End Time. Event Name Event type Subject Group Subject Id Object Group Object Id Shacked

53269 0CP 1 2017-11-05 08:00:00 2017-11-05 08:05:00 Request product clerk 1c product 0p process activity
53269 0CP 2 2017-11-05 08:10:15 2017-11-05 08:10:40 Assign robot robot 1r shelf 7s process activity
53269 0RP 10 2017-11-05 08:11:00 2017-11-05 08:13:00 Putdown current shelf robot 1r shelf 5s process activity
53269 0RP 11 2017-11-05 08:14:00 2017-11-05 08:17:23 Go to appropriate shelf robot 1r shelf 7s process activity
53269 0RP 12 2017-11-05 08:18:00 2017-11-05 08:23:00 Move shelf to dock robot 1r shelf 7s process activity
53269 41 41 2017-11-05 08:24:45 2017-11-05 08:24:45 collector 0p
53269 0CP 3 2017-11-05 08:25:00 2017-11-05 08:30:00 Check if the product was checked clerk 1c product 0p process activity
53269 42 42 2017-11-05 08:31:45 2017-11-05 08:31:45 packageDone 0p
53269 0CP 4 2017-11-05 08:32:00 2017-11-05 08:32:15 Product Delivered clerk 1c product 0p process activity
53269 0RP 13 2017-11-05 08:37:31 2017-11-05 08:42:00 Move shelf from dock robot 1r shelf 7s process activity
70923 2CP 35 2017-11-05 08:51:00 2017-11-05 08:53:00 Request product clerk 1c product 2p process activity
70923 2CP 36 2017-11-05 08:54:00 2017-11-05 08:55:00 Assign robot robot 3r shelf 61s process activity
70923 2RP 210 2017-11-05 08:56:00 2017-11-05 08:57:00 Putdown current shelf robot 3r shelf 75s process activity
70923 2RP 211 2017-11-05 09:00:00 2017-11-05 09:10:00 Go to appropriate shelf robot 3r shelf 61s process activity
70923 2RP 212 2017-11-05 09:11:00 2017-11-05 09:25:00 Move shelf to dock robot 3r shelf 61s process activity
70923 2RP 213 2017-11-05 09:30:31 2017-11-05 09:35:00 Move shelf from dock robot 3r shelf 61s process activity
70923 57 57 2017-11-05 09:39:35 2017-11-05 09:39:35 collector 2p
70923 2CP 37 2017-11-05 09:40:00 2017-11-05 09:50:00 Check if the product was checked clerk 1c product 2p process activity
70923 58 58 2017-11-05 09:52:25 2017-11-05 09:52:25 packageDone 2p
70923 2CP 38 2017-11-05 09:53:00 2017-11-05 09:57:00 Product Delivered clerk 1c product 2p process activity
92494 1CP 5 2017-11-05 08:02:00 2017-11-05 08:04:30 Request product clerk 1c product 1p process activity
92494 1CP 6 2017-11-05 08:11:15 2017-11-05 08:12:20 Assign robot robot 2r shelf 32s process activity
92494 1RP 18 2017-11-05 08:12:00 2017-11-05 08:13:11 Putdown current shelf robot 2r shelf 24s process activity
92494 1RP 19 2017-11-05 08:14:15 2017-11-05 08:22:10 Go to appropriate shelf robot 2r shelf 32s process activity
92494 1RP 20 2017-11-05 08:23:00 2017-11-05 08:35:00 Move shelf to dock robot 2r shelf 32s process activity Shacked
92494 1RP 21 2017-11-05 08:25:00 2017-11-05 08:25:05 Reduce Speed robot 2r shelf 32s process activity
92494 55 55 2017-11-05 08:43:30 2017-11-05 08:43:30 collector 1p
92494 1RP 22 2017-11-05 08:43:31 2017-11-05 08:48:00 Move shelf from dock robot 2r shelf 32s process activity
92494 1CP 7 2017-11-05 08:44:00 2017-11-05 08:50:00 Check if the product was checked clerk 1c product 1p process activity
92494 56 56 2017-11-05 08:54:01 2017-11-05 08:54:01 packageDone 1p
92494 1CP 8 2017-11-05 08:55:00 2017-11-05 08:59:15 Product Delivered clerk 1c product 1p process activity

Table 5.14: Final event log generated by the ADSM approach (using the running example Sec-
tion 5.3.2)

5.4 Implementation

The ADSM approach is implemented as a ProM 6 plugin. ProM offers a Process Mining open-
source framework allowing to implement new algorithms as plugins that can be quickly loaded
to the ProM work-space. The framework provides a tools kit to explore several process mining
features in an easy-to-use graphical user interface [41]. Furthermore, ProM plugins can be used
in chain such that the output provided by one plugin is reused as input for another plugin.

The event log obtained from the ADSM approach is converted to XES format and visualized by
the XES plugin (Available in ProM 6) which provides a compact dashboard allowing to inspect log
cases at the individual level and at the trace variants level. Moreover, the XES file can be used
by a wide range of process discovery plugins enabling to generate the corresponding process model
using different discovery algorithms (i,e Inductive miner [27], Genetic miner [45], Heuristic miner
[49], Alpha Algorithm [3], Fuzzy miner [2], ILP-based miner [45]).

Figure 5.2 depicts the ADSM plugin architecture. The plugin uses the CSV Importer compo-
nent to import Comma-Separated-Files (CSV) into ProM work-space. Using the plugin graphical
interface UI component, the user is prompt to choose the log type corresponding to each CSV
file (i.e., event log, active sensor data log, decorative sensor data log), and the merging parame-
ters. The UI component interacts with the ICI plugin introduced in Chapter 4 to automatically
infer case ids from event logs. Afterwards, the Logs Processor component process the log files
based on their type and populate a Data Model to generate the data objects to be used by the
Merger & Mapper component. The techniques described in Section 5.3 namely Temporal Relations
Rules (Section 5.3.3.1), Text Mining and Similarity Scoring (Section 5.3.3.2), Hierarchical Merging
(Section 5.3.3.4) , Decorative Sensor Data Mapping (Section 5.3.4) are implemented as Temporal
Relations Checker, Text Miner, Hierarchical Merger, and Intersections Mapper in the Merger &
Mapper component respectively. The output is then processed by the Log Generator component
responsible for generating an XES log file compatible with a variety of process discovery plugins.
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Figure 5.2: Overview on ADSM plugin Architecture

Figures 5.3, 5.4, 5.5 depicts screen-shots of the Active and Decorative Sensor Mapping Plugin
developed as part of this thesis project. The plugin allows for an infinite number of logs file. The
Merging and Mapping Parameters Panel (Figure 5.4) prompt the user to choose the similarity
function to be used and the main log file. Moreover, for each log file, the plugin prompts the user
to specify its type, then based on the type, extra parameters (i.e., timestamp, and case id) are
required. To ensure a high accuracy of the ADSM approach, inferring case id is made optional
to the user. In other words, the user can either input the case id index manually or infer it
automatically by calling the ICI plugin (Chapter 4). In case the user chooses to infer the case id
automatically, he/she has to input the event name index of the corresponding log file.

The implementation of the ADSM plugin, and an executable version of ProM with
ADSM plugin are available at the Github Repository https://github.com/aminobest/

ActiveAndDecorativeSensorMerging/.
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Figure 5.3: Entry point of the ADSM plugin

Figure 5.4: Merging and Mapping Parameters Panel of the ADSM plugin
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Figure 5.5: Output of the ADSM plugin

5.5 Evaluation

The evaluation of the ADSM approach is performed according to a ground-truth file generated by
the BPS. The ground truth file gathers the events and data entries belonging to the same process
execution together regardless of their parent log files.

The ADSM approach was tested on several data sets generated by the BPS. Each dataset contains
log files similar to those depicted in Figures 3.3, and 3.4 (cf. Chapter 3). To evaluate the accuracy
of the ADSM approach on different scales, the BPS generated ten random datasets simulating
the work-flow of 20 cases, ten random datasets simulating the work-flow of 100 cases, and ten
random datasets simulating the work-flow of 1000 cases. The reason for choosing multiple random
data sets for each log size is to obtain an average accuracy. Since each data set has its own
random characteristics, the merging and mapping algorithms are expected to face different merging
scenarios.

The tests were executed in batch, the BPS, the ADSM plugin, and an Accuracy Checker were
exported as Runnable JAR files, then run from a Shell Script file. The simulator generates a
random data set, then the ADSM plugin applies the merging and mapping approach, and finally,
the Accuracy Checker compares the ADSM output to the ground truth file generated by the BPS.
The selection ratio used is 0.2, and the system configuration is 12GB of RAM, 1 processor with 4
cores.

The Runnable Jar files, the generated data sets, and ground truth files are available at
the Github Directory https://github.com/aminobest/ActiveAndDecorativeSensorMerging/

tree/master/ADSM%20evaluation .
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Cases Correctly Merged Cases Wrongly Merged Accuracy

Run 1 Jaccard 15 5 0.750
TF-IDF 16 4 0.800

Run 2 Jaccard 14 6 0.700
TF-IDF 16 4 0.800

Run 3 Jaccard 20 0 1.000
TF-IDF 20 0 1.000

Run 4 Jaccard 12 8 0.600
TF-IDF 14 6 0.700

Run 5 Jaccard 13 7 0.650
TF-IDF 13 7 0.650

Run 6 Jaccard 14 6 0.700
TF-IDF 15 5 0.750

Run 7 Jaccard 15 5 0.750
TF-IDF 16 4 0.800

Run 8 Jaccard 18 2 0.900
TF-IDF 18 2 0.900

Run 9 Jaccard 9 11 0.450
TF-IDF 14 6 0.700

Run 10 Jaccard 11 9 0.550
TF-IDF 18 2 0.900

Table 5.15: Merging accuracy of data sets containing 20 cases each using the ADSM approach.
Average accuracy using Jaccard similarity function is 0.705, and average accuracy using TF-IDF
similarity function is 0.800

Cases Correctly Merged Cases Wrongly Merged Accuracy

Run 1 Jaccard 97 3 0.970
TF-IDF 97 3 0.970

Run 2 Jaccard 73 27 0.730
TF-IDF 99 1 0.990

Run 3 Jaccard 94 6 0.940
TF-IDF 94 6 0.940

Run 4 Jaccard 90 10 0.900
TF-IDF 100 0 1.000

Run 5 Jaccard 99 1 0.990
TF-IDF 99 1 0.990

Run 6 Jaccard 98 2 0.980
TF-IDF 98 2 0.980

Run 7 Jaccard 95 5 0.950
TF-IDF 96 4 0.960

Run 8 Jaccard 77 23 0.770
TF-IDF 95 5 0.950

Run 9 Jaccard 84 16 0.840
TF-IDF 100 0 1.000

Run 10 Jaccard 81 19 0.810
TF-IDF 99 1 0.990

Table 5.16: Merging accuracy of data sets containing 100 cases each using the ADSM approach.
Average accuracy using Jaccard similarity function is 0.888, and average accuracy using TF-IDF
similarity function is 0.977
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Cases Correctly Merged Cases Wrongly Merged Accuracy

Run 1 Jaccard 880 120 0.880
TF-IDF 1000 0 1.000

Run 2 Jaccard 996 4 0.996
TF-IDF 998 2 0.998

Run 3 Jaccard 989 11 0.989
TF-IDF 995 5 0.995

Run 4 Jaccard 887 113 0.887
TF-IDF 997 3 0.997

Run 5 Jaccard 713 287 0.713
TF-IDF 998 2 0.998

Run 6 Jaccard 782 218 0.782
TF-IDF 999 1 0.999

Run 7 Jaccard 999 1 0.999
TF-IDF 1000 0 1.000

Run 8 Jaccard 783 217 0.783
TF-IDF 1000 0 1.000

Run 9 Jaccard 888 112 0.888
TF-IDF 1000 0 1.000

Run 10 Jaccard 916 84 0.916
TF-IDF 1000 0 1.000

Table 5.17: Merging accuracy of data sets containing 1000 cases each using the ADSM approach.
Average accuracy using Jaccard similarity function is 0.883, and average accuracy using TF-IDF
similarity function is 0.999

Tables 5.15, 5.16, 5.17 show the merging accuracy of data sets containing 20, 100, and 1000 cases
respectively. The results demonstrate a high accuracy of the ADSM approach using both Jaccard
similarity and TF-IDF similarity functions. The results also show that the accuracy is higher with
larger log sizes, which can be interpreted by the fact that the text mining approaches described in
Section 5.3.3.2 provide better accuracy with the availability of more data. By considering different
data sets with different log sizes the average accuracy using Jaccard similarity function and the
average accuracy using TF-IDF similarity function as shown in Table 5.18 are is 0.825 and 0.925
respectively.

20 Cases 100 Cases 1000 Cases Average Accuracy

Jaccard 0.705 0.888 0.883 0.825
TF-IDF 0.800 0.977 0.999 0.925

Table 5.18: Average ADSM approach accuracy obtained from the results reported in Ta-
bles 5.15, 5.16, 5.17

5.6 Discussion

The results reported in Section 5.5 demonstrate a high accuracy in merging event logs with sensor
data. Both Jaccard similarity function and TF-IDF Similarity function provide reliable accuracy
in the merging and mapping process. As shown in table 5.18, the TF-IDF function outperforms
the Jaccard similarity function in accuracy by an average of 10%.

By integrating the ADSM approach in ProM framework, it becomes easier to discover the process
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model corresponding to the event log generated by the approach. In this context, the event log
generated from Run 4 using TF-IDF similarity function4 (cf. Table 5.16) was provided as input to
the Mine for a Fuzzy Model Plugin5, the resulting process model is depicted in Figure 5.6.

By comparing the original use case scenario model depicted in Figure 1.2 (cf. Chapter 1) with
the Fuzzy Miner model depicted in Figure 5.6, one would notice a similar control-flow. Note
that the activity Record shake for affected products from the original use case scenario model was
not recorded by the BPS for sake of simplicity. Furthermore, some events are recorded in different
orders by the BPS. This design decision was made explicit for the purpose of simulating distributed
systems where not all events are synchronized. For instance, the activities Check if the product
was shacked in the Clerk Process, and Move shelf from clerk dock in Robot Process (cf. Figure 1.2,
Chapter 1) do not necessarily have to synchronize. In other words, Move shelf from clerk dock can
happen either before or after Check if the product was shacked as long as the product is collected.
Furthermore, since sensors are assumed to respond instantly, some sensor data entries and log
events are expected to have similar timestamps. For instance, the sensor data entry Dispose Shelf
(cf. Table 3.4 Chapter 3), and the event Move shelf from clerk dock (cf. Figure 1.2, Chapter 1)
usually have the same timestamp.

To emphasis on such cases the Inductive Visual Miner Plugin6 was used to mine the process model
corresponding to the same event log. Unlike the Fuzzy Miner the Inductive Visual Miner is aware
of concurrency, the resulting process model is depicted in Figure 5.77. From the process model,
it is clear that the events with the same timestamp such as shelfmoved and move shelf to dock
appear as concurrent events. Also the events Collector and move shelf from dock, and disposeShelf
appear as concurrent events which solves the lack of synchronization issue discussed previously.

4Available Online as XES file at https://github.com/aminobest/ActiveAndDecorativeSensorMerging/tree/

master/ADSM%20evaluation/run4_100cases_TFIDF_mergedlog.
5See http://www.processmining.org/online/fuzzyminer. Available in ProM 6
6Available as part of the XES plugin in ProM 6
7The Figure is a Vector Image File, that can be zoomed-in on the electronic version of this document for better

readability
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Figure 5.6: Fuzzy Miner model obtained from the event log generated from Run 4 using TF-IDF
similarity function (cf. Table 5.16).
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Figure 5.7: Inductive Visual Miner Process model obtained from the event log generated from
Run 4 using TF-IDF similarity function (cf. Table 5.16) (zoom-in on the electronic version of this
document for better readability).
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5.7 Conclusion

The ADSM approach demonstrates high accuracy in solving the data mapping and merging chal-
lenge in IoT environments. The approach extends existing works related to event log merging,
and sensor data mapping present in the literature. It proposes different similarity functions and
provides a comprehensive approach allowing for the hierarchical merging of multiple event logs.
The event log scheme identification approach presented in Chapter 4 is deployed in the context of
this chapter to automate the case id identification from event logs. Furthermore, The ADSM ap-
proach allowed to map decorative sensor data to log events successfully using the multi-dimensional
framework introduced in Section 5.3.4 to locate the intersections between decorative data entries
and events according to pre-defined dimensions.

This chapter answers to the primary research problem presented in Chapter 1, the solution is
developed as a ProM plugin. By implementing the ADSM approach in the ProM framework, it
becomes possible to use the generated XES file as input for a variety of ProM plugins, thus exploring
a wide range of process mining capabilities such as control-flow discovery and conformance checking.
The ADSM plugin will be available soon in the ProM package manager after being tested to ensure
its robustness.

The process models depicted in the Evaluation Section 5.5 show similar control-flow to the original
use case model depicted in Figure 1.2 (cf. Chapter 1). However, it is necessary to note that
the ADSM approach was tested only on synthetic log files generated by the BPS; thus, it is still
necessary to try-out the approach on real-world log files, which is kept for future work.
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Figure 6.1: Detailed scope of this thesis project. The green triangle refers to the starting point of
the chart, and the red circles show the chapter numbers discussing the corresponding topics.

The bottom-up approach described in Chapter 1 relies on process mining capabilities to bridge
the gap between the IoT world and the BPM world. Figure 6.1 depicts a comprehensive scope
including all the concepts and techniques discussed in this report. It starts from an IoT environment
comprising IoT devices and information system interacting together in a distributed environment.
The huge amount of data recorded by IoT sensors, and the general business process control-flow
recorded by information systems supporting the IoT environment opens-up new challenges and
opportunities for exploring process mining in a different setting.

As mentioned in Chapter 1 obtaining real-world logs files illustrating the interactions between IoT
devices and information systems in an IoT environment is still a challenging task. Therefore, it was
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mandatory to develop a use case scenario to illustrate the work-flow within an IoT environment.
As source of inspiration the Kiva Robots deployed in Amazon warehouses were considered.

Exploring process Mining in IoT environments requires an advanced knowledge about process
mining. To bring process mining to the IoT context, a new process mining scope was presented in
Chapter 2. In this scope business processes are supported by both information systems and IoT
devices allowing for a better and efficient business process management. In this new context, the
challenge of merging sensor data with event logs raised.

As described in Chapter 2 IoT sensors have different characteristics. Therefore, by identifying
these characteristics and categorizing sensor data accordingly, it becomes possible to treat them
independently to design a robust approach allowing to map and merge sensor data with event logs.

The use case scenario introduced in Chapter 1 was simulated using the BPS proposed in Chapter 3.
Despite the availability of business process simulators in the literature, it was necessary to develop
a new business process simulator, because none of the existing simulators allows to mimic the
interactions between sensors and process instances in a BPM context. As result, a new dynamic,
stochastic, and continuous simulation model was designed and implemented in Java. Although its
usage is limited to the use case scenario, it offers a variety of simulation characteristics such as
queuing and randomness.

The log files generated by the simulator are used to evaluate the ADSM approach presented in
Chapter 5. The aim of this approach is to build a robust algorithm allowing to merge event logs
with active sensor data and to map decorative sensor data to event logs. Merging events logs
with active sensor data is performed according to a set of temporal relations rules allowing to
infer events and data entries happening within the same time interval efficiently, and text mining
approaches presented in the context of similarity functions allowing to measure the extends two
which events have similar attributes. The ADSM approach allows for an efficient hierarchical
merging by automatically finding the optimal merging hierarchy that maximizes the similarity
score between sensor data entries and log events. The approach was implemented as a ProM
plugin and tested on several synthetic data sets generated by the BPS. Finally, an event log
obtained from the ADSM plugin was used by two control-flow discovery plugins to discover and
analyze the corresponding process model.

As complement to the ADSM approach, this work investigates a common challenge in the process
mining community that is to identify event log schemes. Chapter 4 proposes a new technique
to automatically infer case ids form event logs by exploring the control-flow discovery quality
dimensions described in Chapter 2. The suggested approach was successful in demonstrating a
high accuracy in inferring case ids from several real-world event logs.

Future work is planned on the following three main areas: Business process simulation, event log
scheme identification, and sensor data mapping and merging. For the business process simulation
area, the BPS provides an initial platform by developing a simulation model allowing to imitate
the interactions between sensors and process instances. As next step the simulation model should
be extended to cope with any business process, such that the user can draw or import her/his
process model (i.e., as BPMN model) within the BPS framework in run-time. Concerning the
event log scheme identification area, the ICI approach should be extended to allow inferring other
event attributes such as the event name, and implement other heuristics to avoid overhead memory
problems for the purpose to ensure a generic well-functioning of the approach. Finally, in the sensor
data mapping and merging area, the ADSM approach has to be tried-out on real-world logs to
evaluate its efficiency on a larger scale.
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