
M.Sc. Thesis
Master of Science in Engineering

Group Project Exam Timetabling
at Roskilde University

Rasmus Ørnstrup Mikkelsen (s123915)
Kongens Lyngby 2018



DTU Management Engineering
Department of Management Engineering
Technical University of Denmark

Produktionstorvet Building 424
2800 Kongens Lyngby, Denmark
Phone +45 4525 4800
www.man.dtu.dk

Supervisor
Thomas Jacob Riis Stidsen



Summary
In this thesis, the Group Project Exam Timetabling problem at Roskilde University is
introduced. The problem is very specific to Roskilde University and requires a lot of
manual planning and resources every academic semester. The problem is previously
unvisited and is therefore explained in depth. A Mixed Integer Programming (MIP)
model is defined for the problem in two steps. First a model assuming all exams
require the same amount of time is defined. Then the model is extended to allow
for exams to have different time requirements. Additionally, multiple extensions are
introduced to increase the model realism and to reduce complexity. However the
model still proves too difficult to solve directly using standard solvers and instead the
metaheuristic Adaptive Large Neighborhood Search (ALNS) is implemented to solve
the problem.

A few extensions and adaptations compared to the original ALNS are implemented
and tested on the problem. The implementation produces good results on the few
available datasets. However, a problem with the acceptance criteria used in the
heuristic is identified. Fixing this problem will allow for less “wasted” iterations
and potentially lead to better performance. The best solutions identified using the
metaheuristic are evaluated using a MIP defined to only look at single days, leading
to slight improvements for two out of the five available datasets.

Finally some points of potential improvements are identified for both the defined
model as well as the implemented solution method. Specifically the model can be
improved to lessen the gap between model and reality, making it better suited for
practical usage. Ideas for improving the performance of the implemented ALNS are
also given as well as alternative solution methods using decomposition of the problem.



ii



Preface
This master’s thesis has been completed at the Department of Management Engineering
at the Technical University of Denmark in fulfillment of the requirements for acquiring
a master’s degree in Industrial Engineering and Management. It accounts for a total
of 30 ECTS points.

Kongens Lyngby, January 1, 2018

Rasmus Ørnstrup Mikkelsen (s123915)



iv



Acknowledgments
I would like to thank my supervisor Thomas Jacob Riis Stidsen for his support and
guidance throughout this thesis. I have enjoyed our regular meetings where he has
provided me with fantastic sparring and invaluable feedback to my work. Thomas
has shown great trust and interest in me and my work and I am very grateful for
that. I would also like to thank Roskilde University and their staff for helping me to
understand their problem and providing valuable data. A special thanks to Pernille
Marie Storgaard and Hanne Tofteng for providing extra feedback and extremely
helpful meetings. Furthermore I would like to thank Jørgen Lindgaard Pedersen for
enlightening me on a censors’ concerns regarding the exam planning at RUC. I am
also very grateful to MaCom for allowing me to work in their offices and making me
feel very welcome. Additionally, a special thank you goes to Kasper Torp Steffensen
and Laura Hjerrild Andersen, whom both have given me great feedback on this report.
Lastly thank you to Sara Jensen for her undying support. All have helped to enhance
my work greatly.



vi



Contents
Summary i

Preface iii

Acknowledgments v

Contents vii

1 Introduction 1

2 Exam Timetabling 3
2.1 Timetabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 General Exam Timetabling . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Toronto Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 International Timetabling Competition 2007 . . . . . . . . . . . . . . . 7

3 Roskilde University 9
3.1 Semester and Exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Group Project Exam Planning . . . . . . . . . . . . . . . . . . . . . . 12

4 Group Project Exam Timetabling 15
4.1 Mixed Integer Programming Model . . . . . . . . . . . . . . . . . . . . 15
4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Model complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 One Day Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Solution Method 39
5.1 Adaptive Large Neighborhood Search . . . . . . . . . . . . . . . . . . . 39

6 Computational Tests 49
6.1 Construction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Discussion 67
7.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



viii Contents

7.2 Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A The Linear Programming Relaxation 75
A.1 The Linear Programming Relaxation . . . . . . . . . . . . . . . . . . . 75

B ALNS Implementation 77
B.1 Strict Greedy Schedule Repair Heuristic . . . . . . . . . . . . . . . . . 78
B.2 Destroy and Repair Methods . . . . . . . . . . . . . . . . . . . . . . . 79

C Parameter Tuning 81
C.1 Parameter ξ and λ overview . . . . . . . . . . . . . . . . . . . . . . . . 81
C.2 Parameter Combination Performance Overviews . . . . . . . . . . . . 83
C.3 Reward Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 97



CHAPTER 1
Introduction

Examination timetabling is an important and challenging administrative task which
almost all academic institutes must go through on a regular basis. The planning
problem can be very large and quit complex and is often performed manually by staff,
which can be quite expensive and result in suboptimal exam timetables. Therefore
methods that either help to or automatically finds “good” timetables are very beneficial.
These can help to both save time and money but, perhaps more importantly, create
exam timetables which work as well as possible for all parties involved.

Educational timetabling, such as class and exam timetabling, are very important
optimization problems which have been the focus of a lot of research. This is evident
by the number of publications in the area, as well as the establishment of conferences
and international timetabling competitions. However, because many educational
institutions have different wants and needs, it is difficult to make a one-size-fits-
all solution. With regards to examination timetabling, some standardized problem
definitions have been introduced. This allows for meaningful comparisons between
solution methods. The two most important problem definitions are the Toronto
Datasets and the International Timetabling Competition examination timetabling
track. Both of these deal with exam timetabling, with the overarching goal being the
creation of timetables such that all students can attend their exams.

In this thesis a specific examination timetabling problem is investigated, which is
quit different from the aforementioned problem definitions. At Roskilde University
(RUC) most students have a group project exam they must attend at the end of the
semester. Each student is only part of one project group and the group project
examination period is after the regular class examination period. Therefore the
problem is not to construct feasible timetables that spread out students’ exams, but
instead timetables should be built such that they cater to the supervisors and co-
examinators associated with the group project exams. Throughout this thesis, the
Group Project Exam Timetabling problem at RUC is investigated and a mixed integer
programming model developed. The problem is then solved using the metaheuristic
Adaptive Large Neighborhood Search with some mathematical programming.



2



CHAPTER 2
Exam Timetabling

This chapter first briefly introduces the concept of timetabling in Section 2.1 before
discussing general exam timetabling in Section 2.2. Exam timetabling is an area of
much active research and the two most common problem definitions, the Toronto
and ITC2007 datasets/formulations, are introduced in Section 2.3 and Section 2.4
respectively.

2.1 Timetabling
Within Operations Research timetabling problems have received a lot of attention
and come in many varieties. A definition of timetabling is given in (Wren, 1995) as

“The allocation, subject to constraints of given resources to objects being placed in
space-time, in such a way as to satisfy as nearly as possible a set of desirable

objectives” - Wren, 1995

Thereby many problems can be considered timetabling problems, for example
public transportation timetables, some types of personnel allocation and educational
timetabling such as class and exam allocation. In (Wren, 1995) an important distinction
is made between timetabling and scheduling, where timetabling is considered as a
special case of scheduling activities. A timetable shows when and/or where a specific
event is to take place, but does not necessarily imply exactly what resources are
allocated or a more specified plan. For example when making shift schedules for jobs
without special competence requirements (all employees can complete the same work)
a timetable may show how many employees are to be working at one time. But a
schedule will show more details such as exactly which employees are assigned each
shift and what work should be completed. In this thesis the verb scheduling is used
synonymously with the act of timetabling.

Class and exam timetabling are very typical and important problems, as they
need to be solved in almost all educational institutions around the world. With
the increased availability of computing power at individual institutions, methods for
solving these problems are becoming more and more applicable in the real world.
However these problems are typically very complex and clever solution methods are
required. A specific case of examination timetabling is the subject of this thesis and
a general introduction is given in the following section.



4 2 Exam Timetabling

2.2 General Exam Timetabling
Exam timetabling is the process of allocating a number of exams into a number
of given timeslots while observing some constraints. This is a problem that needs
to be solved at most academic institutions once per semester. The class structure
and examination requirements can vary greatly for different institutions; resulting
in examination timetabling problems of different complexity. In general, the more
constraints are imposed on the problem, the more difficult it becomes to find not
only a feasible solution but also a “good” solution.

Two different classes of constraints are typically defined for an exam timetabling
problem; hard and soft constraints. Hard constraints are constraints which must be
observed and are used to ensure that the timetable satisfies all physical and regulatory
restrictions that may apply. A feasible solution is an examination assignment which
does not violate any hard constraints. A typical hard constraint is that no students
should attend exams overlapping in time. Soft constraints are used to measure the
quality of a solution. Ergo a timetable is allowed to violate soft constraints but doing
so incurs a cost. A smaller total cost indicates a better solution. A typical soft
constraint is that students should have gaps of a certain size between their exams.
Smaller gaps are allowable at a cost correlating to the size of the gap. The types of
soft constraints vary greatly and sometimes even contradict each other.

An small timetabling example is shown where the objective is to find a feasible
solution. There are seven students and six courses. Each student has between one
and three courses as shown in Table 2.1. The goal is to find a timetable such that
each student can take all of his or her exams. In this example there are three days
and two separate rooms available. It is allowed for multiple exams to use the same
room at a time. Room 1 and Room 2 have a capacity of three and four students
respectively.

Course Physics Math Chemistry Biology Statistics Programming
Anders x x
Birger x x
Claus x
Dorthe x x
Erik x x x
Freja x x
Gorm x x

Table 2.1: The students and their associated courses in the small examination
timetabling example.

A feasible solution is shown in Table 2.2. If the statistics exam was to be held
Thursday in Room 1, the timetable would be infeasible since Erik would have to
be in Room 1 and Room 2 at the same time. This is a very small and simplistic



2.2 General Exam Timetabling 5

example and, as stated before, many different constraints are usually enforced on the
timetable.

Room 1 Room 2
Physics: Chemistry: Programming:Wedensday A B C D E F G
Math: Biology:Thursday A B D E F

Statistics:Friday E G

Table 2.2: A feasible timetable for the small examination timetabling example.

Many different approaches have been used for solving examination timetabling
problems. Especially graph and network based solutions and heuristics are applied
with great success. Graph based techniques view exams as vertices of a graph and
hard constraints between exams are defined as edges between the vertices. Welsh and
Powell (1967) showed the connection between the examination timetabling problem
and the graph coloring problem; finding the minimum number of colors to cover all
vertices of the graph such that no vertices of the same colors are adjacent. Many
solution methods are based (at least partly) on this connection between the two
problems. (Qu et al., 2009) is an excellent survey covering examination timetabling
and provides a great overview of all important strides, sorted by solution method
category, within examination timetabling research between 1996 and 2009.

Researches tackling exam timetabling sometimes focus on the practical problem
at a specific institution; as for example done in (Kahar and Kendall, 2010). Since
these problems be very different, and solution methods are tailored to specific problem
variations, it can be difficult to compare performance of solution methods. Therefore
some benchmarking data sets and problem definitions have been introduced and the
most popular are the Toronto and the ITC2007 datasets. These are presented in the
following sections.



6 2 Exam Timetabling

2.3 Toronto Dataset
The Toronto datasets were introduced in (Carter et al., 1996) and have been greatly
used in the examination timetabling research community ever since. The dataset
consists of 13 real-world problems, where three are from Canadian high schools, five
from Canadian universities, one from a British university, one from a Saudi Arabian
university, and one from an American university. The only hard constraint of the
problem, is that no student can be assigned multiple exams at the same time. This
problem is uncapacitated meaning it does not take room capacity into account.

For each instance, a Conflict Matrix C is defined to indicate whether two exams
i and j share students. Matrix element cij = 1 if exam i conflicts with exam j, and 0
otherwise. Note that this matrix is symmetrical. Also the Conflict Density is defined
as the ratio between the number of 1-elements and the total number of elements in
C.

Two problem objectives were defined for the original dataset: to minimize the
number of timeslots needed or to minimize the average cost per student with a given
number of timeslots. The latter variant has received the most attention by researchers
(Qu et al., 2009, Table 6). This is likely because the problem is more difficult to solve
and perhaps more useful in practice because the number of timeslots can be given as
a parameter and institutions want to make fair exam timetables for students. Also for
the first variant 12 out of 13 best known results were already obtained in (Carter et al.,
1996), i.e. when the datasets were first introduced. This indicates that the problem
already has been “solved” sufficiently well and therefore is not very interesting to
examine further.

When minimizing the average cost per student the goal is to spread out conflicting
exams as much as possible while staying within a certain number of timeslots. To
capture this, the objective function is defined such that for each student sitting two
exams s timeslots apart, a cost ws is added depending on the size of the gap as follows:
w1 = 16, w2 = 8, w3 = 4, w4 = 2 and w5 = 1. For gaps of more than five timeslots
there is no cost.

More variants have been introduced and researched, such as introducing capacities
and changing the objective function to minimize the number of students sitting two
exams in a row. However it is still today the latter of the two original problem
definitions which is receiving the most research attention of all Toronto benchmark
variants. Note that there are some problems associated these datasets which have
been addressed and corrected in (Qu et al., 2009).



2.4 International Timetabling Competition 2007 7

2.4 International Timetabling Competition 2007
In order to further research within timetabling the second International Timetabling
Competition was held in 2007 (ITC2007). This competition was separated into
three tracks where two focused on course timetabling and one on exam timetabling.
The competition placed great emphasis on providing a ‘real world’ perspective to
educational institution timetabling. Besides generating interest and comparing practical
solutions, one of the greatest contributions of the ITC2007 was a set of benchmark
datasets and problem definitions, which are more realistic than the Toronto datasets.

During the competition (McCollum et al., 2007) was used to communicate the
rules of the Exam Timetabling track, and as such gives a very thorough description
of both the problem and datasets.

The problem is made more realistic by including multiple aspects, conditions
and quality measures compared to earlier models as well as allowing weighting of
soft constraints. These weights are included as parameters in an attempt to make
solutions more usable in practice since institutions may have different priorities. By
including the weighting as parameters in the dataset, it is possible for an institution
to ‘play’ with the settings until an timetable is found that best fits their specific needs.

In the ITC2007 each exam timetabling problem consists of defined examination
periods, a set of exams, a set of students and their enrolled exams, a set of rooms and
associated room capacities, hard constraints, soft constraints and weights for some of
the soft constraints.

In the competition, constraints were separated into three categories; required,
hard and soft constraints. Required hard constraints are constraints that “absolutely
cannot be broken”, hard constraint violations lead to non-zero “distance to feasibility”
and soft constraints incur costs (as usual). The quality of the timetable is evaluated
at two levels; the number of non-required hard constraints violated (total “distance
to feasibility”) and the weighted sum of soft constraint violations. This two level
evaluation was used as a judging tool in the competition, but as the authors noted
in (McCollum et al., 2007), “in general, gaining feasibility is not as important an
issue as in some cases of course timetabling.” If a solution violates a required hard
constraint it does not get a score. The two required hard constraints are that every
exam is allocated to at most one room and at most one period (exams cannot be split
in time or space).

In order for a timetable to be considered feasible all hard constraints have to
be satisfied. One of the hard constraints is the usual constraint of not having any
students assigned to multiple exams which are held at the same time. Notice that it
is explicitly allowed for multiple exams to use the same room at the same time, but
it is not allowed for exams to be split into multiple rooms. Another hard constraint
is that period lengths may not be violated. There are also a number any period or
room related hard constraints must be observed, some examples are that a specific
exam must follow another or that an exam must use a specific room. Lastly, room
capacities must be observed for each room.

The soft constraints can be split into two groups; those related to either specific



8 2 Exam Timetabling

resources or global settings. The resource soft constraints are period and room related,
where penalties can be associated with using specific periods or rooms. This allows
for institutions to better control how their resources are used. Global soft constraints
include penalizing whenever students have two exams in a row, on the same day, or
their exams have a specific spread (as in the Toronto problem). Since exams are
allowed to share rooms a penalty is applied when exams of different duration are
assigned to the same room within the same period. The last soft constraint is to
penalize the number of ‘large’ exams which appear ‘later’ in the timetable. What
constitutes ‘large’ and ‘late’ is specified in the dataset as user defined parameters.

In (McCollum et al., 2007) the authors provide a non-linear mathematical formulation
of the problem.



CHAPTER 3
Roskilde University

Roskilde University is a university located in Roskilde, Denmark. The university was
founded in 1972 with a mission to “challenge academic traditions and to experiment
with new ways to acquire knowledge” 1. As such, RUC is very project and problem
oriented in their teaching techniques and structure.

The university consists of four departments (see Table 3.1), with a total of around
8,800 students and 950 employees2. Both Bachelors and Masters programs are offered
resulting in a total of 208 unique programs. A Bachelors program spans three years,
with the first year consisting of a “basic section” where key interdisciplinary theories
and methods are introduced. Then the last two years are spent on specializing within
one or two subjects. A Masters program requires two years and also combines two
main subjects. The first two semesters (first year) are focused on each individual
subject. The third semester is an “interdisciplinary semester” where the two subjects
are combined and lastly the fourth semester consists of writing a thesis.

On all semesters (except when writing a thesis) the aim is to distribute the work
load such that 50% is courses related and 50% is spent on project work. In the
project students from different disciplines work together to find a combined solution
for a specific problem.

In this chapter the general semester and exam structure at RUC is described along
with some of the associated planning activities.

English
“Department of”

Danish
“Institut for” Abbreviation

Communication and Arts Kommunikation og Humanistisk Videnskab IKH
People and Technology Mennesker og Teknologi IMT
Science and Environment Naturvidenskab og Miljø INM
Social Sciences and Business Samfundsvidenskab og Erhverv ISE

Table 3.1: The names of the four departments at RUC.

1https://ruc.dk/en
2https://ruc.dk/om-roskilde-universitet



10 3 Roskilde University

3.1 Semester and Exams
All programs follow the same general semester structure and since RUC places a lot of
focus on project oriented knowledge creation, the semester consists of two concurrent
elements; regular courses and group projects. The temporal division of each element
is illustrated Figure 3.1. All non-thesis writing students therefor follow classes while
simultaneously working on a group project with up to five other students. However,
all courses and associated exams are finished before the group project is handed in
and defended at the group project exam.

Course 1

Course 2

Course 3

Exams

Group
dev. Group work “Intensive”

Project
Exam

Figure 3.1: The general semester structure at RUC.

3.1.1 Courses
Each student will typically have two to three courses that often are held parallel to
each other, but it is possible for courses to start or end at different times throughout
the semester. The course element of the semester is always concluded with an
examination period in which exams are held. Students may be evaluated entirely on
projects and assignments during the semester, purely on an exam in the examination
period or a mixture of both. Three exam types are used in the examination period:
take-home, written and oral examinations. The take-home exams consists of an
assignment which must be individually completed within one, two or up to 14 days.
Oppositely both written and oral exams take place at the university. Typically
written exams are held such that all students following the same course attend the
course exam in the same room at the same time. Oral exams are also held at the
university, but students take the exam individually. For oral exams the examinator
(course lecturer) and censor (co-examinator with no relation to the course/project)
have to be present and evaluate students immediately. This is not the case for written
or take-home exams, where exams are sent to the examinator and censor, whom
evaluate the exams separately before agreeing on a final grade for each student. This
grading process may take weeks.

All course exams are fixed before the beginning of the semester. The exams
are scheduled (manually) such that students following a recommended study plan



3.1 Semester and Exams 11

are guaranteed to be able to take all their exams. If problems should arise for
individual student following a recommended study plan, planners will ensure that
they are given a replacement exam at some other time. Conflicts for students not
following a recommended study plan are, in principal, the students responsibility;
however planners will try to help, but no guarantees are given. Evidently the course
examination timetabling at RUC is very similar to the standard exam timetabling
problem definitions.

3.1.2 Group Project
The group project can be split into four phases; group development, normal group
work during the semester, the “intensive” which is when all courses are finished and
students work exclusively on the project, and finally a group project exam.

Each study line offers multiple relevant topics and groups of up to six students are
assembled based on students personal preferences. On later semesters these projects
become more interdisciplinary and students from different study lines need to work
together on the project. A supervisor, whose responsibility is to provide assistance
and guidance when necessary, is assigned to each group. A supervisor may be assigned
to multiple groups working with different topics.

The group project ends with an exam at the very end of the semester. Since
every student is in at most one group project, they will at most have one group
project exam. The exam is very similar to typical oral exams with the exception
that all group members are present throughout. First students together present their
project, with everyone presents a small part individually for three to five minutes.
Then the examinator and censor pose questions either to the group or to individual
students. Afterwards the group exits the room while the supervisor and censor agree
upon individual grades for each group member. The group either receives their grade
separately or collectively; whichever the group prefers. Depending on the department,
20-30 minutes are given to each student, which specifies the amount of time required
for the exam.

The examinator is the groups supervisor and the censor is either a colleague
from RUC (internal) or from another university or from the industry (external). On
earlier student semesters it is allowed to use internal censors, while on later semesters,
especially for master students, external censors are required. When using internal
censors the group supervisor usually is allowed to choose the censor. For groups
requiring an external censor different rules apply as described in the next section.

All group projects are required to be handed in by a specific date at the end of the
semester. In the months leading up to this date, RUC staff start timetabling project
exams. Both supervisor and censor is likely to have multiple exams and it is therefore
important to avoid conflicts. Since students are at most attending one group project
exam, and should not have course exams during the same time period, it is generally
not possible for exam conflicts with respect to students. However in rare cases there
may be student related exam conflicts. These are described in Section 4.2.1.2.



12 3 Roskilde University

It is possible that project groups split-up during the semester. Even though a
project group separates, both parts usually continue working on the same project
with the same supervisor. Therefore both groups can still use the same censor and
even though they require two separate exams, they can be considered as one exam
for planning purposes, since one exam can simply follow the other immediately. This
is especially useful if the initial group exam has already been planned, as no major
changes have to be made to the timetable as a whole.

In case a group does not turn in their project, planners will try to amend the
timetable to avoid undesirable consequences. This is often very difficult as many of
the exams are relatively fixed since they have already been agreed upon by supervisors
and censors, requiring some effort to reschedule.

3.2 Group Project Exam Planning
In the months leading up to the final group project deadline, planners attempt to
timetable the group project exams. Censors are secured through very different means
depending on the program. All censors belong to a censor-corps, which is a collection
of all authorized censors within a given field. Each censor-crops can have very different
ways of distributing censors to exams. Usually planners make a request for censors
for a number of exams. In some censor-corps individual censors are allowed to bid on
exams and in others each censor has little influence and is assigned to exams by the
censor-corps. With some corps the planner can make censor request and with others
this is not allowed. Many censor-corps try to distribute censors evenly such that each
censor within the corps has about the same amount of exams every year.

In general the university does not have the power to decide which censor is assigned
to what exams; except when an internal censor is used. RUC is moving towards using
internal censors more. This may be because these censors typically can be secured
more quickly, communication is easier and they are less costly. However, this means
that more RUC personal will be used for exams during the same time period, making
the production of good examination timetables even more difficult.

Once the censor is secured for an exam, the planner communicates with the censor
to find a number of dates on which the censor is available. Typically four to five days
are given. Planners have access to the supervisors calendars and will schedule the
exam on one of the proposed days where the supervisor is available.

Each planner is responsible for a set of group project exams and collect all needed
data about each project group and associated exam in an Excel document. This
document is made at a department level and as a consequence four separate documents
are created. The contents of this document is described in greater detail in Section 4.2.
Producing this Excel document poses a lot of challenges and frustrations for planners
(whose details are beyond the scope of this project). Suffice it to say that a lot of
man-hours are spent every semester producing an overview of all group project exams
for each of the four departments. While gathering the information planners also book
rooms for exams at times that fit both the supervisor and censor. However, they do



3.2 Group Project Exam Planning 13

not always have access to information about exams planned by other planners (within
the same or a different department) and it can therefore be difficult to make good
timetables; both because of the problem size and complexity but also because of lack
of information and time. Also, planners make timetables for their department, and it
is possible that supervisors and censors are involved with exams in other departments.
Therefore it is highly likely that there are shared persons between department plans.
RUC is also aiming for using more internal censors, which will increase the number of
shared resources and the number of exam conflicts. This only increases the difficulty
in making a “good” unified timetable.

The quality of group project examination timetable is evaluated mainly on the
individual exam schedules for external censors. This is because these censors may
live far from, and have little to no familiarity with, RUC campus. Thus planners
aim for producing schedules such that any given censor has all of his/her exams in
one day, with as little idle time and as few room changes as possible. It is better to
have supervisors, whom are very familiar with the campus, move between rooms and
buildings for other exams. Additionally RUC staff have offices at RUC and in case
of long wait times likely have other work they can do. Although internal censors also
work at RUC, planners also try to optimize the examination timetable for them.



14



CHAPTER 4
Group Project Exam

Timetabling
The goal of group project exam timetabling problem at RUC is different from the
typical examination timetabling problem definitions. The goal is not to make fair
examination timetables for individual students; instead focus is placed on the censors.

This chapter further examines the group project exam timetabling problem at
RUC. In Section 4.1 a Mixed Integer Programming (MIP) model is defined for the
problem. Then in Section 4.2 all available and generated data is discussed. The model
complexity is investigated in Section 4.3. Lastly, Section 4.4 introduces a version of
the model concerning only a single day.

4.1 Mixed Integer Programming Model
Using fixed timeslots is very typical when timetabling exams; even when done manually.
Often planners may only schedule exams such that they start every half hour or every
quarter of an hour. Using fixed timeslots can become a problem if there is a mismatch
in the timeslot and exam length. For example, if only allowed to assign exams to
timeslots spanning two hours, and one exam requires just 30 minutes, then a big
(and likely unwanted) gap is very probable in the schedule. However, when allowing
for exams to span multiple timeslots, this problem can be circumvented by defining
each timeslot sufficiently small. This can held make the timetable more “smooth”
but decreasing timeslot length directly increases problem size.

Every exam is assumed to have exactly one supervisor (examinator) and one censor
already determined. Since both supervisor and censor may have other exams they
need to attend, it is not allowed for conflicting exams (exams sharing supervisor,
censor or both) to be scheduled at the same time. Also room capacities must
be observed such that there is enough room for both the project group as well as
supervisor and censor.

This section defines the MIP model for the group project exam timetabling problem
at RUC through a few steps. First a model is defined under the assumption that all
exams require exactly one timeslot. This model is then extended to handle exams
having varying timeslot requirements. Lastly the model is further extended to increase
the applicability of produced timetables.



16 4 Group Project Exam Timetabling

4.1.1 Single Timeslot Model

Here a MIP model is defined for the problem under the assumption that all exams
require the same amount of time, i.e. one timeslot. No consideration is given as
to how long each timeslot is but it is assumed that the same amount of timeslots
is available on all days. The sets, parameters and variables defined for the Single
Timeslot Model are shown in Table 4.1.

Sets Description
c ∈ C The set of censors
s ∈ S The set of supervisors
i ∈ E The set of exams
i ∈ Ec The set of exams assigned to censor c

c ∈ C>1 The set of censors with more than one exam
(i.e. C>1 = {c ∈ C : |Ec| > 1})

r ∈ R The set of rooms
d ∈ D The set of days
t ∈ T The set of timeslots
Parameters Description
Nc The number of exams for censor c

SE
i The size of exam i (number of students)

SR
r The capacity of room r

νij 1 if exam pair (i, j) are conflicting, 0 otherwise
tlast The last timeslot available each day
pRS The penalty for violating room stability
pCG The penalty for having timeslot gaps for a censor
pCMD The penalty for assigning a censor on multiple days
Variables Description
xi

rdt ∈ B 1 if exam i is assigned to room r on day d in timeslot t

ucr ∈ B 1 if censor c is assigned to room r

vcd ∈ B 1 if censor c is assigned to day d

fcd ∈ Z+ The identifier of the first timeslot used by censor c on day d

lcd ∈ Z+ The identifier of the last timeslot used by censor c on day d

Table 4.1: The sets, parameters and decision variables used in the Single Timeslot
model.



4.1 Mixed Integer Programming Model 17

All sets can be considered as sets of integers starting at zero, eg. D = {0, . . . , |D|−1}.
With all relevant sets, parameters and decision variables defined in Table 4.1 the
constraints of the model are written.

∑
r∈R

∑
d∈D

∑
t∈T

xi
rdt = 1 ∀i ∈ E (4.1)∑

i∈E

xi
rdt ≤ 1 ∀r ∈ R, d ∈ D, t ∈ T (4.2)

∑
r∈R

(
xi

rdt + xj
rdt

)
≤ 1 ∀i, j ∈ E : νij = 1, d ∈ D, t ∈ T

(4.3)
xi

rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, (4.4)
t ∈ T : SE

i + 2 > SR
r

fcd ≤
∑
r∈R

∑
t∈T

(
t · xi

rdt

)
+ tlast

(
1 −

∑
r∈R

∑
t∈T

xi
rdt

)
∀c ∈ C>1, i ∈ Ec, d ∈ D (4.5)

lcd ≥
∑
r∈R

∑
t∈T

t · xi
rdt ∀c ∈ C>1, i ∈ Ec, d ∈ D (4.6)

lcd ≥ fcd ∀c ∈ C>1, d ∈ D (4.7)∑
i∈Ec

∑
d∈D

∑
t∈T

xi
rdt ≤ Nc · ucr ∀c ∈ C>1, r ∈ R (4.8)

∑
i∈Ec

∑
r∈R

∑
t∈T

xi
rdt ≤ Nc · vcd ∀c ∈ C>1, d ∈ D (4.9)

(4.10)

Constraint (4.1) ensures that every exam is held exactly once. Constraint (4.2)
ensures that at most one exam can be held in a room in any given timeslot. Constraint
(4.3) ensures that no conflicting exams (exams sharing censor, supervisor or both) are
scheduled at the same time. Since the conflict matrix ν is symmetrical only the upper
triangle is defined to avoid generating identical constraints. Constraint (4.4) enforces
the observation of room capacities by fixing the exam allocation decision variable
to zero for infeasible exam and room combinations. Note that a room has to have
capacity for both the students of the group as well as both censor and examinator.
Altogether constraints (4.1) - (4.4) ensure that a feasible timetable is found. Constraints
(4.5) - (4.9) set the values of fcd, lcd, ucr and vcd respectively; which are used to
evaluate the quality of the produced timetable.

Variables fcd and lcd are used to respectively capture the first and last timeslot in
which a censor is scheduled on each day. If the censor is not scheduled on a given day,
then the associated variables should attain the same value. Constraint (4.1) ensures
that exactly one xi

rdt variable is set to 1 for every exam. Therefore
∑

r∈R

∑
t∈T xi

rdt

for any combination of exam i and day d will either be 0 or 1. Considering a censor



18 4 Group Project Exam Timetabling

with just one exam, constraint (4.5) enforces that fcd must be less than or equal to
the timeslot value of the last timeslot on all days where the censors’ exam is not
scheduled. On the day where the censor is scheduled, fcd is forced to be less than or
equal to the timeslot in which the censor has an exam. Now considering a censor with
multiple exams, this constraint forces fcd to be less than or equal to the first timeslot
in which the censor c is scheduled on day d. The lcd variable is set using constraints
(4.6) and (4.7). The first constraint ensures, that if the censor is scheduled on a given
day, lcd must be equal to or greater than the value of the last timeslot in which the
censor is assigned. The model rewards negative value for the expression lcd − fcd (see
(4.13)), which should not be possible as this means a censor on a given day has their
last timeslot before their first. On days where censor c has no exams, lcd ≥ 0 and
fcd ≤ tlast, which allows for negative values to the shown expression. By enforcing
that lcd ≥ fcd (constraint (4.7)) this problem is negated. The model rewards (or
penalizes less) fcd and lcd values that are close to each other, so on days where censor
c has exams fcd is pushed up and lcd is pushed down. On days where the censor has
no exams, fcd ≤ tlast and lcd ≥ fcd ≥ 0 and therefore these variables are allowed to
attain the same value and incur no penalty.

Variables ucr and vcd are set using constraints (4.8) and (4.9) respectively. In
both constraints ucr and vcd are multiplied by Nc since this is the largest amount
of exams that censor c can be assigned in total, and therefore also the limit for any
given room or day.

Notice that the constraints for setting fcd, lcd, ucr and vcd, as well as the variables
themselves, are only defined for censors whom have more than one exam, since no
penalty can be applied if this is not the case.

In constraints (4.5) and (4.6) all parts are integer. Therefore the variables definitions
for fcd and lcd can both be relaxed to be non-negative real numbers since they
automatically attain integer values regardless.

This problem is a multi-objective optimization problem since the quality of a
solution is evaluated on three separate objectives: room stability, time gaps and
number of required days. As noted above, these are only defined for censors whom
have more than one exam, since each penalty is an evaluation of the placement of
multiple exams associated with the same censor. The objective function is composed
of three separate terms, each capturing one aspect of the solution. There are different
techniques for handling multi-objective optimization and here a weighted penalty
function is used.

The ucr variable is used to capture which rooms are used by each censor. For
a given censor c the total number of room changes is given by

∑
r∈R (ucr) − 1 and

the total number of room changes (or inversely room stability RS) considering all
potential penalty inducing censors is given by

RS =
∑

c∈C>1

(∑
r∈R

(ucr) − 1

)
(4.11)

To register which days censor c is scheduled the variable vcd is used. Since the



4.1 Mixed Integer Programming Model 19

goal is to avoid censors being assigned to multiple days, this is very similar to the
room stability term of the objective function. The part of the objective function used
to penalize when censors are scheduled on multiple days (CMD), i.e. the number of
days more than one, is then

CMD =
∑

c∈C>1

(∑
d∈D

(vcd) − 1

)
(4.12)

To count the number of censor timeslot gaps variables fcd and lcd are used. The
number of timeslots where the censors would be present at RUC (including gaps)
is given by

∑
d∈D (lcd − fcd + vcd). Variable vcd is added since on days where the

censor is scheduled, lcd − fcd is one less than the number of timeslots the censors is
present (because the censor is present throughout the last timeslot). For days where
the censor is not scheduled, fcd = lcd and lcd −fcd +vcd = 0. Since each exam requires
exactly one timeslot, the total number of timeslot in which a censor c is at RUC, but
not attending exams, is given by

∑
d∈D (lcd − fcd + vcd) − Nc. When considering all

censors, the total number of censor gaps (CG) is given by

CG =
∑

c∈C>1

(∑
d∈D

(lcd − fcd + vcd) − Nc

)
(4.13)

The objective function is then the weighted summation of (4.11), (4.12) and (4.13)
with the corresponding penalty parameter.
The full model is shown below.



20 4 Group Project Exam Timetabling

Single Timeslot Model
Minimize: pRSRS + pCMDCMD + pCGCG

Subject to:∑
i∈E

xi
rdt ≤ 1 ∀r ∈ R, d ∈ D, t ∈ T∑

r∈R

∑
d∈D

∑
t∈T

xi
rdt = 1 ∀i ∈ E

∑
r∈R

(
xi

rdt + xj
rdt

)
≤ 1 ∀i, j ∈ E : νij = 1, d ∈ D, t ∈ T

xi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D,

t ∈ T : SE
i + 2 > SR

r

fcd ≤
∑
r∈R

∑
t∈T

(
t · xi

rdt

)
+ tlast

(
1 −

∑
r∈R

∑
t∈T

xi
rdt

)
∀c ∈ C>1, i ∈ Ec, d ∈ D

lcd ≥
∑
r∈R

∑
t∈T

t · xi
rdt ∀c ∈ C>1, i ∈ Ec, d ∈ D

lcd ≥ fcd ∀c ∈ C>1, d ∈ D∑
i∈Ec

∑
d∈D

∑
t∈T

xi
rdt ≤ Nc · ucr ∀c ∈ C>1, r ∈ R

∑
i∈Ec

∑
r∈R

∑
t∈T

xi
rdt ≤ Nc · vcd ∀c ∈ C>1, d ∈ D

xi
rdt ∈ B ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T

ucr ∈ B ∀c ∈ C>1, r ∈ R

vcd ∈ B ∀c ∈ C>1, d ∈ D

fcd, lcd ∈ R+ ∀c ∈ C>1, d ∈ D



4.1 Mixed Integer Programming Model 21

4.1.2 Multiple Timeslots Model
In order to change the model to be able to handle exams that span multiple timeslots
a few changes and additions need to be made. Furthermore, to make the model
more inline with RUC’s wishes, a few model extensions are introduced. The new
set, parameters and decision variables needed are shown in their introduced order in
Table 4.2.

Set Description
Eν

i The set of exams conflicting with exam i

Parameters Description
NE

i The number of required timeslots for exam i

Mc The total number of timeslots censor c needs to be assigned;
Mc =

∑
i∈Ec

NE
i

UE
id 1 if exam i is unavailable on day d

UC
cd 1 if censor c is unavailable on day d

UR
rdt 1 if room r is unavailable on day d in timeslot t

pD The penalty for using a day
dlast The last day on which timetabling is possible
pL The penalty for each late timeslot

tlate The timeslot value of the first timeslot designated late
Υi

rdt 1 if exam i is unavailable in room r on day d in timeslot t

Variables Description
yi

rdt ∈ B 1 if exam i begins in room r on day d in timeslot t

bd ∈ B 1 if day d is used
wi ∈ Z+ The number of late timeslots used by exam i

xi
rdt ∈ B 1 if exam i is scheduled in room r on day d in timeslot t

Table 4.2: The new parameters, set and decision variables introduced in the Multiple
Timeslots Model with extensions.

Every exam must be held for NE
i coherent timeslots on the same day and only in

one room. Therefore if exam i begins in room r on day d in timeslot t, this room will
be occupied by exam i for the following NE

i − 1 timeslots.
The model is changed such that the main decision variable yi

rdt sets the start
timeslot of each exam (decision variable xi

rdt is reintroduced in Section 4.1.2.1). This
requires all constraints to be updated; some with only minor changes. The updated
constraints are:



22 4 Group Project Exam Timetabling

∑
r∈R

∑
d∈D

∑
t∈T

yi
rdt = 1 ∀i ∈ E (4.14)

∑
i∈E

t∑
t′=t−NE

i
+1

yi
rdt′ ≤ 1 ∀r ∈ R, d ∈ D, t ∈ T (4.15)

∑
r∈R

yi
rdt +

t+NE
i −1∑

t′=t

yj
rdt′

 ≤ 1 ∀i, j ∈ E : νij = 1, d ∈ D, t ∈ T

(4.16)

fcd ≤
∑
r∈R

∑
t∈T

(
t · yi

rdt

)
+ tlast

(
1 −

∑
r∈R

∑
t∈T

yi
rdt

)
∀c ∈ C>1, i ∈ Ec, d ∈ D (4.17)

lcd ≥
∑
r∈R

∑
t∈T

(t + NE
i − 1) · yi

rdt ∀c ∈ C>1, i ∈ Ec, d ∈ D (4.18)

lcd ≥ fcd ∀c ∈ C>1, d ∈ D (4.19)∑
i∈Ec

∑
d∈D

∑
t∈T

yi
rdt ≤ Nc · ucr ∀c ∈ C>1, r ∈ R (4.20)

∑
i∈Ec

∑
r∈R

∑
t∈T

yi
rdt ≤ Nc · vcd ∀c ∈ C>1, d ∈ D (4.21)

yi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, (4.22)

t ∈ T : SE
i + 2 > SR

r

Constraint (4.14) ensures that every exam begins and therefore is held. Constraint
(4.15) ensures that at most one exam takes place in a room at any given time. Assume
variable xi

rdt still indicates that exam i is scheduled in the given room, day and
timeslot combination. Then using the start of exam i variable yi

rdt the xi
rdt variables

can be set by
∑t

t′=t−NE
i

+1 yi
rdt′ = xi

rdt∀i ∈ E, r ∈ R, d ∈ D, t ∈ T . This is then
substituted into the old constraint (4.2) to get constraint (4.15). To ensure conflicting
exams are not scheduled at the same time constraint (4.16) is used. Looking across
all rooms, this constraint ensures that from the start of exam i, the conflicting exam j
cannot begin until exam i if finished. The constraints for setting variables fcd and lcd

((4.17) - (4.18)) are very similar to the Single Timeslot model, with the only change
being being in constraint (4.19) to reflect the value of the last timeslot used by exam
i. The constraints for setting ucr, vcd and observing room capacity ((4.20), (4.21)
and (4.22) respectively) are the same as before with variable xi

rdt substituted by yi
rdt.

Additionally the calculation of censor gaps needs to be updated to reflect the
potentially increased number of required timeslots (due to multiple timeslots per
exam) for each censor. This is done by exchanging the Nc parameter with MC

c such
that censor gaps are counted by



4.1 Mixed Integer Programming Model 23

CG =
∑

c∈C>1

(∑
d∈D

(lcd − fcd + vcd) − Mc

)
(4.23)

Lastly to ensure feasibility, it must be enforced that an exam is only started if
there is sufficient time for it to be completed before the end of the day. This is done
by fixing yi

rdt variables for exam and timeslot combinations where this is not the case,
by the introduction of the following constraint.

yi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : t + NE

i − 1 > tlast (4.24)

4.1.2.1 Extensions
The described changes could define the Multiple Timeslots Model. However, a few
extensions and improvements are introduced to both increase the realism and applicability
of produced timetables as well as to decrease the size of the model.

Exam and room unavailability When timetabling exams it is very likely that
rooms and persons involved are unavailable at certain times. These unavailabilities
impose some extra constraints on when and where exams can be scheduled.

It is likely that supervisors and censors have certain days, that they are not able
to attend exams. As they both need to be present for their designated exams, these
exams cannot be held on days where either one is not available. Additionally, there
may be other reasons for not allowing certain exams to be scheduled on specific
days; for example in the case that students have made an extraordinary agreement
with planners. A combination of all these aspects can be used to define exam
unavailabilities, such that an exam can only be scheduled on days where censor,
supervisor and students are available.

Rooms unavailabilities are considered in smaller time intervals where a room
is allowed to be unavailable in specific timeslots. This type of unavailability is
introduced since it is likely that some exam rooms may be used for other events,
like meetings, throughout a day. As opposed to person related unavailabilities, it is
more likely that a room is unavailable for only part of the day.

A more detailed description of exam and room unavailability is given in Section
4.2.1.

Given the parameter definitions seen in Table 4.2 the following constraints are
introduced in order to fix yi

rdt variables where necessary.

yi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : UE

id = 1 (4.25)
yi

rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : UR
rdt = 1 (4.26)

yi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : UR

r,d,t+NE
i

−1 = 1 (4.27)



24 4 Group Project Exam Timetabling

Constraint (4.25) ensures that an exam cannot be scheduled on a day where it
is not available. Constraints (4.26) and (4.27) enforce that an exam can only be
assigned a room that is available and only if the exam can be completed before the
room becomes unavailable.

Minimization of days Instead of having to administrate exams throughout the
whole examination period, it may be desirable to minimize the number of days on
which exams are held. However, these days should not be spread out sporadically
but should be somewhat collected. Additionally, RUC would like the exams to be
scheduled towards the end of the examination period in order to give students ample
time to prepare for their exams.

The binary variable bd is used to indicate which days are used in the the timetable.
The constraint for setting this variable is as follows:

∑
i∈E

∑
r∈R

∑
t∈T

yi
rdt ≤ |E|bd ∀d ∈ D (4.28)

Variable bd is multiplied by |E| since this is the largest amount of exams that can
be scheduled on any single day. Practically it would rarely be possible to scheduled
all exams in one day, but |E| offers an guaranteed limit. The number of days (ND)
on which exams are scheduled, is given by

ND =
∑
d∈D

bd

and the objective function is amended to include this extra goal of minimizing days
by adding the following term

pDND

In order to ensure coherency of scheduled days as well as pushing these days
towards the end of the examination period, the following constraint is introduced.∑

i∈E

∑
r∈R

∑
t∈T

yi
rdt ≤ |E|

∑
i∈E

∑
r∈R

∑
t∈T

yi
r,d+1,t ∀d ∈ D \ dlast (4.29)

This constraint makes it so it is only possible to schedule exams on days where the
following day also has one or more exams scheduled. The exception is of course the
last available day. These constraints force the model to use the last day, only use
coherent days and rewards using as few days as possible. The combined effect is
pushing the timetable back while also compressing it.



4.1 Mixed Integer Programming Model 25

Penalize late exams In general neither supervisors, censors or students are interested
in having exams in the late afternoon or at night. Therefore the model is amended
to penalize whenever timeslots are used that are defined as “late”.

The wi variable counts the number of late timeslots used by exam i and is set
using the constraint

wi ≥
∑
r∈R

∑
d∈D

∑
t∈T

yi
rdt ·

(
t + NE

i − tlate

)
∀i ∈ E (4.30)

Notice that the wi variables are non-negative and from this constraint definition
can only attain integer values. The variable definition can therefore be relaxed to
non-negative real numbers.
The number of late timeslots (NLT) is then calculated as

NLT =
∑
i∈E

wi (4.31)

and the objective function is updated to include the following term

pLNLT (4.32)
In this project a timeslot is designated late if it start at 17:00 or later.

Notice that the minimization of days and late timeslots has a different focus than
the previously defined objective terms. These two additions handle more general
timetable characteristics while the others are censor specific.

Break when switching rooms In the current model it is allowed to have censors
and supervisors assigned to exams directly following each other in time but in different
rooms. In practice this is not feasible since some transportation time between rooms
is to be expected. RUC would like to enforce a break whenever a censor or supervisor
has to change rooms.

This is done by considering conflicting exams, since exams are conflicting if they
share censor and/or supervisor. Thereby conflicting exams cannot be scheduled
directly after each other, unless they are assigned to the same room. This is enforced
by introducing the following constraint:

∑
j∈Eν

i

∑
r′∈R:r′ ̸=r

yj

r′,d,t+NE
i

≤ |Eν
i | · (1 − yi

rdt) ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T (4.33)

where |Eν
i | is the total number of exams conflicting with exam i.

In the case that yi
rdt = 1, this constraint enforces that the sum of exams conflicting

with exam i assigned to any room besides room r in the timeslot just after exam i
has ended must be zero. If yi

rdt = 0 then no actual limit is imposed. This is because
two exams conflicting with exam i are not necessarily conflicting with each other and
could therefore potentially be allowed to be scheduled simultaneously. Setting the
right side of the constraint to |Eν

i | is simply the smallest upper bound available.



26 4 Group Project Exam Timetabling

4.1.2.2 Tightening

Here some improvements are introduced to reduce model complexity by reformulation
of the conflicting exams constraint, reducing unnecessary constraint generation, including
additional variable fixing and finally reducing the total number of non-zeros of the
model by reintroducing the xi

rdt variable to the model.

Conflicting exams constraint The constraint included to ensure no conflicting
exams are scheduled at the same time, is defined for each pair of conflicting exams
for all day and timeslot combinations. Instead of considering each conflict pair
individually, the constraint can be defined for each exam and consider all of its
conflicting exams at the same time.

∑
r∈R

∑
j∈Eν

i

t+NE
i −1∑

t′=t

yj
rdt′ ≤ |Eν

i | ·

(
1 −

∑
r∈R

yi
rdt

)
∀i ∈ E, d ∈ D, t ∈ T (4.34)

This constraint functions in much the same way as (4.33). If yi
rdt = 1 looking

across all rooms, then the sum of exams conflicting with i starting in any room
within the duration of i must be zero. However, if yi

rdt = 0 then no limit is enforced
with the same argumentation that exams conflicting with exam i are not guaranteed
mutually conflicting.

As long as the number of exam conflicts is greater than the number of exams, this
change will result in less constraints needing to be generated. This is the case for all
available datasets (see Section 4.2).

In Section 7.1 it is described how this constraint could be tightened even further,
although it is not done in this project.

Reducing constraint definitions and additional variable fixing Constraints
should only be defined when they are necessary for the model. Using a priori
knowledge it is possible to avoid generating constraints that have no effect.

In this model the main decision variable yi
rdt is forced to be zero in order to observe

room capacities, room unavailabilities, exam unavailabilities and to ensure exams are
not assigned if it cannot be completed before a room becomes unavailable or before
the end of the day.

Variables fcd, lcd and vcd are used in different objective terms and using censor
unavailabilities (UC

cd) these variables can also be fixed when they are guaranteed to
be zero. The variable fixing conditions are summarized below in the aforementioned
order.



4.1 Mixed Integer Programming Model 27

yi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : SE

i + 2 > SR
r

yi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : UR

rdt = 1
yi

rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : UE
id = 1

yi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : UR

r,d,t+NE
i

−1 = 1

yi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : t + NE

i − 1 > tlast

fcd = 0 ∀c ∈ C, d ∈ D : UC
cd = 1

lcd = 0 ∀c ∈ C, d ∈ D : UC
cd = 1

vcd = 0 ∀c ∈ C, d ∈ D : UC
cd = 1

Thereby yi
rdt should be fixed when any yi

rdt fixing condition is met. For simplicity
Υ is defined such that it denotes any combination of i, r, d and t where any of these
conditions are met and yi

rdt should be fixed.

Υi
rdt = 1 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T :

SE
i + 2 > SR

r ∨ UR
rdt = 1 ∨ UE

id = 1 ∨ UR
r,d,t+NE

i
−1 = 1 ∨ t + NE

i − 1 > tlast

Constraint (4.33), which is defined for all i, r, d and t is only defined for combinations
not found in Υ, as it has no effect when yi

rdt cannot attain a value of 1.
In the same way, all constraints defined for exam i and day d or for censor c

and day d need only be defined when UE
id = 0 and UC

cd = 0 respectively. The same
goes for the one exam per room constraint, which only needs to be defined when the
room is available, i.e. UR

rdt = 0. Lastly, the new constraint ensuring that conflicting
exams are not held simultaneously, and the constraint enforcing breaks, are only
defined for exams that actually have conflicting exams, i.e. |Eν

i | > 0. Including these
conditions in constraint generation helps to avoid generating unnecessary constraints.
With restricted constraint definitions for constraints used for setting fcd, lcd and vcd

it is important that these variables are fixed for censor and day combinations where
corresponding variable setting constraints are not defined; otherwise these variables
are free to attain incorrect values.

Reducing number of non-zeros Because the model is defined such that the
primary decision variable denotes the start of an exam, and not whether or not
the exam is present, some of the constraints as currently defined have to sum over
timeslots to detect the presence of an exam. One consequence is that these constraints
become more complex and have many non-zero coefficients, which drastically increases
the size of the model and causes problems when implemented in modeling software.

In an attempt to counter this problem, the variable xi
rdt is reintroduced as a

non-negative continuous variable with an upper bound of 1. As mentioned in the
beginning of this section (page 22), the xi

rdt variable can be set using the constraint



28 4 Group Project Exam Timetabling

t∑
t′=t−NE

i
+1

yi
rdt′ = xi

rdt ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T (4.35)

Notice that the definition of xi
rdt can be relaxed to non-negative real numbers if

an upper bound of 1 is imposed.
Additionally the xi

rdt variables should be fixed for when exams and rooms are
unavailable as well as for exam and room combinations where room capacity is not
observed.

The xi
rdt variables can then be substituted into constraints to remove the summation

over timeslots to detect yi
rdt variables. These constraints are the one exam per

room constraint (4.15) and the conflicting exams not simultaneously constraint (4.34).
These are are now defined respectively

∑
i∈E

xi
rdt ≤ 1 ∀r ∈ R, d ∈ D, t ∈ T : UR

rdt = 0 (4.36)

∑
j∈Eν

i

∑
r∈R

xj
rdt ≤ |Eν

i | ·

(
1 −

∑
r∈R

xi
rdt

)
∀i ∈ E : |Eν

i | > 0, (4.37)
d ∈ D : UE

id = 0, t ∈ T

The full model for multiple timeslots including all discussed extensions is shown
below.



4.1 Mixed Integer Programming Model 29

Tightened Multiple Timeslots
Minimize: pRSRS + pCGCG + pCMDCMD

+pDND + pLNLT
Subject to:∑
r∈R

∑
d∈D

∑
t∈T

yi
rdt = 1 ∀i ∈ E

t∑
t′=t−NE

i
+1

yi
rdt′ = xi

rdt ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T

∑
i∈E

xi
rdt ≤ 1 ∀r ∈ R, d ∈ D, t ∈ T : UR

rdt = 0∑
j∈Eν

i

∑
r′∈R:r′ ̸=r

yj

r′,d,t+NE
i

≤ |Eν
i | ·
(
1 − yi

rdt

)
∀i ∈ E : |Eν

i | > 0, r ∈ R, d ∈ D,
t ∈ T : Υi

rdt = 0∑
j∈Eν

i

∑
r∈R

xj
rdt ≤ |Eν

i | ·

(
1 −

∑
r∈R

xi
rdt

)
∀i ∈ E : |Eν

i | > 0,
d ∈ D : UE

id = 0, t ∈ T

fcd ≤
∑
r∈R

∑
t∈T

(
t · yi

rdt

)
+ tlast ·

(
1 −

∑
r∈R

∑
t∈T

yi
rdt

)
∀c ∈ C>1,
i ∈ Ec, d ∈ D : UE

id = 0

lcd ≥
∑
r∈R

∑
t∈T

(
t + NE

i − 1
)

· yi
rdt ∀c ∈ C>1,

i ∈ Ec, d ∈ D : UE
id = 0

lcd ≥ fcd ∀c ∈ C>1, d ∈ D : UC
cd = 0∑

i∈Ec

∑
d∈D

∑
t∈T

yi
rdt ≤ Nc · ucr ∀c ∈ C>1, r ∈ R

∑
i∈Ec

∑
r∈R

∑
t∈T

yi
rdt ≤ Nc · vcd ∀c ∈ C>1, d ∈ D : UC

cd = 0

wi ≥
∑
r∈R

∑
d∈D

∑
t∈T

yi
rdt · (t + NE

i − tlate) ∀i ∈ E∑
i∈E

∑
r∈R

∑
t∈T

yi
rdt ≤ |E|bd ∀d ∈ D∑

i∈E

∑
r∈R

∑
t∈T

yi
rdt ≤ |E|

∑
i∈E

∑
r∈R

∑
t∈T

yi
r,d+1,t ∀d ∈ D \ dlast

xi
rdt ≤ 1 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T



30 4 Group Project Exam Timetabling

Tightened Multiple Timeslots - Continued

yi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : Υi

rdt = 1
xi

rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : SE
i + 2 > SR

r

xi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : UR

rdt = 1
xi

rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : UE
id = 1

fcd = 0 ∀c ∈ C>1, d ∈ D : UC
cd = 1

lcd = 0 ∀c ∈ C>1, d ∈ D : UC
cd = 1

vcd = 0 ∀c ∈ C>1, d ∈ D : UC
cd = 1

yi
rdt ∈ B ∀i ∈ E, ∀r ∈ R, ∀d ∈ D, ∀t ∈ T

xi
rdt ∈ R+ ∀i ∈ E, ∀r ∈ R, ∀d ∈ D, ∀t ∈ T

ucr ∈ B ∀c ∈ C>1, ∀r ∈ R

vcd ∈ B ∀c ∈ C>1, ∀d ∈ D

fcd ∈ R+ ∀c ∈ C>1, ∀d ∈ D

lcd ∈ R+ ∀c ∈ C>1, ∀d ∈ D

bd ∈ B ∀d ∈ D

wi ∈ B ∀i ∈ E



4.2 Data 31

4.2 Data
Data has been made available by RUC in the form of the established group project
exam plan for June of 2017. A separate plan is made in an Excel document for each
of the four departments independently of each other. Each plan is formatted in the
same manner with every row being associated with an individual exam and data for
each exams arranged in columns. Each column retains data for a specific aspect of the
exam, such as the responsible planner, names of students, title of the group project
and so on. Much of the data is of a practical nature needed by planners to ensure
all formalities are taken care of. Columns of especial importance for this project are
described here.

Each group project is assigned an unique group exam number, which is used
for reporting grades in the central study administrative system. Since this number
is unique it is used as an identifier for each exam. The number of students in the
group is also recorded and used to define the exam time requirement. As described
in Section 3.1.2, between 20 and 30 minutes are given per student for the exam.
Although it does not fit exactly for all exams in the established plans, 30 minutes for
each student of the group seems to be a good estimate of the general examination
duration. Therefore, in this project, an assumption of 30 minutes per student is used
to calculate the total time required by each exam. The supervisor and censor
for each exam is also noted and is used to generate an overview of which exams each
censor must attend and which exams are in conflict with each other. Lastly, the room,
day, start and end time for each exam is given. These data are used to determine
how many days the timetable spanned, how many rooms were used and to get a
better understanding of the time requirement of exams. The capacity of each room is
unavailable, but is estimated by taking the largest group (number of students) using
the room and adding two (supervisor and censor).

Staff at RUC would like timetabling to be done in 15 minute intervals and therefore
timeslots are defined accordingly. Since each exam is assumed to require 30 minutes
per student, the total number of timeslots for each exam is given as the number
of students multiplied by two. If it would be beneficial to change the timeslots to
span less time, this can easily be implemented by multiply the number of required
timeslot for each exam with the ratio of 15 minutes to the new timeslot length. For
example in the case that timeslots should span 5 minutes, the new number of required
timeslots for each exam is calculated by multiplying the current number of timeslots
by 15/5 = 3. It is important to ensure that only integer amounts of timeslot are
needed, either by the choice of timeslot length or by rounding. However, planning in
intervals of less than 15 minutes seems superfluous.

As mentioned, data for each of the departments is available separately as a
consequence of current planning practices. However, it would be interesting to be
able to plan all exams across all departments at once. Therefore all data has been
collected into one dataset designated “ALL”. While combining all data, special care is
put into ensure that there are no inconsistencies regarding people names (for example
a person missing a middle name in one dataset) such that exam conflicts are observed



32 4 Group Project Exam Timetabling

correctly.

An overview of each of the dataset sizes is shown in Table 4.3. For all datasets
it is assumed that exams can be scheduled from 8:00 to 19:00. This results in 45
timeslots each day.

Attribute IKH IMT INM ISE ALL
|C| 164 124 43 158 469
|C>1| 128 79 20 120 339
|S| 133 107 45 108 259
|E| 510 313 78 515 1,416∑

i,j∈E νij 2,053 1,128 87 2,937 7,126
|R| 60 25 18 41 141
|D| 20 19 10 20 20
|T | 45 45 45 45 45

Table 4.3: Set sizes and total number of conflicts for each dataset.

4.2.1 Generated Data

Most data used in modeling can be extracting from the available plans (with minor
assumptions). But no data is directly accessible on the unavailability of rooms or
persons involved with the exams. This data is generated as discussed here.

4.2.1.1 Room Unavailability

Room unavailabilities are considered on a timeslot basis, but for simplicity three
unavailability patterns are used. Rooms can either be unavailable for the first half,
second half or for a whole day. Unavailability is assigned by going through all
room and day combinations and assigning a pattern at random. For room-day
each combination there is a 10% chance for each of the unavailability patterns to
be assigned and thus 70% chance for no unavailabilities.

RUC usually have rooms reserved for group project exams within the examination
period. It is confirmed by RUC, that the number of fully available days for these
rooms is approximately 70%. An overview of room unavailabilities is shown in Table
4.4



4.2 Data 33

Unavailability pattern IKH IMT INM ISE All
First half 9.67% 9.05% 10.56% 10.24% 9.75%
Second half 8.75% 9.26% 8.33% 10.73% 10.39%
All day 10.00% 9.26% 11.67% 10.61% 9.75%
No unavailability 71.58% 72.42% 69.44% 68.41% 70.11%
Total % unavailable 19.22% 18.41% 21.14% 21.09% 19.82%

Table 4.4: Percent distribution of generated room unavailability patterns for all
room/day combinations for each dataset. Total % unavailable denotes the total
percent of timeslots made unavailable due to room unavailability.

4.2.1.2 Exam Unavailability
In practice, planners schedule exams by looking at the calendars of supervisors to
determined when they are available and offer about three to five of these days to
potential censors. Therefore, currently in practice, each exam has only very few days
on which it can be held and days on which the supervisor is unavailable are not even
considered.

To generate exam unavailabilities simulating the current practice, a random number
between three and five (inclusive) is assigned to each censor. This is the number of
days on which a censor can attend an exam. It is assumed that a supervisor is
available on all days. Randomly chosen days are marked available for each censor
observing the randomly assigned limit. Each exam is then only available on days
where the assigned censor is available. Thereby exam unavailability UE

id is directly
decided by censor unavailability UC

cd.
Some censors are also supervisors and are therefore also expected to be flexible

regarding examination days. Just as all other supervisors, these censors are assumed
to be available on all days which is observed when generating data. An overview of
exam unavailabilities is shown in Table 4.5.

Exam unavailabilities can also be used to ensure practical feasibility in the rare
case that students have other exams scheduled in or around the group project examination
period. If students have other exams, then their group project exam should be marked
unavailable on those days. In order to ensure students have some time to prepare for
their exams, the group exam could also be set as unavailable in a couple of days around
their other exam. It is rather rare that this happens and therefore the randomly
generated exam unavailability data does not consider student unavailability.

Set IKH IMT INM ISE All
Total exam/day combinations 10,200 5947 780 10,300 28,320
% unavailable 61.38% 65.33% 58.85% 59.15% 62.60%

Table 4.5: Percent of exam/day combinations which are unavailable for each dataset.



34 4 Group Project Exam Timetabling

4.2.2 Dataset conflicts
If it is the case that each department uses no shared resources (rooms or persons), then
the group project exam timetabling could be handled separately at each department
without any consideration of the others. In Table 4.6 an overview of the number
of rooms and persons used in each of the department plans is shown. This also
includes the number of conflicts; ie. rooms or people whom are used in multiple
department plans. A total of 144 rooms are used where 141 of them are only used
in one department and three are used in multiple. The same numbers are presented
for censors, supervisors and “unique persons” - people whom are both censor and
supervisor and are only counted once. Therefore “unique persons” is not the sum
of censors and supervisors. A total 751 unique people are included in the group
project exam timetable across all departments, where 60 (7.99%) of them appear in
multiple timetables. This is too many people conflicts to ignore and it is not possible
to timetable exams for each department completely independently of the others.

A more detailed overview of person conflicts is shown in Table 4.7. This table
shows how many persons are shared between individual department plans. Notice
that this does not sum to 60 as some people are cause for multiple conflicts. The
least conflicting department timetable is INM, which is not surprising considering it
is by far the smallest dataset.

IKH IMT INM ISE Unique Conflicts
Rooms 60 25 18 41 141 3
Censors 164 124 43 158 469 20
Supervisors 133 102 45 108 352 36
Unique Persons 249 211 87 204 691 60

Table 4.6: Overview of number of rooms and individual people used in each
department timetable and number of conflicts.

IKH IMT INM ISE
IKH - 37 0 21
IMT 37 - 6 35
INM 0 6 - 0
ISE 21 35 0 -

Table 4.7: Overview of person related conflicts between each department timetable.



4.3 Model complexity 35

4.3 Model complexity
The model complexity is investigated by examining the number of constraints and
variables defined in the model for each of the datasets. The results are shown in
Table 4.8. The model is especially large for the ALL dataset with more than 38
million variables and 84 million constraints.

The model is implemented in the mathematical modeling software GAMS 24.4.2
and CPLEX is used to solve the model. The variables fixing constraints are not
counted in the total number of constraint because in the GAMS the variables are
fixed using the .FX attribute and the the CPLEX option holdfixed = 1. This makes
CPLEX consider all fixed variables as constants and they are therefore not counted
as variables either.
Since the models are so large they require a lot of memory to build. With 128GB
available memory it is only possible to build the model on the IMT, INM and ISE
datasets; the two remaining dataset require more memory to build.

Including the xi
rdt variables in the model does increase the total number of variables

by a substantial amount. However, it allows for reducing the total number of non-
zeros in the model. Without the xi

rdt variables, the model for the IMT dataset has
220,508,831 non-zeros and with xi

rdt variables 169,377,710. The difference is especially
apparent on the ISE dataset, which can only be built when the xi

rdt variables are
included; requiring more than 128GB memory when not. When the xi

rdt variables
are included, the model for the ISE dataset has a total of 973,493,849 non-zeros.

For models of this size, even solving the Linear Programming (LP) relaxation can
be very difficult. This is investigated in Appendix A. However, since it is not possible
to solve (or even build) the models on some datasets, solution methods relying on
solving the whole model at once are not very promising.



36 4 Group Project Exam Timetabling

Variables IKH IMT INM ISE ALL
yi

rdt 5,630,386 1,369,735 139,231 4,738,964 38,621,482
xi

rdt 6,635,853 1,369,735 161,607 5,533,258 45,165,170
ucr 7,680 1,975 360 4,920 47,799
vcd 1,099 539 78 1,092 2,798
fcd/lcd 1,099 539 78 1,092 2,798
bd 20 19 10 20 20
wi 510 313 78 515 1,146
Total 12,277,746 2,743,394 301,520 10,280,953 38,678,841
Constraints IKH IMT INM ISE ALL
setX 6,635,852 1,577,129 161,606 5,533,258 45,165,169
everyExamHeld 510 313 78 515 1,416
oneExamPerRoom 43,622 17,438 6,388 29,117 101,754
breakIfRoomChange 5,602,797 1,330,829 119,309 4,728,636 38,335,043
conflictingExams 176,489 90,157 12,239 189,000 472,769
setF / setL 3,638 1,824 222 3,679 9,449
LGreaterThanF 1,099 539 78 1,092 2,798
setU 7,680 1,975 360 4,920 47,799
setV 1,099 539 78 1,092 2,798
setW 510 313 78 515 1,416
setB 20 19 10 20 20
pushExamsBack 19 18 9 19 19
fixY 21,909,614 5,320,640 492,568 14,264,536 141,068,918
fixX 20,904,147 5,113,245 470,193 13,470,241 134,525,230
fixF /fixL / fixV 1,461 962 122 1,308 3,982
Total 12,476,973 3,022,917 300,432 10,495,542 84,149,899

Table 4.8: The number of constraints and non-fixed variables for each dataset. The
“Total” row for constraints does not include fixing constraints.

4.4 One Day Model
In this section a MIP model is defined for considering only a single day. This has
multiple potential uses and is used as part of the solution method as explained in
Section 5.1.7.

The model is defined for a fixed day d, under the assumption that a non-empty set
of exams Ed ⊆ E is to be scheduled on day d; observing exam unavailability. Given
the exams to be scheduled, the set of censors to be scheduled Cd ⊆ C is defined as



4.4 One Day Model 37

all censors associated with exams in Ed. The set of exams associated with censor c
on day d is denoted Ecd. The set of censors whom have multiple exams on day d is
denoted C>1

d ⊆ Cd. The number of timeslots that censor c must be assigned on day
d is then Mcd =

∑
i∈Ec∩Ed

NE
i . The set of exams conflicting with exam i on day d is

denoted Eν
id.

When considering a single day only three variable objective terms should be
included: censor gaps, room stability and number of late timeslots. Since Ed ̸= ∅
then day d must have exams scheduled and thereby the cost pD is guaranteed to incur
and is therefore added to the objective function. Variables are no longer defined for d
because d is fixed and the subscript is therefore removed. The daily objective function
terms are calculated as:

RSd =
∑

c∈C>1
d

(∑
r∈R

(ucr) − 1

)

CGd =
∑

c∈C>1
d

(lc − fc + 1 − Mcd)

NLTd =
∑
i∈Ed

wi

It is assumed that all exams in Ed observe exam unavailability and as such UE
id is

unnecessary and therefore removed. Now Υ is defined as

Υi
rdt = 1 ∀i ∈ Ed, r ∈ R, t ∈ T :

SE
i + 2 > SR

r ∨ UR
rdt = 1 ∨ UR

r,d,t+NE
i

−1 = 1 ∨ t + NE
i − 1 > tlast

Constraints for setting vcd and bd and for pushing exams back are removed as they
are not necessary when only considering one day. All other constraints are amended
where needed.

It is important to notice, that room stability (RS) is measured across days which
imposes some cross-day dependencies and restrictions. It is chosen to avoid this
problem by ensuring, that a solution from the One Day Model cannot worsen the
room stability objective, by enforcing that censors can only use the rooms which they
are already assigned that day. This restriction guarantees that a solution to the One
Day Model cannot increase the total room stability cost. Parameter γcrd is used to
indicated that censor c uses room r on day d by setting it to 0, and 1 otherwise. This
parameter is then used for fixing of ucr variables.

The One Day Model is seen below.



38 4 Group Project Exam Timetabling

One Day Multiple Timeslots
Minimize: pRSRSd + pCGCGd + pLNLTd + pD

Subject to:∑
r∈R

∑
t∈T

yi
rt = 1 ∀i ∈ Ed

t∑
t′=t−NE

i
+1

yi
rt′ = xi

rt ∀i ∈ Ed, r ∈ R, t ∈ T

∑
i∈Ed

xi
rt ≤ 1 ∀r ∈ R, t ∈ T : UR

rdt = 0

∑
j∈Eν

i
∩Ed

∑
r′∈R:r′ ̸=r

yj

r′,t+NE
i

≤ |Eν
i | ·
(
1 − yi

rt

)
∀i ∈ Ed : |Eν

id| > 0, r ∈ R,
t ∈ T : Υi

rdt = 0∑
j∈Eν

i

∑
r∈R

xj
rt ≤ |Eν

i |

(
1 −

∑
r∈R

xi
rt

)
∀i ∈ Ed : |Eν

i | > 0

fc ≤
∑
r∈R

∑
t∈T

(
t · yi

rt

)
+ tlast ·

(
1 −

∑
r∈R

∑
t∈T

yi
rt

)
∀c ∈ C>1

d , i ∈ Ecd

lc ≥
∑
r∈R

∑
t∈T

(
t + NE

i − 1
)

· yi
rt ∀c ∈ C>1

d , i ∈ Ecd

lc ≥ fc ∀c ∈ C>1∑
i∈Ecd

∑
t∈T

yi
rt ≤ Nc · ucr ∀c ∈ C>1

d , r ∈ R

wi ≥
∑
r∈R

∑
t∈T

yi
rt · (t + NE

i − tlfirst) ∀i ∈ Ed

xi
rt ≤ 1 ∀i ∈ Ed, r ∈ R, t ∈ T

yi
rt = 0 ∀i ∈ Ed, r ∈ R, t ∈ T : Υi

rdt = 1
xi

rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : SE
i + 2 > SR

r

xi
rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : UR

rdt = 1
xi

rdt = 0 ∀i ∈ E, r ∈ R, d ∈ D, t ∈ T : UE
id = 1

ucr = 0 ∀c ∈ C>1
d , r ∈ R : γcrd = 1

yi
rt ∈ B ∀i ∈ Ed, r ∈ R, t ∈ T

xi
rt ∈ R+ ∀i ∈ Ed, r ∈ R, t ∈ T

ucr ∈ B ∀c ∈ C>1
d , r ∈ R

fc ∈ R+ ∀c ∈ C>1
d

lc ∈ R+ ∀c ∈ C>1
d

wi ∈ B ∀i ∈ Ed



CHAPTER 5
Solution Method

For very difficult problems it may not be possible to use standard solvers or current
mathematical techniques to find optimal solutions. Because of the model complexity
it is decided to focus on a programmatic solution approach using a metaheuristic. In
this chapter the metaheuristic design and implementation is described.

5.1 Adaptive Large Neighborhood Search
In this project the Adaptive Large Neighborhood Search (ALNS) metaheuristic is
applied to the problem. ALNS was first introduced in (Ropke and Pisinger, 2006)
for solving the pickup and delivery problem with time windows; an NP-hard special
case of the traveling salesman problem. This metaheuristic is very robust and good
at navigating problems with a very large and constrained solution space. The general
ALNS framework is described in section 5.1.1. Section 5.1.3 provides a description of
the implemented destroy and repair methods. Then in sections 5.1.5 and 5.1.6 more
details about the design and implementation of the ALNS heuristic is given.

5.1.1 General ALNS
The ALNS metaheuristic is an extension of the Large Neighborhood Search (LNS)
introduced in (Shaw, 1998). LNS is a heuristic that iteratively creates new solutions
through the use of a destroy and repair method. A destroy method removes part of the
solutions and the repair method attempts to rebuild the solution. Destroy methods
often include a stochastic element, to ensure the search is moved in new directions
each iteration. Repair methods are often greedy heuristics, but it is possible to
implement more complex methods. However, care should be taken to ensure that the
repair methods often rebuild feasible solutions. The destroy method can remove a
large part of the solution and thus, in combination with the repair method, defines a
very large neighborhood to examine.

Instead of using the same destroy and repair method each iteration (as in LNS),
the ALNS heuristic chooses in a probabilistic manner a destroy and repair method
from a set of predefined methods. Once both methods have been applied, the
resulting solution is evaluated and the probability of choosing the used methods
again is adjusted based on performance. That is, methods that perform well become
more likely to be chosen in subsequent iterations and oppositely poor performing
methods become less likely to be chosen. The combination of multiple destroy and



40 5 Solution Method

repair methods define a larger neighborhood than in the LNS by allowing for multiple
solution neighborhoods. The probability system is then used to dynamically guide
the heuristic towards exploring neighborhoods which have previously been rewarding
and to avoid neighborhoods that have not.

Algorithm 1 General ALNS
1: Generate feasible solution x
2: Set weights ρ− = (1, 1, . . . , 1), ρ+ = (1, 1, . . . , 1)
3: Set xb = x
4: while stop criterion not met do
5: Select destroy method d ∈ Ω− using ρ−

6: Select repair methods r ∈ Ω+ using ρ+

7: Apply destroy and repair methods xt = r(d(x))
8: if accept(xt, x) then
9: x = xt

10: end if
11: if cost(xt) < cost(xb) then
12: xb = xt

13: end if
14: Update ρ− and ρ+

15: end while
16: return xb

Pseudocode for the ALNS heuristic is shown in Algorithm 1. Three variables are
used in the algorithm to store solutions; xb, x and xt. The best solution found is xb,
x is the current solution and xt is the temporary solution generated from applying a
destroy method followed by a repair method. The set of destroy and repair methods
is denoted Ω− and Ω+ respectively. Destroy methods are denoted d ∈ Ω− and each
has an associated weight ρ−. This is the same for each repair method r ∈ Ω+ with
associated weight ρ+.
The heuristic initially generates a feasible solution x and initializes the best seen
solution xb = x. Each destroy and repair method is given the same initial weight of
1. The algorithm runs for as long as a given stop criterion is not met; typically either
time or number of iterations. In each iteration a destroy and repair method is picked
using roulette wheel selection. The probability ϕ−

i for selecting destroy method i is
calculated as

ϕ−
i = ρ−

i∑|Ω−|
k=1 ρ−

k

and likewise the probabilities for the repair methods.
The chosen destroy and repair method is applied to the current solution to give the
temporary solution xt. This solution is then either kept or discarded pending an accept
function. One possibility is to only accept improving solutions but another option is



5.1 Adaptive Large Neighborhood Search 41

to used the acceptance criterion from the metaheuristic Simulated Annealing as done
in (Ropke and Pisinger, 2006). The latter option is chosen in this project (see Section
5.1.5). If the temporary solution is better than the previously best observed solution,
then xb is updated. Lastly, the weights of the used destroy and repair methods are
updated using the different levels of rewards:

ω1: solution is new global best
ω2: solution is accepted and better than current solution
ω3: solution is accepted and worse than current solution
ω4: solution is rejected

The weights are then updated using the following formula

ρ− = λρ− + (1 − λ)ω

ρ+ = λρ+ + (1 − λ)ω

where ω is the reward given the quality of the temporary solution and λ ∈ [0, 1]
is the decay parameter which controls how sensitive the weights are to changes in
performance. If the decay parameter is large (close to 1), then more weight is given
to the previous performance of the method than the reward of the current iteration.
The aim of the adaptive weight adjustments is to make the heuristic robust by allowing
it to select weights that work well for the given instance of the problem being solved.
Methods that find new and improving solutions should of course be rewarded (ω1
and ω2). Reward ω3 is given to methods that result in solutions that, even though
they are not improving, help to bring the search forward. In the case of using the
simulated annealing acceptance criterion these are solutions that are not “too bad”
compared to the current solution. Other options are also possible, like in (Ropke
and Pisinger, 2006) where non-improving but not previously unseen solutions are
rewarded ω3. Methods that result in rejected solutions are “punished” by receiving
the lowest value ω4.

5.1.2 Delta Evaluation
The most computationally expensive part of applying a metaheuristic to solve problems
is evaluation of solutions (Stidsen and Reinhardt, 2016). Therefore delta evaluation is
used to reduce the time consumption by considering changes instead of reevaluating
whole solutions.

In the Group Project Exam Timetabling problem at RUC the quality of a solution
is measured on five separate objectives. Three objectives are strictly censor related;
censor room stability, censor wait time (gaps) and number of assigned days for each
censor. Another objective is the number of late timeslots used, which is counted for
each exam. The last objective is the total number of days used in the schedule. The
total timetable score is a weighted summation of these separate objectives.
In this implementation, the total contribution of each censor (on the three separate



42 5 Solution Method

objectives), each exam and each day is stored. This is beneficial because it allows
for easily identifying censors and exams whom incur costs and rank them based on
cost. When destroying and repairing the solution, the contribution of affected censors,
exams and days is adjust and changes are added to the total cost. An additional
benefit of delta evaluation, is that changes can easily be undone since scheduling and
unscheduling exams can be done in reverse to return to the previous solution.

5.1.3 Destroy and Repair Methods
In total 12 destroy and two repair methods are implemented. Some destroy methods
are very similar to each other, with some only varying in their degree of destruction.
In the following all implemented methods are described and method overviews are
given in Table B.1 and B.2 i Appendix B.2.

5.1.3.1 Destroy Methods
The implemented destroy methods are designed such that some are meant for intensifying
and other for diversifying the search through randomness. Additionally, care is put
into ensuring a varying degree of destruction, such that the adaptive layer of the
ALNS can adjust how aggressive the search is.

Unschedule Random Exams This is the most simple destroy method employed,
which simply removes n randomly picked exams from the schedule. Three instances
of the destroy method is included; to each a random number is passed in the interval
[3, 10], [11, 25], and [26, 40] respectively.

Unschedule Day This destroy method unschedules all exams scheduled on a given
day. It is included in three different versions; one that unschedules a random day,
one that unschedules the day with the least amount of scheduled exams and one that
unschedules the first day used.

Unschedule Room used by Censor with most CMD This method targets
the censor with the highest CMD cost by looking at the rooms and days on which
this censor is scheduled. All exams scheduled in these room/day combinations are
unscheduled.

Unschedule Censor with most CMD Unschedules all exams for the censors with
the highest CMD cost. The number of censors to unschedule is picked at random in
the interval [1, 5].

Unschedule Costly Censors Unschedules all exams for the censors with the
greatest contribution to the total cost. The number of censors to unschedule is picked
at random in the interval [1, 5].



5.1 Adaptive Large Neighborhood Search 43

Unschedule Late Exams Unschedules all exams that contribute to the NLT cost,
i.e. all exams scheduled in timeslots defined as late.

Unschedule Random Censors Unschedules all exams associated with a number
of censors picked at random. Two instances of this destroy method are included,
where the number of censors is picked at random in the interval [1, 3] and [4, 10].

5.1.3.2 Repair Methods
Both repair methods are greedy heuristics that only differ in the size of the available
neighborhood.

Greedy Schedule Takes all unscheduled exams and tries to schedule them one
at a time in random order. When attempting to schedule an exam the heuristic
considers days going backwards through days available for that exam. Only rooms
with sufficient capacity are considered and in order of increasing capacity. Finally
looping through timeslots from first to last to check if the exam can be scheduled
such that it begins in that day, room and timeslot combination, and how much that
scheduling would cost. If an exam can be scheduled without incurring any cost it is
immediately scheduled and a new unscheduled exam is chosen. If the exam can be
scheduled at some cost it is considered a possible candidate scheduling, and is saved
if it is the cheapest candidate scheduling seen. If the heuristic makes it through all
available days, rooms and timeslots without finding a zero cost scheduling, then the
best candidate scheduling is chosen. In the case that the exam could not be scheduled
anywhere (no candidate scheduling found), the exam is removed from the set of exams
to schedule. Pseudocode for the Greedy Repair Method is seen in Algorithm 2.

Strict Greedy Schedule This repair method, as the name implies, is a more
strict version of the Greedy Schedule heuristic. Instead of at most considering each
exam once, the Strict Greedy Schedule heuristic goes through all exams until either
a scheduling of zero cost is found or until all exams have been checked. In the latter
case, the exam scheduling with the smallest cost is scheduled. If it is not possible to
schedule any of the remaining unscheduled exams, the heuristic stops.

As described in the following section, the Strict Greedy Schedule heuristic is
used for constructing an initial solution. When used as a repair method, the set
of unscheduled exams is shuffled before being passed to the heuristic, such that the
order of exams is random..

The pseudocode is very similar to the Greedy Schedule heuristic, with the greatest
difference being that exams are not picked at random and the addition of a loop to
consider all exams instead of just one. The pseudocode for the Strict Greedy Schedule
heuristic is shown in Algorithm 4 in Appendix B.1.



44 5 Solution Method

Algorithm 2 Greedy Schedule
1: Given set V of exams to schedule
2: while |V | > 0 do
3: pick random exam i ∈ V
4: candidateCost = ∞, candidateScheduling = ∅
5: for each day d going backwards through available days do
6: for each room r with sufficient capacity in order of increasing capacity do
7: for t = 0 to tlast do
8: if can schedule i in {r, d, t} then
9: if cost of scheduling = 0 then

10: schedule i in {r, d, t}
11: V = V \ i
12: break to pick new unscheduled exam
13: else if cost of scheduling < candidateCost then
14: candidateScheduling = {i, r, d, t}
15: candidateCost = cost of scheduling
16: end if
17: else
18: if other exam scheduled at this time in this room then
19: t = timeslot following end of other exam
20: end if
21: end if
22: end for
23: end for
24: end for
25: if i has not been scheduled and candidateScheduling ̸= ∅ then
26: schedule i using candidateScheduling
27: else if no candidateScheduling found then
28: V = V \ i
29: end if
30: end while

5.1.4 Initial Solution Construction
The Strict Greedy Schedule heuristic is used to construct the initial solution used
in the ALNS. However, if this heuristic is used alone, the constructed solution for
some of the datasets are not feasible. This is chiefly due to the “push exams back”
constraint, which does not allow for exams to be scheduled on a day unless there
are exams scheduled on the following day. Initially the schedule is empty and as
such, only exams that are available for scheduling on the last day can be scheduled.
Furthermore it can be difficult to schedule exams that have very early last available
days. For example consider a timetable spanning 20 days and an exam that is only
available on days 0, 1, 2, 3, 4. In order to be able to schedule this exam, the rest of the



5.1 Adaptive Large Neighborhood Search 45

timetable must at least cover days 5 to 19. This is not guaranteed when using Strict
Greedy Schedule.
To circumvent this problem the empty timetable is first “seeded” using exams associated
with censors whom only have one exam, i.e. censors who cannot incur censor related
costs. The timetable is seeded such that only one of these exams is scheduled on
each day. It is possible to initially fully seed an empty solution for all given datasets.
By starting with seeded solutions, it is much easier for the Strict Greedy Schedule
heuristic to schedule exams immediately, which leads to better initial solutions.

Exams are scheduled in a sorted order such that those assumed to be difficult
and/or potentially costly are scheduled first. This is done by first sorting all censors
by number of associated exams in decreasing order. Exams that are exceptionally
long can be difficult to schedule in an already very filled timetable. Thus, censors
with an exam that requires more than half a day (22 timeslots), are moved to the
front of the scheduling queue; observing their initial sorting with regards to number
of exams.

After filling a fully seeded initial solution, the resulting schedule is guaranteed to
spread across all days and with the design of the Strict Greedy Schedule heuristic,
the first days in the schedule are likely to have very few exams. Therefore, after the
empty schedule is seeded and subsequently fully scheduled using the Strict Greedy
Schedule heuristic, the schedule is compressed through a “push back” operation. This
entails looping through all days from the beginning and for each day unscheduling all
exams and attempting to reschedule these exams using the Strict Greedy Schedule
heuristic. If this results in a better schedule, then the changes are kept and otherwise
undone. Regardless the same operations are performed on the following day until
attempted on all days.

Pseudocode for construction of the initial solution is seen in Algorithm 3.

Algorithm 3 Initial Solution Construction
1: Given all exams E, censors C and an empty schedule
2: Seed solution using censors in C \ C>1

3: Sort remaining censors by number of associated exams
4: Move censors with long exams to front (observing order)
5: Schedule all unscheduled exams using Strict Greedy Schedule in given censor

order
6: Perform push back on resulting schedule

5.1.5 Acceptance and Stopping Criteria
To avoid getting stuck in a local minimum, it may be beneficial to allow the accept
function to sometimes accept solutions worse than the current solution. One way to
do so, is to use the acceptance criteria used in simulated annealing. In simulated
annealing a new solution xt found in the neighborhood of the current solution x,
is accepted (for minimization problems) with the probability of e(cost(xt)−cost(x))/T



46 5 Solution Method

where T is the temperature. The temperature is initially set to Tstart and is decreased
in every iteration using T = T ·α where α ∈ [0, 1] is the cooling rate parameter. Using
this acceptance criteria it is more likely to accept worse solutions for larger values of T ;
which is decreased during the search. Thus the heuristic is allowed more freedom to
traverse the solution space through the acceptance of worse solutions in the beginning
of the search.

Following the example set in (Ropke and Pisinger, 2006), the start temperature
Tstart is set using the initial solution such that a new solution that is w% worse than
the current solution is 50% likely to be accepted. The parameter w needs to be set
and is denoted the start temperature control parameter. Given the current solution x
and a new solution xt, the amount xt is worse in percent is calculated by

w = cost(xt) − cost(x)
cost(x)

⇔ cost(xt) = (1 + w) · cost(x)

The expression on the right is inserted in the simulated annealing acceptance probability
formula with acceptance probability 0.5. Then T is isolating

0.5 = e(cost(x)−(1+w)·cost(x))/T = e−w·cost(x)/T ⇔ T = −w · cost(x)
ln(0.5)

So the start temperature Tstart is calculated using the initial solution xi as

Tstart = −w · cost(xi)
ln(0.5)

The ALNS heuristic is allowed to run for a predetermined amount of time. Thereby
the stopping criteria is when time runs out.

5.1.6 Extensions
Two extensions to the original ALNS framework are implemented in the hope of
achieving better results.

5.1.6.1 Pairwise
The weights of both the destroy and repair method are adjusted in each iteration
based on the overall performance of both methods. In general it is possible that
there are some destroy and repair methods that, due to their design, simply do not
work well together. The performance of a single destroy or repair method depends
heavily on the other method it is used in conjunction with. Thereby, otherwise well
performing methods, may be “punished” simply because it was “unlucky” to be paired
with a method that does not complement it well.

To avoid this problem, a variation of the weight system is introduced that considers
all destroy and repair methods in pairs instead of separately. With 12 destroy methods
and two repair methods this totals 24 destroy/repair pairs. As before rewards are



5.1 Adaptive Large Neighborhood Search 47

given based on performance, but with weights now considered for pairs these are
updated by

ρ± = λρ± + (1 − λ)ω

and the probability ϕ±
i for selecting destroy/repair pair i is calculated by

ϕ±
i = ρ±

i∑|Ω±|
k=1 ρ±

k

where Ω± is the set of destroy/repair pairs, i.e. the Cartesian product of Ω− and Ω+.
In this implementation the two available repair methods are very similar and as

such it is unlikely that there are destroy and repair method combinations that are
more incompatible than others.

An overview of all pairs is shown in Table B.3 in Appendix B.2.

5.1.6.2 Max Destroy Limit
Another initiative is to reduced time requirement by the introduction of a max destroy
limit. Some of the destroy methods are (potentially) very aggressive. For example
when working with the ALL dataset and unscheduling a random day, it is possible
to remove more than 300 exams; approximately 20% of all exams. If followed by the
Strict Greedy Schedule heuristic this could be very time consuming.

Therefore a max destroy limit parameter ξ is introduced to control the degree of
destruction at an overall level. When this limit is imposed, a destroy method is not
allowed to destroy more than ξ exams. All destroy methods are designed to remove
exams in random order, such as to avoid unfortunate situations where the exact same
exams are remove repeatably when the same destroy method is imposed.

Each destroy method is designed with the intention of allowing the search to go
in some specific direction. Imposing a limit on the degree of destruction may effect
some destroy methods more than others. However, even when they are limited, they
still allow the search to move closer to their intended goal.

5.1.7 Using the One Day Model
Given a solution produced by the ALNS heuristic the One Day model, as introduced
in Section 4.4, can be used to evaluate and improve the solution by considering each
individual day separately. This model can be used to determine if the found solution
is, in some sense, locally optimal. A day from the given solution is extracted and
inserted into the One Day Model and solved. Notice that the daily schedule provides
a feasible solution, which should make the MIP easier to solve. If the found single
day schedule is better, then it is reinserted in the ALNS identified solution. Due to
the censor-room restrictions imposed, the results returned from the One Day Model
cannot result in a worse solution. So if a single day solution is better then the overall
solution will also improve.



48 5 Solution Method

This has two potential uses in conjunction with the ALNS heuristic. The One Day
Model could be used as part of the ALNS as a combined destroy and repair method,
such that a whole day is unscheduled and rebuilt using the MIP solution. Another
potential use is as a post-processing tool for ALNS found solutions. Each individual
day from the ALNS found solution is completely unscheduled and repaired using the
corresponding MIP solution. This may be able to produce a better solution than
otherwise found through the ALNS. If no improvements can be found, then it can
be concluded that the given solution is a type of local optimum with regard to daily
censor gaps, censor room stability and number of late timeslots.

Because the One Day Model is potentially very time consuming, it is decided to
not use as part of the ALNS heuristic, but purely as a post-processing tool.



CHAPTER 6
Computational Tests

In this chapter all tests related to the implementation of the ALNS heuristic are
discussed. In Section 6.1 the consequences of different construction algorithm settings
are examined. Then in Section 6.2 the parameters used in the ALNS are tuned.
Finally in Section 6.3 the parameter settings found through tuning are used to test
performance and examine some characteristic of the ALNS implementation. Additionally,
the best ALNS solutions are put through post processing as discussed in Section 5.1.7.

The implementation is tested both with and without the pairwise extension discussed
in Section 5.1.6.1. This gives both a pairwise ALNS and a non-pairwise ALNS.

The cost parameters are user defined in order to allow freedom for planners to
weight the different objectives to their liking. The cost parameter settings used for
testing here are shown in Table 6.1.

Parameter pRS pCG pCMD pD pL

Value 3 1 10 15 3
Table 6.1: The cost parameters used for testing.

6.1 Construction Algorithm
Construction of an initial solution is done as described in Section 5.1.4. Here the
time requirement and quality of the constructed solution is examined depending
on different seeds and whether or not the push back operation is applied. The
construction heuristic is tested with no seed, a “semi” seed and a full seed; all with
and without push back. The semi seed is where the initially empty schedule is seeded
from the earliest, last censor day (i.e. the first day that is a censors’ last available
day) to the last timetable day. Thereby it does not open the initial schedule as much
as the full seed, with the intention of ending with less used days or exams that should
be pushed back.

The results are shown in Table 6.2. Although there is some stochasticity involved
with the push back operation, the difference in initial constructed solution cost is
generally small. Only when using a full seed does the construction algorithm produce
feasible start solutions for all datasets. The table shows that the larger the seed, the
longer it takes to construct the initial solution. This is because each exam has more
feasible placements in the timetable, thus increasing the time it takes to find its’ best



50 6 Computational Tests

scheduling. The construction of an initial solution for the ALL dataset is especially
time consuming, requiring more than 15 minutes when using a full seed. The push
back operation requires almost five additional minutes and only results in a cost
reduction of 4. In all cases, the push back operation leads to better solutions, however,
if time is limited it is not important to perform the push back as the improvements
are minute.

IKH IMT INM
Seed Pushback Cost Time (s) Unscheduled Cost Time (s) Unscheduled Cost Time (s) Unscheduled
No No - 15 19 763 2 - 174 1 -
No Yes - 23 19 725 5 - 166 1 -

Semi No - 34 19 667 6 - 178 1 -
Semi Yes - 43 19 658 6 - 161 1 -
Full No 1,324 52 - 733 7 - 219 1 -
Full Yes 1,293 60 - 640 9 - 174 1 -

ISE ALL
Seed Pushback Cost Time (s) Unscheduled Cost Time (s) Unscheduled
No No - 10 7 3,589 216 -
No Yes - 21 7 3,306 502 -

Semi No - 19 7 3,330 615 -
Semi Yes - 28 7 3,312 845 -
Full No 1,292 41 - 3,038 990 -
Full Yes 1,251 51 - 3,034 1.278 -

Table 6.2: An overview of the initial solutions generated from the construction
algorithm using different types of seed and with and without the push back operation.

6.2 Parameter Tuning
Parameter tuning is performed by evaluating the performance of the heuristic for
every possible parameter combination. Every combination is allowed to run for 10
minutes and repeated 10 times where each time the best timetable cost is recorded.
The runs are performed in parallel on the DTU High Performance Computing (HPC)
clusters. The ALNS heuristic is implemented in Java and each parameter tuning run
is done on one core of an Intel Xeon Processor E5-2660 v2 of 2.80GHz with a RAM
limit of 2GB running the Scientific Linux 6.4 operating system.

To evaluate the performance of a parameter combination the average gap E (in
percent) and spreading σ is calculated for every parameter combination as follows

E = 1
N

N∑
i=1

zi − z∗

zi
· 100%

σ =

√∑N
i=1 (zi − µ)2

N

where N is the number of runs, zi is the best objective value found in the i’th run,
z∗ is the best know solution value and µ = 1

N

∑N
i=1 zi is the average value for all 10

runs.



6.2 Parameter Tuning 51

6.2.1 Tuning Dataset

Unfortunately the number of available datasets is very limited and the sets themselves
very different. It is interesting to evaluate the performance of the solution method on
the ALL dataset, as this dataset provides the most difficult version of the problem.
However, since the ALL dataset is a combination of all others, there is no other
dataset with similar characteristics to use as a training dataset. The ISE and IKH
datasets are the most similar datasets, where the IKH set is only slightly larger in
most aspects, but the ISE dataset is more constrained by exam conflicts.

Parameter tuning and testing is carried out in two separate tracks; one with the
ALL dataset and one with all others. Thus, parameter tuning is performed on the
ALL dataset and the best parameter combination found is then also used for testing on
the ALL dataset. Although this carries the risk of overfitting, it is done because there
are no other comparable datasets. Therefore parameter tuning is also done on the
ISE set and the results then used for testing on the remaining datasets. Performing
these separate tracks of tests should provide better insight than only doing one.

6.2.2 Overview of parameters

In order to make parameter tuning less cumbersome, it is decided to fix the reward
weight parameters ω1, ω2, ω3 and ω4 following the example set in (Ropke and Pisinger,
2006); that is ω1 = 33, ω2 = 9, ω3 = 13 and ω4 = 1. In (Ropke and Pisinger,
2006) awards are given to previously unseen solutions in the following manner; ω1
for a new global best, ω2 for a previously unseen and improving solution and ω3
for a previously unseen and worsening but accepted solution. While it is surprising,
that accepted worsening solutions are reward more than improving solutions, Stefan
Røpke generously clarified through email, that this result is simply because there was
no measurable difference between the parameter settings. His interpretation is, that
it was randomness that determined ω2 < ω3. This supports the notion that perhaps
this parameter setting is not the most important parameter to fine tune.
Weight ω4 is set to 1 to ensure that there is always some probability of choosing
a method, since the minimum weight possible is then 1. Also let it be noted, that
in this implementation weights are updated every iteration, which is different from
other implementations such as (Ropke and Pisinger, 2006) and (Ribeiro and Laporte,
2012), where weights are updated after a number of iterations.

Parameter tuning is done for both the pairwise and non-pairwise versions of the
ALNS implementation. An overview of the parameter settings used for tuning is
shown in Table 6.3.



52 6 Computational Tests

Parameter Variable Values
Max Destroy Limit ξ 10 25 50 ∞

Decay λ 0.1 0.5 0.9
Cooling Rate α 0.999 0.99975 0.9999

Start Temperature Control w 0.01 0.05 0.10 0.15

Table 6.3: Parameter settings used in parameter tuning.

6.2.3 Parameter Tuning Results
In total, 288 parameter combinations are tested on each dataset and only the most
important results are shown here.

The most influential parameter is by far the max destroy limit ξ. Looking at the
ALL parameter tuning runs, measured on the average gap the 24 best performing
parameter combinations (12 non-pairwise and 12 pairwise) have ξ = 10. Conversely,
out of the 50 worst performing parameter combinations 37 have ξ = ∞ and 13 have
ξ = 50, i.e. the two largest ξ parameter settings tested. The same trend is seen for
parameter tuning on the ISE dataset.
Table 6.4 shows an overview of the average gaps and spreadings for different ξ and
λ combinations for the ALL dataset parameter tuning. Each entry in the table is
the average of all parameter tuning runs for the specified ξ and λ combinations, i.e.
the average across all α and w parameter settings with fixed ξ and λ. This tables
shows that both the average gap and spreading increases when ξ increases almost
independently of the λ setting. The same is the case for the non-pairwise ALNS and
the ISE pairwise and non-pairwise as shown in the tables found in Appendix C.1.

E (%) σ
ξ\λ 0.1 0.5 0.9 0.1 0.5 0.9
10 105.65 107.52 108.71 58.70 55.68 56.47
25 139.59 143.03 147.31 74.49 76.09 67.98
50 152.05 156.93 161.82 75.84 70.67 69.56
∞ 168.57 174.02 178.67 76.76 92.00 98.33

Table 6.4: The mean average gap E (%) and spreading σ across all parameter setting
for α and w with different ξ and λ combinations when parameter tuning the pairwise
ALNS.

The average gap and spreading for all parameter settings with ξ = 10 for the
pairwise ALNS is shown in Table 6.5 and 6.6 respectively. The parameter setting
chosen for further testing with the pairwise ALNS is ξ = 10, λ = 0.9, α = 0.999
and w = 0.01 because this combination has the second lowest average gap of 42.30%
(1.43% from the best) while also having the lowest spreading of 26.30 (16.95 lower
than the combination with the lowest average gap).



6.2 Parameter Tuning 53

For the non-pairwise ALNS the parameter setting chosen for further testing is the
same as for the pairwise. The reason being that this parameter combination results
in the the smallest average gap (40.07%) and the second smallest spreading (42.05).

ξ = 10
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 47.50 49.46 53.80 56.31 40.87 49.06 51.97 55.79 42.30 52.68 51.63 54.73
0.99975 75.33 133.80 141.96 146.66 83.98 139.00 147.91 146.64 98.86 138.11 145.60 147.83
0.9999 123.54 146.65 148.66 144.14 124.81 150.13 149.19 150.93 131.08 145.35 147.51 148.88

Table 6.5: The average gap (%) for all parameter combinations with ξ = 10 on the
ALL dataset with the pairwise ALNS.

ξ = 10
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 64.68 39.03 63.08 49.65 43.25 54.30 67.95 56.14 26.30 64.51 60.94 44.38
0.99975 75.83 75.37 81.58 47.16 89.66 58.48 54.58 45.57 88.49 62.79 67.63 37.60
0.9999 34.60 35.10 58.26 80.04 52.19 53.15 41.00 51.93 58.93 57.14 51.65 57.28

Table 6.6: The spreading (σ) for all parameter combinations with ξ = 10 on the
ALL dataset with the pairwise ALNS.

The parameter tuning on the ISE dataset gives very similar results, and the
parameter combinations chosen for further testing only vary with regard to the w
parameter. For the pairwise ALNS the parameter combination ξ = 10, λ = 0.9,
α = 0.999 and w = 0.10 is chosen because this results in the lowest average gap
(3.54%) and has a low spreading (8.06). For the non-pairwise the settings are the
same except w = 0.05 because this gives the lowest average gap overall (3.01%) and
a very small spreading (6.68).

Average gaps and spreading are shown for all parameter combinations on both
tuning datasets in Appendix C.2. As could be expected, the parameter tuning runs get
much better results (lower average gaps and spreading) on the ISE dataset compared
to the ALL dataset.

The parameter settings used for testing for each dataset are shown in Table 6.7.
The settings found through parameter tuning for the ALL dataset is used on that
dataset and the settings found for the ISE dataset is used on all others.



54 6 Computational Tests

Dataset Pairwise ξ λ α w

IKH No 10 0.9 0.999 0.05
IKH Yes 10 0.9 0.999 0.10
IMT No 10 0.9 0.999 0.05
IMT Yes 10 0.9 0.999 0.10
INM No 10 0.9 0.999 0.05
INM Yes 10 0.9 0.999 0.10
ISE No 10 0.9 0.999 0.05
ISE Yes 10 0.9 0.999 0.10
ALL No 10 0.9 0.999 0.01
ALL Yes 10 0.9 0.999 0.01

Table 6.7: The parameter settings used for testing on each dataset.

6.3 Results
All computations are performed on the HPC cluster using the same setup as explained
in Section 6.2. First overall performance is examined on all datasets. Then the
consequences of the max destroy parameter ξ is discussed and some observations are
made regarding the ALNS implementation. Finally the best ALNS found solutions
are put through post processing. Throughout both the pairwise and non-pairwise
implementations are tested. Note that the numbering of destroy and repair methods/pairs
is shown in Tables B.1 - B.3 in Appendix B.2.

6.3.1 Benchmarking
In order to benchmark the ALNS implementation it is run on all datasets 10 times
using the same initial solution (the solutions found in Section 6.1) and the best
schedule cost is examined. Parameters are set as found through parameter tuning
(see Table 6.7). On the ALL dataset the heuristic is allowed to run for 3 hours and 1
hour on the others. This is because, from a practical perspective it would be allowable
to have the heuristic running for 3 hours (or more), but generally on most datasets,
no improvements are found after the first hour. The results are shown in Table 6.8;
for the ALL dataset the best schedule cost found after 1 hour is also shown.

These results show, that the implemented heuristic is very stable and finds good
timetables. The one hour non-pairwise ALL runs have the largest average gap and
spreading with 8.49% and 21.79 respectively. However within two additional hours
these numbers are brought down to 3.20% and 13.22. For all other datasets the
largest gap and spreading is found for the non-pairwise IKH with values of 3.28% and
10.25. All runs on the INM dataset result in timetables with the best known cost,
showcasing that this is the smaller and easier instance to solve. In fact for each run
the best timetable is found within the first 30 seconds of the search.
For all datasets the difference in performance between pairwise and non-pairwise



6.3 Results 55

ALNS is small but the pairwise version is is better, consistently having both a smaller
average gap and spreading. The only exception is the ISE dataset where the spreading
is slightly lower for the non-pairwise ALNS.

Dataset Pairwise Solution Values E(%) σ
Best

Known
IKH No 540 536 543 573 543 542 545 543 545 533 3.28 10.25 527
IKH Yes 539 545 546 537 542 536 550 545 539 530 2.64 5.56 527
IMT No 280 283 283 280 283 283 283 283 286 280 0.86 1.80 280
IMT Yes 283 283 283 280 280 280 283 283 280 283 0.64 1.47 280
INM No 110 110 110 110 110 110 110 110 110 110 0.00 0.00 110
INM Yes 110 110 110 110 110 110 110 110 110 110 0.00 0.00 110
ISE No 498 495 495 492 499 495 498 496 504 495 0.96 3.10 492
ISE Yes 492 496 492 501 492 505 503 492 492 498 0.87 4.88 492
ALL No 1,067 1,093 1,063 1,104 1,067 1,043 1,048 1,107 1,050 1,077 8.49 21.79 988
ALL Yes 1,070 1,080 1,082 1,054 1,052 1,042 1,054 1,040 1,060 1,058 7.21 13.57 988
ALL (3h) No 1,007 1,030 1,024 1,039 1,016 995 1,006 1,023 1,020 1,036 3.20 13.22 988
ALL (3h) Yes 1,010 1,032 1,017 1,003 1,026 1,011 1,014 996 1,010 1,014 2.56 9.79 988

Table 6.8: The objective value for each evaluation run as well as average gap, E(%),
and spreading, σ, for each of the datasets. Results are shown for both the one hour
and three hour runs on the ALL dataset.

6.3.2 Consequence of the Max Destroy Parameter
During parameter tuning all “better” parameter combinations had the lowest tested
value of 10 for the max destroy parameter ξ. In fact, measured on lowest average gap,
for the ISE dataset the 59 best parameter combinations had ξ = 10 while on the ALL
dataset it was the 24 best. Here the consequences of ξ are investigated.

Both the pairwise and non-pairwise ALNS is run for three hours on the ALL
dataset with ξ values 10, 50 and ∞ (no limit). The other parameters are set based
on the parameter tuning, such that α = 0.999 and w = 0.01 for all runs. For the
pairwise runs the λ values for ξ = 10, 50 and ∞ are 0.9, 0.1 and 0.1 respectively and
for non-pairwise λ is set to 0.9, 0.5 and 0.5. Through parameter tuning these λ values
are identified as best for the given ξ values with α and w fixed.

The timetable cost per second for all runs is shown in Figure 6.1. For the
same ξ settings, the pairwise and non-pairwise heuristics have very similar total cost
progressions, with an initially very steep curve that flattens and seems to converge
asymptotically. All curves approximately start to flatten after about 500 seconds and
ξ is the deciding parameter as to how fast/deep the initial “dive” is. This is likely
because a smaller ξ value greatly limits the size of the solution neighborhood and
thereby allows for a quicker, but less thorough, search. In Figure 6.2 the timetable
total cost for each iteration is shown. This shows that both cost progression for both
ξ = 50 and ξ = ∞ is very similar and that for these settings each iteration requires
more time. In three hours, the search gets through between approximately 42,000
and 47,500 iterations for ξ = ∞ and through around 143,000 iterations for ξ = 50.
This is not a lot compared to the 340,000 to 396,000 iterations that the ξ = 10 runs
get through. However, all runs start to show the same flattening curve after about
10,000 iterations and therefore, it would require a very long time for the heuristic to



56 6 Computational Tests

reach solutions of the same quality for ξ = 50 or ξ = ∞ as for ξ = 10. Also notice that
after 10 minutes (600 seconds) there is a noticeable difference in the cost between all
ξ settings, indicating that allowing for 10 minute parameter tuning runs is sufficient
to at least distinguish better performing ξ settings.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Time (seconds)

1000

1500

2000

2500

3000

Timetable Total Cost - ALL - 3 Hours

Pairwise 9=10
Pairwise 9=50
Pairwise 9=1
Non-pairwise 9=10
Non-pairwise 9=50
Non-pairwise 9=1

Figure 6.1: The current timetable total cost for each second of a three hour runs
on the ALL dataset with different ξ settings.

0 0.5 1 1.5 2 2.5 3 3.5 4

Iteration #105

1000

1500

2000

2500

3000

3500
Timetable Total Cost - ALL - 3 Hours

Pairwise 9=10
Pairwise 9=50
Pairwise 9=1
Non-pairwise 9=10
Non-pairwise 9=50
Non-pairwise 9=1

Figure 6.2: The current timetable total cost for each iteration of a three hour runs
on the ALL dataset with different ξ settings.



6.3 Results 57

In the cost per second plot all curves are very “ragged” in the beginning due to
simulated annealing acceptance criteria, as worsening solutions are more likely to be
accepted early in the search (see Section 5.1.5). While the initial cooling phase is
longer (in time) for ξ = ∞, the curves still do not become as smooth as for the curves
for the other ξ settings. This is explained by the time requirement of some of the
iterations. With no limit on the degree of destruction, large parts of the solution may
be destroyed and repaired using the more time consuming Strict Greedy Schedule
heuristic. In fact, in the pairwise and non-pairwise ξ = ∞ runs examined, there
are 37 and 42 iterations respectively that require more than a minute. This may be
acceptable if there is potential for a much improved solution, but the data shows that
this did not happen.

The average time requirement dependent on ξ for all destroy-repair pairs on the
ALL dataset is shown in Table 6.9. In general there is an increased time requirement
for larger values of ξ, but for pair 6 the increase is especially large with an average of
almost 9 seconds per iteration for ξ = ∞. The longest time taken for pair 6 is 127.96
seconds for just one iteration. Pair 6 first unscheduled a random day and then uses
the Strict Greedy Heuristic to repair. It is not unusual for some days to have more
than 300 exams when timetabling the ALL dataset and therefore fully rescheduling
that many exams is quit time consuming.

Lastly, reducing the degree of destruction to a maximum of 10 exams effectively
make some destroy methods equal. For example, there are destroy methods that
unschedule random exams in the interval [3, 10], [11, 25] and [26, 40]. For ξ = 10, the
latter two will always remove 10 exams from the schedule. Therefore the methods
will perform equally well and and the probability for removing 10 random exams is
effectively doubled since it present in the method pool twice and both will have the
same weight. This is apparent through the reward distribution and performance of
matching destroy methods after a whole run.

ξ 0 1 2 3 4 5 6 7 8 9 10 11
10 0.02 0.01 0.05 0.01 0.05 0.01 0.04 0.01 0.04 0.01 0.02 0.01
50 0.03 0.01 0.16 0.02 0.50 0.04 0.71 0.04 0.04 0.01 0.02 0.01
∞ 0.03 0.01 0.19 0.02 0.61 0.04 8.98 0.14 0.03 0.01 0.01 0.01

ξ 12 13 14 15 16 17 18 19 20 21 22 23
10 0.41 0.02 0.56 0.03 0.00 0.00 0.02 0.01 0.04 0.01 0.04 0.01
50 0.69 0.04 1.05 0.05 0.00 0.00 0.04 0.01 0.35 0.03 0.05 0.01
∞ 0.79 0.04 1.12 0.05 0.00 0.00 0.04 0.01 0.33 0.03 0.03 0.01

Table 6.9: The average time requirement (seconds) for each destroy-repair pair for
different ξ settings.



58 6 Computational Tests

6.3.3 Temperature Cooling

For the ALL dataset, the best parameter combination found has the two parameters
related to the simulated annealing acceptance criteria at their lowest tested values;
α = 0.999 and w = 0.01. This indicates that immediate intensification is rewarded
which corresponds to the pattern seen in the previous section where the total cost
curve quickly dives. Figure 6.3 shows the acceptance probability progression of
different absolute worse values for the first 5,000 iterations. The start temperature is
43.77 as calculated using w = 0.01 on the initial solution cost value. The figure shows
that the probability of accepting worsening solutions quickly becomes very low even
for small differences. After 3,004 iterations the probability of a new solution with a
total cost that is just 10 larger is only 1%. After 5,000 iterations the probability of
accepting a solution with just 1 more in cost is 3.35%. In three hours with the most
time consuming ξ setting the heuristic gets through around 42,000 iterations, which
means that in most iterations the simulate annealing acceptance criteria is negligible
and practically only improving solutions are accepted. The same is the case for the
other datasets, even though these are run with a higher w value of 0.05 and 0.10. On
the IKH dataset for w = 0.10 the start temperature (highest for all runs) is 185.96.
With α = 0.999 the probability of accepting a worse solution with only one more in
cost is less than 1% after 6,751 iterations. In an hour the heuristic gets through more
than half a million iterations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ap

Acceptance Probability

-1
-10
-25
-50
-100

Figure 6.3: The acceptance probability progression for new worse solutions of
different cost changes for Tstart = 43.77 and α = 0.999.



6.3 Results 59

One additional test is done to further investigate the effects of α. The pairwise
ALNS is run with the three different α settings (with ξ = 10, λ = 0.9 and w = 0.01).
The total cost per iteration is shown in Figure 6.4 with the last worsening accepted
solution for each run marked by an asterisk. As expected, the lower α values result in
a quicker “dive” but after about 40,000 iterations the three runs have found timetables
of about the same cost. The curves follow each other close from then on, but both
for α = 0.99975 and α = 0.9999 the heuristic ends up finding better solutions in the
end. However, after 53,093 iterations even for the slowest cooling rate of α = 0.9999
the acceptance probability for a timetable with just one more in cost is less than 1%.
Ergo beyond this point all runs are practically only accepting improving solutions.
Also the last worsening but accepted solution for each run is within the first 46,000
iterations. Therefor the performance of each run in the second half of all iterations
is more likely to be due to randomness. It seems fitting that α = 0.999 is used for
cooling, as this provides better solutions quicker and results in solutions of equal
quality in the end.

0 2 4 6 8 10 12 14 16

Iteration #104

1000

1500

2000

2500

3000

3500
Timetable Total Cost - ALL

,=0.999
,=0.99975
,=0.9999

Figure 6.4: The total timetable cost using the pairwise ALNS on the ALL dataset
with three different α settings. An asterisk marks the last worsening solution accepted
for each run.



60 6 Computational Tests

6.3.4 Performance of Destroy and Repair Methods/Pairs
Since there is so many iterations where non-improving solutions are found, the analysis
of destroy and repair methods/pairs is limited to the first 3,000 iterations of the runs
on the ALL dataset. The reward distributions (in the first 3,000 iterations) for all
pairs with both ξ = 10 and ξ = ∞ are shown in Figure 6.5 (data shown in Table
C.34 and C.35 in Appendix C.3). For ξ = ∞ pairs 8, 9, 16, 17, 22 and 23 receive a
disproportionately large number of ω2 rewards, i.e. worsening but accepted solutions.

Of special note is pair 16 and 17 which resulted in only worse but accepted
solutions. The two pairs both destroy exams with late timeslots (in random order) and
rebuild with the Strict Greedy Schedule and Greedy Schedule heuristic respectively.
Pair 8 and 9 both unschedule the day with the least number of exams and pair 22
and 23 unschedule the first day with exams scheduled. The fact that these pairs are
chosen so often is likely because, they often lead back to the exact same, or very
similar, solutions. If the same solution is found then the solution is accepted by
the simulated annealing acceptance criteria and reward ω2 is given. Throughout the
search the number of late timeslots is generally very low and very few exams are
scheduled on the first day with exams. Therefore the degree of destruction for these
pairs is naturally very low and the neighborhood very small. This makes it likely that
the repair methods lead back to the same solution. In this implementation, only the
timetable total cost is used to evaluate new solution and not whether or not it has
been seen before. When the same solution is found, it is accepted and awarded ω2
which, since the reward settings are taken from (Ropke and Pisinger, 2006), rewards
more than if the new solution was better. Therefore the likelihood of choosing the
same pair again becomes quite large and thus a reinforcing loop is started.

This shows the importance of keeping track of already visited solutions and
“punishing” heuristics that find these. Just looking at the reward distribution for
ξ = ∞ could also lead to the conclusion, that all of the discussed pairs are bad at
finding good solution. However comparing to the reward distribution for ξ = 10
gives better insight. Here pair 16 and 17 show the same pattern of only finding non-
improving but accepted solutions. Generally throughout the search there is a very
limited number of exams with late timeslot and therefore these pairs do not destroy
much of the solution. Only late exams are destroyed and room is not specifically for
them elsewhere in the schedule, makes it difficult to find improving solutions using
the two repair heuristics.



6.3 Results 61

0 
1 

2 
3 

4 
5 

6 
7 

8 
9 

10
11

12
13

14
15

16
17

18
19

20
21

22
23

P
ai

r 
#

05010
0

15
0

20
0

25
0

30
0

35
0

Times rewarded
9
=1

0

R
ew

ar
d

 d
is

tr
ib

u
ti

o
n

 -
 P

ai
rw

is
e

0 
1 

2 
3 

4 
5 

6 
7 

8 
9 

10
11

12
13

14
15

16
17

18
19

20
21

22
23

P
ai

r 
#

05010
0

15
0

20
0

25
0

30
0

35
0

Times rewarded

9
=
1

!
1
=

1

!
2
=

13

!
3
=

9

!
4
=

33

F
ig

ur
e

6.
5:

T
he

re
wa

rd
di

st
rib

ut
io

n
fo

re
ac

h
de

st
ro

y-
re

pa
ir

pa
ir

in
th

e
fir

st
3,

00
0

ite
ra

tio
ns

fo
rξ

=
10

an
d

ξ
=

∞
w

he
n

ru
n

on
th

e
A

LL
da

ta
se

t
us

in
g

th
e

pa
irw

ise
A

LN
S.



62 6 Computational Tests

It is expected that the Strict Greedy Schedule heuristic gives better results than
the Greedy Schedule heuristic. The results shown in Figure 6.5 cannot confirm this.
As seen in Table B.3 the first two pairs are defined using destroy method 0, the third
and fourth pair are defined using destroy method 1 and so on. All even numbered
pairs are repaired using the Strict Greedy Schedule heuristic and all odd using the
Greedy Schedule heuristic. Looking across all pairs there is no clear indications that
those using Strict Greedy Schedule outperform their Greedy Schedule counterparts.

The reward distribution for the first 3,000 iterations of the non-pairwise ξ = ∞
ALNS run on the ALL dataset is shown in Figure 6.7 (data in Table C.37). Some
of the poorer performing destroy methods are 3, 6, 8 and 10. Destroy method 8
unschedules late exams and suffers from the problems discussed earlier. Destroy
method 3 unschedules a whole day, destroy method 6 unschedules between 1 and 5
censors based on their CMD cost and destroy method 10 unschedules all exams for
between 4 and 10 random censors. Just as for the pairwise version, the destroy method
unscheduling a random day performs very poorly. The large degree of destruction
combined with lack of “focus” is likely the reason for these destroy methods having
lackluster performance. For example destroy method 5 finds the censor with the
largest CMD cost and unschedules the rooms this censor uses on the days where
he/she is scheduled. This can also be a very destructive strategy, but opens up
the problem more up for finding better solutions. The destroy method performance
when ξ = 10 shows a very different picture (Figure 6.6). Here destroy method 3
(unscheduling a random day) has very good performance. This difference can be
explained by the lowered degree of destruction, which directly makes the method
more focused; countering the problems present with no maximum destroy limit.

0 1 2 3 4 5 6 7 8 9 10 11

Destroy #

0

50

100

150

200

250

300

350

400

450

500

T
im

es
 r

ew
ar

de
d

!
1
=1

!
2
=13

!
3
=9

!
4
=33

Reward distribution - Non-pairwise 9=10

0 1

Repair #

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

es
 r

ew
ar

de
d

Figure 6.6: The reward distribution for
each destroy and repair method in the first
3,000 iterations for ξ = 10 when run on
the ALL dataset using the non-pairwise
ALNS.

0 1 2 3 4 5 6 7 8 9 10 11

Destroy #

0

50

100

150

200

250

300

350

400

450

500

T
im

es
 r

ew
ar

de
d

!
1
=1

!
2
=13

!
3
=9

!
4
=33

Reward distribution - Non-pairwise 9=1

0 1

Repair #

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

es
 r

ew
ar

de
d

Figure 6.7: The reward distribution for
each destroy and repair method in the first
3,000 iterations for ξ = ∞ when run on
the ALL dataset using the non-pairwise
ALNS.

Another consequence of limiting the degree of destruction is making the two repair



6.3 Results 63

methods more similar, which is also noticeable in the reward distribution. With less
exams to reinsert, there is less possibility for the Strict Greedy Schedule heuristic
to use the looping feature which distinguishes it from the Greedy Schedule heuristic.
Table C.38 and C.39 show the reward distributions for all iterations with ξ = 10
and ξ = ∞ restrictively. This data shows, that when the degree of destruction is
very low, the two repair methods are rewarded almost identically, while there is a
more significant difference with no limit. It may seem that the Greedy Schedule
repair heuristic has better performance than the Strict Greedy Schedule heuristic
when ξ = ∞. However this is likely due to randomness and the fact that worsening
but accepted solutions are rewarded as much as they are. This means that the
simpler repair heuristic may have “okay” performance and the rewarded well and
thus chosen more often. The data supports this, as the Greedy Repair method is
rewarded many more ω1 and ω2 rewards and only slightly more ω3 and ω4 rewards.
A consequence of only including two repair heuristics is that an increase in weight
(and thereby probability) for one results in an equally large decrease in the probability
for choosing the other. Especially in the beginning of the search, this may lead to
another reinforcing loop meaning that the Greedy Repair heuristic is chosen more
often and thereby have more changes to “get lucky” and find good solutions. The
Strict Greedy Schedule heuristic does not have as many chances, but still manages to
find almost as many improving solutions as the other method. When the search gets
to a point where it almost only finds rejected solutions, an almost cyclical pattern
of opposite increase and decrease in the probability of choosing each repair method
begins. This causes the heuristic to alternates between the two repair methods.

6.3.5 Adaptive Weights
One of the strengths of the ALNS heuristic is the adaptive layer allowing the search
to be guided based on the instance at hand. As discussed in the previous section, the
implementation used here has some problems directly related to the reward system
used for controlling the adaptive layer. These problems are investigated in more detail
as well as the effects of the decay parameter λ.

Figure 6.8 shows the weights for pair 0, 1, 8 and 16 for the first 3,000 iterations
for parameter combinations ξ = 10, α = 0.999, w = 0.01 and λ = [0.9, 0.1]. Pair 0
and 1 both remove 3-10 random exams and reschedule these using the Strict Greedy
and Greedy Schedule heuristics respectively. From the previous section it can be
concluded, that pair 0 has overall slightly better performance than pair 1. In the first
plot of Figure 6.8 it is also clearly visible that, at least for the first 3,000 iterations,
pair 0 generally has a greater weight than pair 1. But again, there is no indication
that the Strict Greedy Schedule heuristic is better than its’ more simple counterpart.
The purple line shows the weight of pair 16, which unschedules late timeslots and
repairs using Strict Greedy Schedule and never finds improving solutions. The plot
shows, the weight for this pair quickly rises to its’ maximum of 13 and stays there.
Thereby the probability of this pair being chosen in a given iteration is generally
greater than either pair 0 or 1, which have much better performance. Throughout



64 6 Computational Tests

the whole run (approximately 340,000 iterations) the probability of picking either one
of the pairs unscheduling late exams (16 and 17) is on average 27.54%. Thereby these
pairs are chosen often, resulting in 94,081 “wasted” iterations.
Pair 8 unschedules the slowest day and repairs using the Strict Greedy Schedule
heuristic and has poor performance. The figure supports this, showing that the
weight for this pair is generally lower than for the better performing pairs 0 and 1.

The two plots in Figure 6.8 also show the effect of decay parameter λ on how
sensitive weights are to change. For λ = 0.9 changes are very slow, which is clearly
illustrated by the pair 16 weight progression. Even though this pair is awarded 13
every time, it has to receive 73 rewards (each seen as a “bump” on the curve) before
its’ weight reaches 13. For λ = 0.1 weight changes are much more violent, as the
second plot in the figure shows. For this setting weights change rapidly, making the
adaptive aspect of ALNS more chaotic. For λ = 0.1, pair 16 is only rewarded three
times before reaching its’ maximum.

0 500 1000 1500 2000 2500 3000
0

10

20

30

P
ai

r 
W

ei
gh

t

6  =0.9

pair 0
pair 1
pair 8
pair16

Weight Progression

0 500 1000 1500 2000 2500 3000

Iteration

0

10

20

30

P
ai

r 
W

ei
gh

t

6  =0.1

Figure 6.8: The weight progression of pair 0, 1, 8 and 16 in the first 3,000 iterations
when run on the ALL dataset with the two λ parameter settings.



6.3 Results 65

6.3.6 Post Processing
As discussed in Section 5.1.7, the One Day Model can be used as a post processing tool
for final improvements and evaluation of the solutions found through the ALNS. An
overview of the best solution for each dataset found using the implemented ALNS is
shown in Table 6.10. Since the One Day Model can only improve objectives on a daily
basis, only solutions with room stability, censor gaps and number of late timeslots
costs can be affected. Thereby the post processing can only hope to improve the
ALNS identified solution for the IKH, ISE and ALL datasets.

Post processing is done by going through all days of the given solution, unscheduling
each day and repairing using the One Day Model. If the solution value improves
following a repair the day is kept as is and otherwise the changes are undone by
rescheduling each exam to its previous allocation.

No improvements are made trough post processing the ISE solution.
For the IKH solution an improvement is found such that there is one less late

timeslot and the the total cost of the best known solution for the IKH dataset is thus
527.

For the ALL solution improvements are found on day 17, 18 and 19 which have
176, 195 and 326 exams scheduled respectively. Surprisingly the One Day Model
for day 17 cannot be solved to optimality within 8 hours. These tests are run on
the DTU HPC using CPLEX with default MIP solver settings and using 20 threads.
The initial daily cost of day 17 is 25 which is reduced to 23 with an absolute lower
bound of 21. On day 18 the optimal solution is found in just under 1 hour and 45
minutes, improving the initial daily cost of 23 to 21. Finally on day 19, which has
more than 130 exams in excess of the other two days, the optimal solution is found
in around 3 hours and 30 minutes, resulting in a cost reduction of 21 to 18. In total,
the number of censors gaps is reduced by four and the number of late timeslots used
by one, resulting in a total cost reduction of 7 and the best know solution for the
ALL dataset is thereby 988. The reason for not finding an optimal solution on day
17 even, though it has less exams, is unknown. These runs have only been performed
with the default settings and the effects of changing branching and search strategy
should be investigated.

An overview of the best known solutions is shown in Table 6.11.

Dataset IKH IMT INM ISE ALL

Best ALNS
solution

Solution Cost 530 280 110 492 995
RS 0 0 0 0 4
CG 0 0 0 0 6

CMD 26 7 2 21 65
ND 15 14 6 18 19
NLT 15 0 0 4 14

Table 6.10: An overview of the best ALNS identified solutions.



66 6 Computational Tests

Dataset IKH IMT INM ISE ALL

Best known
solution

Solution Cost 527 280 110 492 988
RS 0 0 0 0 4
CG 0 0 0 0 2

CMD 26 7 2 21 65
ND 15 14 6 18 19
NLT 14 0 0 4 13

Table 6.11: An overview of the best known solutions.



CHAPTER 7
Discussion

This thesis consists of two major parts; defining a Mixed Integer Programming model
for the Group Exam Timetabling Problem at RUC and solving this problem using
the ALNS metaheuristic. The discussion section is therefore split as to deal with the
modeling and the solution method separately.

7.1 Modeling
The MIP model developed to solve the Group Exam Timetabling problem at RUC
is especially complex due to the model size; proving to be too big to solve using a
standard MIP solver such as CPLEX. Also the defined model is somewhat basic and
can be improved to increase its’ realism and real world usefulness. As it stands now,
the model is unlikely to be directly useful for RUC planners.

The model is defined with the focus of building timetables that caters to censors.
No distinction is made between internal and external censors, although the actual
situation is very different for the two groups of people. For internal censors, room
changes, gaps and exams on different days, is not as big a problem as for external
censors. Therefore the model could be improved by differentiating between external
and internal censors. This can be done by defining sets Cex and Cin to identify
external and internal censors respectively. Notice that Cex ∪Cin = C and Cex ∩Cin =
∅. Now different cost parameters for the different censor types can be introduced to
increase the solution quality specifically for external censors. Additionally, constraints
can be defined that only enforce restrictions for one of the censor groups.

This idea can be extended further by changing the model to only consider whether
or not people are RUC staff. The model is redefined using the set of people P ,
which includes all external and internal persons associated with exams (not counting
students) such that Pex∪Pin = P , where Pex = Cex and Pin = Cin∪S. The aim of the
model is to produce good timetable specifically for external censors, and this model
change allows for keeping that focus while also removing confusion associated with
people whom are both censors and supervisors. This also eliminates model problems
such as the fact, that a censor may receive a censor gap penalty if he/she functions
as a supervisor in between two exams where he/she is the censor. Different weights
should be defined for external and internal persons such that the produced timetables
try to consider all people.

It is also possible to introduced new objectives, for example travel expenses.
External censors have their their travel expenses related to attending their exams



68 7 Discussion

compensated by RUC. Therefore it would be very valuable to minimize the number
of days which external censors have exams, i.e. their CMD count. This extra cost
could even consider the size of the expenses related to each external censor, such
that those whom are more monetarily costly also have a larger CMD cost. Such a
change could be implemented by defining a cost pCMD

c or simply by introducing a
new parameter ptravel

c which is multiplied onto the CMD cost parameter for each
external censor.

RUC planners know that supervisors and censors have very different wants and
needs when it comes to their individual examination plan. Some would like to get all
their exams done as soon as possible; even if that means having exams throughout
a whole day with very few breaks. For others such a plan is unimaginable and they
want very few examination per day. The model could be improved by the inclusion
of personal preferences. The easiest would probably be to allow people (censors and
supervisors) to specify their preferences using predefined personality profiles. Such
profiles could for example specify, that a given person wants as few exam days as
possible or that a person wants a maximum of n exams in a day. Additionally,
people could be allowed to indicate which days they wold prefer to have their exams
by “rating” all possible examination days what. Then the model should penalize
whenever these personal preferences are not met. Also one problem with the current
model is that breaks are only enforced when room changes happens between two
conflicting exams. Thereby it is possible for a person to be assigned exams throughout
an entire day without any breaks. In reality this is unlikely to be acceptable for the
people involved, and therefore breaks should be inserted whenever the same people
have some number of timeslots scheduled in a row. This could also be defined through
personality profiles.

One of the issues when defining the One Day Model is that room stability is
counted across days. This objective is included to decrease the number of room
changes especially for external censors, whom are likely to not be familiar with RUC
campus. Finding the location of a new room is not as stressful when returning on a
new day as when between two exams during the same day. Therefore if the external
censor has multiple days at RUC, it is not as important that the censor should use
the same rooms as he/she did on other days. Rather that the number of room
changes during a single day should be minimized. Therefore room stability could
be counted on a daily basis without decreasing the practical value of the produced
timetable by much. This in turn allows for more freedom in scheduling single days,
improving both the solutions found when producing a whole timetable but especially
when considering a single day. However, the increased freedom may make it more
difficult to find optimal solutions when solving the One Day Model.

The “push exams back” constraint, which enforces that a day can only have exams
scheduled if there are exams on the following day, is perhaps unnecessarily strict and
causes some issues especially for the construction algorithm used in the ALNS solution
method. It is up to RUC and their planners to decide, whether or not it is important
that this constraint is enforced, but it is also an option to relax it and still obtain
the benefits of its’ intention. By redefining the constraint as bd ≤ bd+1, it allows for



7.1 Modeling 69

having empty days in the middle of the timetable, but at the cost of “opening” those
days. Therefore the model will still reward a compact schedule at the end of available
examination days, but it is allowed to have empty days in the middle if that results
in an overall better solution.
An alternative way to include the push back effect, is to have different weight parameters
for using different days. For example by introducing weights pD

0 > pD
1 > · · · > pD

dlast

for using day 0, 1, . . . , dlast respectively and dropping the push exams back constraint.
These weights could be multiplied by the number of exams on their respective days,
such that the penalty increases depending on the number of exams on the given
day instead of simply penalizing the usage of a day. These additions would make it
favorable to produce compact timetables at the end of the available examination days
and increase the freedom of the model.

The constraint included to ensure that conflicting exams are not held simultaneously
is defined for all exams that have conflicting exams. Given the current constraint
definition, some redundancy is introduced as multiple constraints will enforce that
the same exam pairs cannot be scheduled simultaneously. However the constraint
can be tightened even further by considering cliques. In graph theory a clique is
defined as a complete subgraph of a given undirected graph, i.e. a subgraph where
all vertices are adjacent to each other (Weisstein, 2017). For this problem, a graph
can be defined such that exams are vertices and conflicting exams are connect by an
edge. Figure 7.1 shows a clique of exams and Figure 7.2 shows a subgraph; both
taken from the INM dataset. Instead of defining a constraint for each of the exams in
Figure 7.1, it would be sufficient to define a constraint for that clique. The problem
is then to identify the cliques for which constraints should be defined, in order to
avoid including the mentioned redundancy. This can be done by finding all maximal
cliques, cliques that cannot be extended by including more adjacent vertices, and
then finding a minimum cover of the edges with regard to the number of cliques. In
order to do so, all maximal cliques must first be enumerated, for example by using the
backtracking algorithms presented in (Bron et al., 1972). These cliques are then used
to solve the Edge Clique Cover problem on the exam conflict graph. This problem
is shown to be NP-complete in (Kou et al., 1978), but different heuristics for solving
the problem (no guarantee of optimality of course) are also presented.

Changing the conflicting exam constrains to use cliques is sure to reduce the
number of require constraints. However, the overall effect of this change is unknown
and warrants further research.

Although not directly related to the model, a small note is made on the unavailability
data. All unavailability data is randomly generated and may not be very realistic.
Of course, it would be best to get real data, but given the nature of said data it is
unlikely that data collection is practically possible. The generated exam and censor
availability can be very sporadically spread throughout the available examination
days. It is more likely, that a person would be available on a few, mostly coherent
days, and the generated data should reflect that.



70 7 Discussion

  7

  25

  51

  52

  63

Figure 7.1: A clique of conflicting exams
in the INM dataset.

  8

  9

  21

  23

  24

  39

  40

  55

Figure 7.2: A subgraph of the
conflicting exam graph for the INM
dataset.

7.2 Solution Method
The result section discusses a significant problem with the ALNS implementation; the
repeated acceptance of already visited solutions. This means that especially some
destroy heuristics with bad performance are rewarded and chosen again and again,
resulting in a lot of wasted iterations and time. The implementation could be greatly
improved by including a scheme for keeping track of already seen solutions and only
accepting those that have not been found before. A straightforward implementation
is to hash solutions and store them in a hash table as done in (Ropke and Pisinger,
2006). Then only solution not found in the hast table should be accepted. This will
prevent poorly performing heuristics from having large weights because of artificial
success.

Even with the above mentioned addition, there are some destroy method which
may still have lackluster performance. Much more testing should be done to identify
these and the cause for their poor performance. With the given results it is difficult
to make comments because of the lack of protection from acceptance of the same
solution adds “noise” to the data which is difficult to identify without implementing
said protection. However it is certain that some destroy methods should be changed in
order to be more effect. For example the destroy method unscheduling all late exams
could be changed to also unschedule surrounding exams or the associated censors
other exams on the same day. This would give the repair heuristic more freedom and
a better chance of finding improving solutions. If heuristics prove to be unsatisfactory
they could entirely be removed from the method pool, however if the adaptive layer
of the ALNS works correctly, it should be able to handle these cases and ensure that
those methods are rarely chosen.

The two repair methods included in the ALNS are very similar, so it would
likely be beneficial to develop different types of repair heuristics. One possibility
is to implement a Regret−k Repair heuristic as done in (Ropke and Pisinger, 2006),



7.2 Solution Method 71

which tries to implement some look-ahead when repairing solutions. This could be
an extension of the Strict Greedy Schedule heuristic. The difference is that regret−k
repair heuristic considers the k best schedulings for each exam and schedules the exam
whose difference in cost between its’ best scheduling and the k − 1 best schedulings is
the largest. That is, exams are scheduled where the chance of regret (potential cost)
is largest if it is not done.

Another repair method that should be included is the One Day Model. The post
processing done using the model shows great promise, improving the best solutions
found through the ALNS for two of the datasets. The inclusion of the One Day Model
within the ALNS is especially interesting if the proposed model change regarding daily
room stability is implemented. Then the One Day Model will be able to produce
solutions that are optimal when considering a single day, which it otherwise cannot
because of the limitation implemented because of cross day room stability counting. In
order to introduce this repair method much more testing is required. It is not included
in the current implementation because building the MIP as well as solving it may
sometimes be quite time consuming. For it to be usable as part of the ALNS, some
balance between time consumption and solution quality should be ensured. Therefore
testing should be done to figure out when using the One Day Model would be feasible.
One possibility is introducing a exam threshold, such that the One Day Model is only
attempted if there is less than a certain number of exams on the given day. However,
as the results of the post processing shows, the number of exams is not the only
deciding factor as to how long the MIP takes to solve. Therefore more testing is
required.

In the implemented ALNS, new solutions can only be accepted if it is feasible,
meaning that all exams should be scheduled. The Greedy Schedule repair heuristic
should therefore not continue after finding an exam that it cannot schedule and should
instead terminate immediately. This should be implemented by changing line 28 of
Algorithm 2 to empty the set of unscheduled exams instead of simply removing the
exam that could not be scheduled.

The max destroy parameter ξ is a very influential parameter on the overall performance
of the ALNS implementation. This parameter is fixed for each run, but it could be
interesting to investigate the effects dynamically adjusting the parameter during the
search. That is, the ξ parameter could be lowered if more intensification is needed
and increased when diversification is needed. Another option is to include different
max destroy parameters, such that the same limit is not imposed on all methods.
For example, the best ξ value found during testing is 10, which makes some destroy
methods equal and thereby some redundancy is introduced. In these cases, there may
be a benefit from having separate max destroy limits.

Since the simulated annealing acceptance criteria is relatively quickly put out of
play, the search has no possibilities for escaping local optimums in its’ later stages.
If the search gets stuck, it should be diversified to continue somewhere else in the
solution space. A possibility is the introduction of a “reheating” scheme, such that
the temperature used in the acceptance criteria is increased when diversification is
needed.



72 7 Discussion

Parameter tuning could be done by tuning parameters one at a time as done in
(Ropke and Pisinger, 2006), instead of trying all parameter combinations 10 times for
10 minutes. Thereby less parameter combinations will need testing, making it less
cumbersome to have each parameter tuning run go on for longer. However through
analysis of the results, there is no indication that any one parameter has a sudden
positive effect after the initial 10 minutes. Therefore there would likely be no gain
from changing how parameter tuning is executed.

Lastly, there is a slight performance gain from using the pairwise version of the
ALNS as opposed the non-pairwise version. In benchmarking, the pairwise ALNS
almost consistently had a lower average gap and spreading. Pairing the destroy and
repair methods allows the adaptive layer of the ALNS to be more specific, resulting
in better performance; although the difference is not immense.

7.2.1 Decomposition
Very few parts of the model tie the different days together and there is much potential
for using decomposition to solve the Group Project Exam Timetabling problem at
RUC. Especially if room stability is changed to be counted on a daily basis. At a
master level decisions could be about about what exams should be scheduled on what
days. This affects CMD and ND costs and should observe exam availability as well
as whatever exam push back constraints may be imposed. Then on a daily basis, the
specific scheduling of each exam should be decided, resulting in daily RS, CG and
NLT costs. Thereby a Master Problem could be defined as a set partitioning problem
of assigning exams to days and then a Sub Problem could be defined for each day,
allocating exams to rooms and timeslots. The One Day Model (or a modified version
of it) is an obvious choice for a sub problem definition.

A decomposition approach could take the shape of a purely mathematical approach,
for example using column generation to find the partitioning of exams. But there is
also potential for interplay between the programmatic and mathematical solution
methods. Already it is proposed to include the One Day Model directly in the ALNS,
where the ALNS effectively produces the sets of exams for each day and a MIP is
used for planning the specific days. Although, as seen in the results section, the One
Day Model can become too large to be solved in practice. Therefore it would also
be interesting to go the other way, where a mathematical set partitioning problem is
defined and the ALNS is used to schedule each day.

Exactly because of the problem structure, where there are very few ties between
individual days of the timetable, the use of decomposition for solving this problem is
very interesting and warrants more research.



7.3 Concluding Remarks 73

7.3 Concluding Remarks
The goal of this thesis is to define a model for the Group Project Exam Timetabling
problem at Roskilde University and attempt to solve it. A model is defined which
proves to be too difficult to solve directly with standard MIP solvers. Therefore the
problem is attempted solved using the ALNS metaheuristic. The implemented ALNS
has good results, but some weaknesses have been identified, which undoubtedly have
an impact on overall performance. Both in regard to the model and the solution
method thoughts for improvement have been given.

In order for the work in this thesis to be directly usable by RUC staff, more
development is required in cooperation with RUC. The model does have some weakness,
for example the exclusion of general breaks, which means that the produced timetables
may not be feasible in reality. Currently, RUC does the group exam timetabling
throughout the semester, scheduling exams as the become available for scheduling.
This is because they cannot wait until data has been collected for all exams. An
initial support tool using the solution method proposed in this thesis, could be
designed to help by allowing for iterative planning. For example, exams could be
timetabled in waves, where already timetabled exams are fixed whenever a new set
of exams are scheduled in the timetable. The work shows promise and could be, in
collaboration with RUC, further developed to make a specialized and robust group
project examination timetabling tool.



74



APPENDIX A
The Linear

Programming
Relaxation

A.1 The Linear Programming Relaxation
For many MIP solution methods, the LP relaxation of a problem needs to be solved
repeatably. Therefore, in order for the method to terminate in a timely manner,
solving the LP should be relatively easy and quick. An idea of how quickly the LP
relaxation can be solved should be a guiding factor in developing a solution method.

In CPLEX six LP optimizers are available: Primal Simplex, Dual Simplex (the
default setting), Network Simplex, Barrier, Sifting and Concurrent. All six methods
are tested on the LP relaxation for all available datasets, to examine how relevant
LP based methods may be to this problem. 1

Primal Simplex: The “classic” LP solving algorithm. This method may especially
work well on problems where the number of variables greatly exceed the number of
constraints, or in the case that there is little variance in the cost coefficients.

Dual Simplex: The Simplex algorithm performed on the LP dual. Works well on
primal-degenerate problems with little variability in the right hand side coefficients
and great variability in the cost coefficients.

Network Simplex: Uses highly efficient network algorithms and works well on
problems where a major part consists of a network structure.

Barrier: This method exploits a “primal-dual logarithmic barrier algorithm”
and sequentially solves both primal and dual formulations to the problem. Primal
feasibility, dual feasibility and the duality gap is used as a progress measure. This
method is especially good on large and sparse problems.

Sifting: An extension to the simplex method where first a subproblem consisting
of all rows and only a small subset of columns while assuming some lower bound on
all other columns. Excluded columns are then added to the problem based on their
reduced cost (evaluated using the subproblem solution). This solution method works

1details from: https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.4.0/ilog.odms.
cplex.help/CPLEX/User_manual/topics/uss_solveLP_4.html

https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.4.0/ilog.odms.cplex.help/CPLEX/User_manual/topics/uss_solveLP_4.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.4.0/ilog.odms.cplex.help/CPLEX/User_manual/topics/uss_solveLP_4.html


76 A The Linear Programming Relaxation

well on problems with a large number of columns compared to the number of rows;
especially when an optimal solution is expected to have most variables at their lower
bounds.

Concurrent: This solution method launches different solution methods on
separate threads; based on the number of threads available. Given one thread, dual
simplex is launched (default single thread LP method). With two threads available,
the barrier method is run in the second. Primal simplex is run on the third thread.
All additional threads are used to run the barrier method in parallel.

Each of the six methods are used to solve the LP relaxation of the problem on
all five datasets. Each run is given a wall time limit of 4 hours and can use up to 20
threads and 128GB memory. The results are shown in Table A.1.

LP Method Primal Simplex Dual Simplex Network Simplex Barrier Sifting Concurrent
IKH - - - - - -
IMT 716 1,056 8,861 5,273 2,025 888
INM 5 8 47 74 335 10
ISE - - - - - -
All - - - - - -

Table A.1: Wall time (in seconds) for solving the LP relaxed version of the problem
with each LP solution method. Models that could not be built or terminate within 4
hours (14,400 seconds) are shown with “-”.

Since the model is to large to be built for dataset IKH and ALL, it is not possible
to solve the LP relaxed version of the model on these dataset. Even though the model
can be built on the ISE dataset, CPLEX crashes immediately after due to running
out of memory. On the remaining two datasets, it the primal simplex outperforms
the remaining LP solution methods. The Concurrent method is a multi threaded
method using Dual Simplex, Primal Simplex and Barrier method, and it is through
the Primal Simplex that the problem is solved. Primal Simplex likely works well on
this model exactly because the number of constraints and (non-fixed) variables is so
balanced and there is very little variability in the objective coefficients.

However, since it is not possible to solve (or even build) the models on some
datasets, solution methods relying on solving the whole model are not very promising.



APPENDIX B
ALNS

Implementation
In B.1 the pseudo code for the Strict Greedy Schedule repair heuristic is shown.
In B.2 overviews of all destroy and repair methods/pairs are given with their used
designation/numbering.



78 B ALNS Implementation

B.1 Strict Greedy Schedule Repair Heuristic

Algorithm 4 Strict Greedy Schedule
1: Given set V of all exams to schedule
2: while |V | > 0 do
3: candidateCost = ∞, candidateScheduling = ∅
4: for each exam i ∈ V do
5: for each day d going backwards through available days do
6: for each room r with sufficient capacity in order of increasing capacity

do
7: for t = 0 to tlast do
8: if can schedule i in {r, d, t} then
9: if cost of scheduling = 0 then

10: schedule i in {r, d, t}
11: V = V \ i
12: break to start exam loop again
13: else if cost of scheduling < candidateCost then
14: candidateScheduling = {i, r, d, t}
15: candidateCost = cost of scheduling
16: end if
17: else
18: if other exam scheduled at this time in this room then
19: t = timeslot following end of other exam
20: end if
21: end if
22: end for
23: end for
24: end for
25: end for
26: if no exam has been scheduled and candidateScheduling found then
27: schedule candidate using candidateScheduling and remove from V
28: else if no candidateScheduling found then
29: V = ∅
30: end if
31: end while



B.2 Destroy and Repair Methods 79

B.2 Destroy and Repair Methods

Number Name Description
0 UnscheduleRandomExams(3-10) Unschedules between 3 and 10

exams picked at random.
1 UnscheduleRandomExams(11-25) Unschedules between 11 and 25

exams picked at random.
2 UnscheduleRandomExams(26-40) Unschedules between 26 and 40

exams picked at random.
3 UnscheduleRandomDay Unschedules all exams from a

random day.
4 UnscheduleSlowestDay Unschedules all exams from the day

with the fewest exams.
5 UnscheduleRoomDay-

CensorMostCMD
Unschedules all exams from rooms
used by the censor with the largest
CMD cost on days where the censor
is scheduled.

6 UnscheduleCensorsMostCMD(1-
5)

Unschedules all exams for a random
number of censors (1 to 5) with the
most CMD cost.

7 UnscheduleCostlyCensors(1-5) Unschedules all exams associated
with a random number of censors (1
to 5) with the highest total cost.

8 UnscheduleLateExams Unschedules all exams that uses late
timeslots.

9 UnscheduleRandomCensor(1-3) Unschedules all exams associated
with a random number of censors (1
to 3).

10 UnscheduleRandomCensor(4-10) Unschedules all exams associated
with a random number of censors (4
to 10).

11 UnscheduleFirstDay Unschedules all exams from the first
day in the schedule with exams.

Table B.1: Overview of destroy methods with numbering.



80 B ALNS Implementation

Number Name Description
0 StrictGreedySchedule Schedules all unscheduled exams in random order

using the Strict Greedy Schedule Heuristic.
1 GreedySchedule Schedules all unscheduled exams in random order

using the Greedy Schedule Heuristic.

Table B.2: Overview of repair methods with numbering.

Pair Destroy Repair
0 0 0
1 0 1
2 1 0
3 1 1
4 2 0
5 2 1
6 3 0
7 3 1
8 4 0
9 4 1
10 5 0
11 5 1
12 6 0
13 6 1
14 7 0
15 7 1
16 8 0
17 8 1
18 9 0
19 9 1
20 10 0
21 10 1
22 11 0
23 11 1

Table B.3: Overview of destroy-repair pairs with numbering.



APPENDIX C
Parameter Tuning

Tables showing the ξ and λ overviews for each parameter tuning setup are in C.1.
In C.2 all parameter tuning data is found and C.3 shows the reward distributions of
some ALNS runs on the ALL dataset.

C.1 Parameter ξ and λ overview

E (%) σ
ξ\λ 0.1 0.5 0.9 0.1 0.5 0.9
10 107.10 107.76 108.54 59.86 66.07 58.74
25 138.73 140.43 145.61 66.09 63.61 67.33
50 150.23 156.68 159.08 78.89 62.21 62.98
∞ 167.65 172.36 177.19 96.44 84.82 103.76

Table C.1: The mean average gap E (%) and spreading σ across all parameter
setting for α and w with different ξ and λ combinations when parameter tuning the
non-pairwise ALNS on the ALL dataset.

E (%) σ
ξ\λ 0.1 0.5 0.9 0.1 0.5 0.9
10 9.42 9.66 10.98 16.09 17.01 16.89
25 30.57 32.00 32.38 19.97 20.09 19.76
50 42.63 45.94 46.16 25.88 23.52 26.22
∞ 49.00 53.67 59.76 29.94 27.47 28.67

Table C.2: The mean average gap E (%) and spreading σ across all parameter
setting for α and w with different ξ and λ combinations when parameter tuning the
pairwise ALNS on the ISE dataset.



82 C Parameter Tuning

E (%) σ
ξ\λ 0.1 0.5 0.9 0.1 0.5 0.9
10 7.71 9.03 7.36 12.53 17.42 13.63
25 29.36 30.54 31.53 20.62 16.30 18.53
50 41.04 43.37 45.79 22.35 25.82 25.04
∞ 48.02 52.70 55.39 26.76 27.84 29.09

Table C.3: The mean average gap E (%) and spreading σ across all parameter
setting for α and w with different ξ and λ combinations when parameter tuning the
non-pairwise ALNS on the ISE dataset.



C.2 Parameter Combination Performance Overviews 83

C.2 Parameter Combination Performance Overviews
C.2.1 Pairwise ALNS - ALL
ξ = 25

ξ = 25
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 71.13 90.67 108.87 120.50 68.28 108.07 112.20 118.69 74.74 102.71 127.13 134.68
0.99975 128.27 163.88 170.25 171.78 133.22 166.28 171.23 174.50 141.60 169.16 173.34 173.96
0.9999 140.52 164.09 169.04 176.04 148.29 167.34 172.09 176.14 149.97 172.56 172.91 175.02

Table C.4: The average gap (%) for all parameter combinations with ξ = 25 on the
ALL dataset with the pairwise ALNS.

ξ = 25
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 49.67 93.87 131.80 153.88 50.61 92.86 150.03 117.50 74.27 121.71 73.14 122.27
0.99975 80.48 54.83 82.55 63.41 73.28 62.74 52.35 55.73 64.28 76.08 30.85 60.36
0.9999 50.72 34.53 57.24 40.93 81.45 63.06 44.72 68.80 49.78 48.40 38.73 55.89

Table C.5: The spreading (σ) for all parameter combinations with ξ = 25 on the
ALL dataset with the pairwise ALNS.



84 C Parameter Tuning

ξ = 50

ξ = 50
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 94.24 114.33 140.64 149.78 83.43 127.25 148.03 159.21 92.81 145.26 153.99 171.89
0.99975 133.61 167.16 176.41 179.99 142.35 171.30 178.66 180.73 141.85 175.20 180.41 181.05
0.9999 142.76 171.14 175.05 179.44 148.91 177.58 181.58 184.11 155.35 178.56 181.61 183.88

Table C.6: The average gap (%) for all parameter combinations with ξ = 50 on the
ALL dataset with the pairwise ALNS.

ξ = 50
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 38.30 94.16 104.76 115.72 60.52 118.84 104.51 87.46 50.68 112.81 77.34 78.11
0.99975 87.58 52.47 67.54 64.62 92.12 55.40 47.27 58.99 66.00 57.73 56.55 69.43
0.9999 97.78 69.16 67.49 50.49 62.18 56.61 28.75 75.38 68.37 52.65 81.77 63.24

Table C.7: The spreading (σ) for all parameter combinations with ξ = 50 on the
ALL dataset with the pairwise ALNS.

ξ = ∞

ξ = ∞
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 126.52 163.03 173.68 183.97 125.63 169.76 175.48 185.46 125.19 183.63 184.33 189.79
0.99975 150.37 175.28 182.23 181.91 160.16 181.39 183.66 188.50 163.62 185.02 192.28 187.34
0.9999 154.33 175.81 176.52 179.24 164.70 182.88 186.59 183.99 167.05 184.98 189.60 191.27

Table C.8: The average gap (%) for all parameter combinations with ξ = ∞ on the
ALL dataset with the pairwise ALNS.

ξ = ∞
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 113.69 103.74 77.02 60.58 139.66 129.76 104.31 44.70 190.19 102.01 90.66 96.90
0.99975 77.35 79.01 70.41 55.37 101.95 82.26 84.70 122.39 82.70 138.30 61.73 78.07
0.9999 90.45 60.56 59.61 73.41 94.01 61.99 52.67 85.58 58.43 114.51 94.71 71.76

Table C.9: The spreading (σ) for all parameter combinations with ξ = ∞ on the
ALL dataset with the pairwise ALNS.



C.2 Parameter Combination Performance Overviews 85

C.2.2 Non-pairwise ALNS - ALL
ξ = 10

ξ = 10
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 45.93 54.72 57.70 56.95 49.75 47.63 52.75 55.62 40.07 47.59 53.43 52.72
0.99975 79.51 133.35 143.42 146.85 88.09 138.20 145.38 146.58 93.80 137.81 149.68 147.29
0.9999 120.46 146.18 150.32 149.82 124.43 147.77 149.26 147.66 131.13 149.57 150.50 148.90

Table C.10: The average gap (%) for all parameter combinations with ξ = 10 on
the ALL dataset with the non-pairwise ALNS.

ξ = 10
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 51.28 59.59 64.50 62.61 60.31 79.25 60.72 48.41 42.05 58.41 72.79 44.24
0.99975 59.06 54.73 78.68 80.17 122.38 69.88 56.48 54.14 76.19 90.82 59.29 52.79
0.9999 74.22 33.94 50.73 48.76 66.56 64.57 51.34 58.84 43.61 74.65 45.31 44.74

Table C.11: The spreading (σ) for all parameter combinations with ξ = 10 on the
ALL dataset with the non-pairwise ALNS.



86 C Parameter Tuning

ξ = 25

ξ = 25
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 75.01 88.22 98.65 118.84 68.67 88.74 104.92 119.57 77.99 97.05 123.36 127.89
0.99975 124.25 158.83 171.00 174.68 128.09 164.91 171.09 175.81 136.48 170.80 173.58 172.80
0.9999 138.15 168.53 171.89 176.66 146.04 171.19 172.31 173.74 149.52 170.24 170.72 176.93

Table C.12: The average gap (%) for all parameter combinations with ξ = 25 on
the ALL dataset with the non-pairwise ALNS.

ξ = 25
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 60.47 67.94 82.48 93.71 51.33 88.39 90.19 76.10 83.70 88.18 133.52 99.55
0.99975 56.99 86.57 54.47 47.82 78.10 63.79 52.82 39.78 44.12 40.46 61.08 33.88
0.9999 65.63 48.99 75.44 52.58 55.00 44.32 77.58 45.91 47.80 56.42 57.77 61.43

Table C.13: The spreading (σ) for all parameter combinations with ξ = 25 on the
ALL dataset with the non-pairwise ALNS.

ξ = 50

ξ = 50
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 90.06 114.25 136.59 143.54 84.33 132.54 153.70 159.02 85.38 130.82 156.42 160.51
0.99975 133.24 160.71 173.50 179.01 139.27 175.08 175.70 179.77 145.44 174.61 179.21 181.21
0.9999 143.31 171.56 176.32 180.66 146.53 175.71 176.35 182.22 156.27 177.26 179.39 182.51

Table C.14: The average gap (%) for all parameter combinations with ξ = 50 on
the ALL dataset with the non-pairwise ALNS.

ξ = 50
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 59.49 116.03 95.56 95.25 41.17 69.56 74.42 105.55 77.22 76.91 88.71 62.20
0.99975 99.18 110.95 62.00 49.58 56.30 62.31 45.35 39.45 52.34 63.42 38.70 26.33
0.9999 40.28 101.91 68.83 47.57 80.44 50.42 57.77 63.82 61.34 86.07 53.56 68.94

Table C.15: The spreading (σ) for all parameter combinations with ξ = 50 on the
ALL dataset with the non-pairwise ALNS.



C.2 Parameter Combination Performance Overviews 87

ξ = ∞

ξ = ∞
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 128.35 164.06 169.94 179.94 122.37 164.63 183.82 186.33 137.99 169.43 184.61 187.15
0.99975 149.59 174.30 178.91 186.62 152.86 177.03 183.97 182.85 161.31 189.66 183.59 183.66
0.9999 153.42 171.04 175.50 180.08 158.54 185.36 185.68 184.87 168.30 187.24 190.28 183.04

Table C.16: The average gap (%) for all parameter combinations with ξ = ∞ on
the ALL dataset with the non-pairwise ALNS.

ξ = ∞
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 154.45 119.85 144.14 54.61 147.93 119.70 95.66 100.04 231.94 143.14 94.79 118.81
0.99975 96.64 97.75 102.58 79.64 69.96 61.76 63.23 77.53 91.49 73.83 93.91 59.23
0.9999 96.26 56.95 66.47 87.95 94.49 83.51 34.68 69.30 77.14 54.26 93.65 112.88

Table C.17: The spreading (σ) for all parameter combinations with ξ = ∞ on the
ALL dataset with the non-pairwise ALNS.



88 C Parameter Tuning

C.2.3 Pairwise ALNS - ISE
ξ = 10

ξ = 10
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 5.18 6.89 6.95 5.69 4.31 4.17 3.92 4.67 3.96 4.00 3.54 4.70
0.99975 6.18 5.63 6.22 5.59 4.94 5.14 5.00 6.30 4.98 4.27 4.57 5.73
0.9999 5.91 9.35 18.46 31.04 4.47 10.08 20.63 42.28 4.19 15.22 31.48 45.14

Table C.18: The average gap (%) for all parameter combinations with ξ = 10 on
the ISE dataset with the pairwise ALNS.

ξ = 10
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 8.73 16.36 15.78 10.95 9.20 9.37 8.10 7.35 10.69 6.40 8.06 7.40
0.99975 10.50 9.25 6.65 10.47 9.61 8.46 6.04 6.62 5.16 8.41 13.71 9.80
0.9999 10.94 12.16 33.66 47.65 5.06 18.67 48.54 67.11 5.35 43.81 42.31 41.60

Table C.19: The spreading (σ) for all parameter combinations with ξ = 10 on the
ISE dataset with the pairwise ALNS.



C.2 Parameter Combination Performance Overviews 89

ξ = 25

ξ = 25
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 15.41 14.70 14.88 13.84 15.47 12.87 13.19 13.27 10.16 12.78 11.83 12.28
0.99975 14.67 15.43 19.09 21.81 14.07 17.40 16.67 19.98 11.87 14.04 19.17 18.98
0.9999 16.00 48.68 81.59 90.81 15.83 62.30 84.23 98.76 16.06 70.85 91.28 99.23

Table C.20: The average gap (%) for all parameter combinations with ξ = 25 on
the ISE dataset with the pairwise ALNS.

ξ = 25
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 15.80 16.61 17.93 12.27 21.04 16.12 15.83 15.29 10.56 12.32 11.85 14.42
0.99975 11.98 22.51 20.32 13.89 15.38 16.63 23.19 20.05 10.62 17.48 24.35 21.75
0.9999 13.42 28.99 31.82 34.11 18.51 36.34 20.21 22.46 17.41 21.87 36.61 37.89

Table C.21: The spreading (σ) for all parameter combinations with ξ = 25 on the
ISE dataset with the pairwise ALNS.

ξ = 50

ξ = 50
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 24.41 22.52 20.91 26.54 23.68 22.97 24.78 21.67 20.41 20.24 21.99 23.60
0.99975 21.16 24.17 32.09 35.61 21.40 27.52 37.42 48.11 19.67 24.33 38.60 54.98
0.9999 24.49 81.44 98.39 99.78 25.59 87.97 102.22 107.91 27.28 84.82 107.62 110.43

Table C.22: The average gap (%) for all parameter combinations with ξ = 50 on
the ISE dataset with the pairwise ALNS.



90 C Parameter Tuning

ξ = 50
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 20.93 21.51 23.09 25.12 14.29 17.54 11.41 28.92 22.62 15.13 25.33 20.20
0.99975 23.88 18.59 23.77 35.75 20.68 21.39 30.08 50.09 20.68 23.62 39.75 45.10
0.9999 16.82 43.22 20.28 37.54 14.10 30.79 18.94 24.01 17.33 31.50 32.87 20.48

Table C.23: The spreading (σ) for all parameter combinations with ξ = 50 on the
ISE dataset with the pairwise ALNS.

ξ = ∞

ξ = ∞
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 27.48 27.87 28.82 29.65 28.41 27.66 27.22 22.97 27.58 26.75 25.91 24.86
0.99975 27.58 32.24 43.96 50.71 26.65 35.83 53.03 72.72 25.96 48.31 73.64 86.18
0.9999 32.68 85.28 99.72 102.03 36.28 94.25 107.24 111.83 45.30 103.21 112.95 116.46

Table C.24: The average gap (%) for all parameter combinations with ξ = ∞ on
the ISE dataset with the pairwise ALNS.

ξ = ∞
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 17.93 20.74 19.20 26.86 15.35 18.76 22.15 16.66 21.83 29.25 23.06 16.79
0.99975 18.55 22.93 50.86 47.42 23.42 26.40 43.57 54.25 18.85 40.81 43.89 42.80
0.9999 38.98 36.43 35.08 24.35 25.55 20.45 31.48 31.53 32.34 27.85 31.95 14.64

Table C.25: The spreading (σ) for all parameter combinations with ξ = ∞ on the
ISE dataset with the pairwise ALNS.



C.2 Parameter Combination Performance Overviews 91

C.2.4 Non-pairwise ALNS - ISE

ξ = 10

ξ = 10
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 6.71 5.73 5.73 6.50 5.10 5.06 3.92 5.37 4.21 3.01 3.64 4.13
0.99975 6.65 4.11 6.67 6.24 5.06 5.61 5.69 5.04 4.94 4.67 4.37 4.80
0.9999 5.41 6.91 8.09 23.76 5.24 7.64 17.93 36.73 3.41 8.31 24.31 18.52

Table C.26: The average gap (%) for all parameter combinations with ξ = 10 on
the ISE dataset with the non-pairwise ALNS.

ξ = 10
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 9.20 9.25 9.63 10.81 9.28 10.90 6.12 6.18 6.62 6.68 10.06 7.35
0.99975 8.99 5.67 12.50 7.59 9.51 10.93 6.68 5.49 9.08 12.92 5.92 8.72
0.9999 13.92 9.95 19.54 33.35 11.84 9.66 45.16 77.27 8.80 12.21 37.33 37.89

Table C.27: The spreading (σ) for all parameter combinations with ξ = 10 on the
ISE dataset with the non-pairwise ALNS.

ξ = 25

ξ = 25
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 15.12 15.53 12.99 13.37 13.90 12.99 12.62 13.92 11.89 12.54 13.56 12.60
0.99975 12.48 15.20 16.14 19.90 12.09 15.18 16.54 15.79 9.49 14.11 16.50 17.74
0.9999 15.04 47.17 78.58 90.73 13.41 61.10 84.39 94.53 14.57 67.93 89.35 98.03

Table C.28: The average gap (%) for all parameter combinations with ξ = 25 on
the ISE dataset with the non-pairwise ALNS.



92 C Parameter Tuning

ξ = 25
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 15.46 14.74 13.95 12.54 16.35 13.52 12.20 11.78 15.17 16.70 14.20 15.43
0.99975 17.14 18.62 25.30 24.67 13.63 8.78 15.62 17.01 8.38 22.17 15.55 13.98
0.9999 16.48 38.94 24.84 24.77 10.80 21.81 32.94 21.18 18.10 25.63 32.93 24.17

Table C.29: The spreading (σ) for all parameter combinations with ξ = 25 on the
ISE dataset with the non-pairwise ALNS.

ξ = 50

ξ = 50
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 22.60 24.74 23.58 23.48 22.34 19.57 21.52 23.35 19.51 19.96 20.45 18.41
0.99975 22.50 25.18 27.99 30.98 19.86 26.10 31.02 39.63 19.53 23.07 32.32 61.69
0.9999 22.93 78.80 92.15 97.54 25.06 82.91 103.21 105.83 29.35 91.81 104.04 109.33

Table C.30: The average gap (%) for all parameter combinations with ξ = 50 on
the ISE dataset with the non-pairwise ALNS.

ξ = 50
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 20.57 17.37 23.06 16.44 24.13 14.46 15.83 13.85 19.75 12.88 16.52 27.00
0.99975 15.84 17.29 26.45 38.27 15.75 21.29 19.55 47.70 15.39 24.59 22.79 44.11
0.9999 14.50 23.31 31.91 23.16 24.71 39.31 41.67 31.62 27.61 26.51 34.40 28.79

Table C.31: The spreading (σ) for all parameter combinations with ξ = 50 on the
ISE dataset with the non-pairwise ALNS.

ξ = ∞

ξ = ∞
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 29.27 28.05 27.30 29.02 29.00 28.05 26.52 24.39 24.55 23.90 26.26 23.82
0.99975 27.44 33.21 39.23 51.50 25.51 34.90 53.72 66.77 22.40 30.30 68.48 77.20
0.9999 29.19 83.60 98.60 99.78 38.05 91.63 105.28 108.54 49.63 94.72 109.96 113.41

Table C.32: The average gap (%) for all parameter combinations with ξ = ∞ on
the ISE dataset with the non-pairwise ALNS.



C.2 Parameter Combination Performance Overviews 93

ξ = ∞
λ = 0.1 λ = 0.5 λ = 0.9

α\ω 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15
0.999 24.52 21.30 30.90 19.17 26.08 18.67 22.42 21.48 19.04 23.57 25.57 17.89
0.99975 15.30 23.95 22.78 38.80 24.83 16.56 46.15 62.07 20.63 21.60 57.41 37.14
0.9999 24.61 34.83 29.87 35.05 24.52 21.71 18.30 31.32 38.25 40.84 24.23 22.89

Table C.33: The spreading (σ) for all parameter combinations with ξ = ∞ on the
ISE dataset with the non-pairwise ALNS.



94 C Parameter Tuning

C.3 Reward Distribution
Reward distributions for the first 3,000 and all iterations of ALNS runs on the ALL
dataset.

Pair 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
ω1 29 25 26 24 30 38 33 38 36 39 39 33 43 46 39 50 0 0 33 41 30 38 46 36
ω2 102 77 64 53 45 60 72 80 17 59 44 52 35 28 21 16 151 166 79 100 34 61 29 90
ω3 40 33 42 30 20 31 23 23 2 9 20 29 15 22 44 21 0 0 19 26 30 34 4 19
ω4 12 7 8 16 5 15 2 6 0 1 5 5 2 2 14 13 0 0 3 7 1 10 0 3

Table C.34: The amount of each reward given to all destroy-repair pairs through
the pairwise ξ = 10 run on the ALL dataset.

Pair 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
ω1 26 24 28 32 42 27 38 22 19 14 19 33 33 30 29 29 0 0 27 29 21 30 14 12
ω2 101 63 58 66 27 18 5 2 178 207 33 41 15 8 8 2 316 320 42 66 11 13 184 173
ω3 20 18 57 42 23 12 0 0 13 10 12 35 15 7 15 4 0 0 12 10 4 5 22 10
ω4 7 6 9 21 23 4 0 0 1 4 7 7 1 4 11 10 0 0 0 2 0 1 0 1

Table C.35: The amount of each reward given to all destroy-repair pairs through
the the first 3,000 of the pairwise ξ = ∞ run on the ALL dataset.

Destroy/
Repair D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 R0 R1

ω1 73 72 75 84 74 82 78 111 0 80 73 67 431 438
ω2 174 131 143 123 41 122 54 38 378 141 85 57 718 769
ω3 50 58 57 47 8 55 30 61 0 36 55 15 240 232
ω4 16 16 31 20 0 14 7 44 0 9 14 1 85 87

Table C.36: The amount of each reward given to all destroy and repair methods
through the first 3,000 iterations of the non-pairwise ξ = 10 run on the ALL dataset.

Destroy/
Repair D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 R0 R1

ω1 71 90 77 69 73 76 64 73 0 82 70 59 381 423
ω2 220 109 48 13 176 115 39 44 483 187 52 175 745 916
ω3 62 73 57 2 14 58 26 63 0 32 14 8 200 209
ω4 16 34 10 1 1 18 6 29 0 5 2 4 55 71

Table C.37: The amount of each reward given to all destroy and repair methods
through the first 3,000 iterations of the non-pairwise ξ = ∞ run on the ALL dataset.



C.3 Reward Distribution 95

Destroy/
Repair D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 R0 R1

ω1 24,996 19,208 19,221 22,730 19,809 13,615 9,273 9,845 0 22,070 18,297 19,299 98,968 99,395
ω2 15,784 5,108 5,039 9,440 23,586 2,122 313 410 100,378 8,300 4214 22,457 98,143 99,008
ω3 50 58 61 47 8 56 30 61 0 37 60 15 243 240
ω4 56 45 68 61 2 16 7 51 0 42 95 1 233 211

Table C.38: The amount of each reward given to all destroy and repair methods
through all iterations of the non-pairwise ξ = 10 run on the ALL dataset.

Destroy/
Repair D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 R0 R1

ω1 3,123 1,824 1,584 1,634 2,388 1,791 1,550 1,565 0 2,442 1,528 2,442 10,639 11,232
ω2 2,306 277 66 113 1,016 287 71 63 18,468 1,044 71 1,158 10,516 14,424
ω3 62 73 57 2 14 60 26 63 0 32 14 8 200 211
ω4 116 65 19 1 2 25 7 44 0 52 8 4 147 196

Table C.39: The amount of each reward given to all destroy and repair methods
through all iterations of the non-pairwise ξ = ∞ run on the ALL dataset.



96



Bibliography
Bron, C., J. Kerbosch, and H. Schell. Finding Cliques in a Undirected Graph. Department

of Industrial Engineering, University of Technology, 1972.

Carter, M. W., G. Laporte, and S. Y. Lee. “Examination timetabling: Algorithmic
strategies and applications”. In: Journal of the Operational Research Society 47.3
(1996), pages 373–383.

Kahar, M. N. M. and G. Kendall. “The examination timetabling problem at Universiti
Malaysia Pahang: Comparison of a constructive heuristic with an existing software
solution”. In: European journal of operational research 207.2 (2010), pages 557–
565.

Kou, L. T., L. J. Stockmeyer, and C.-K. Wong. “Covering edges by cliques with regard
to keyword conflicts and intersection graphs”. In: Communications of the ACM
21.2 (1978), pages 135–139.

McCollum, B. et al. The second international timetabling competition: Examination
timetabling track. Technical report. Technical Report QUB/IEEE/Tech/ITC2007/-
Exam/v4. 0/17, Queen’s University, Belfast, 2007.

Qu, R. et al. “A survey of search methodologies and automated system development
for examination timetabling”. In: Journal of scheduling 12.1 (2009), pages 55–89.

Ribeiro, G. M. and G. Laporte. “An adaptive large neighborhood search heuristic for
the cumulative capacitated vehicle routing problem”. In: Computers & operations
research 39.3 (2012), pages 728–735.

Ropke, S. and D. Pisinger. “An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows”. In: Transportation science 40.4
(2006), pages 455–472.

Shaw, P. “Using constraint programming and local search methods to solve vehicle
routing problems”. In: International Conference on Principles and Practice of
Constraint Programming. Springer. 1998, pages 417–431.

Stidsen, T. and L. Reinhardt. “GRASP and ALNS”. Techincal University of Denmark
Course 42137 - Optimization using metaheuristics: Lecture Slides. 2016.



98 Bibliography

Weisstein, E. W. Clique From MathWorld–A Wolfram Web Resource. 2017. url:
%5Curl % 7Bhttp : / / mathworld . wolfram . com / Clique . html % 7D (visited on
December 29, 2017).

Welsh, D. J. and M. B. Powell. “An upper bound for the chromatic number of a
graph and its application to timetabling problems”. In: The Computer Journal
10.1 (1967), pages 85–86.

Wren, A. “Scheduling, timetabling and rostering—a special relationship?” In: International
Conference on the Practice and Theory of Automated Timetabling. Springer. 1995,
pages 46–75.

%5Curl%7Bhttp://mathworld.wolfram.com/Clique.html%7D

	Summary
	Preface
	Acknowledgments
	Contents
	1 Introduction
	2 Exam Timetabling
	2.1 Timetabling
	2.2 General Exam Timetabling
	2.3 Toronto Dataset
	2.4 International Timetabling Competition 2007

	3 Roskilde University
	3.1 Semester and Exams
	3.2 Group Project Exam Planning

	4 Group Project Exam Timetabling
	4.1 Mixed Integer Programming Model
	4.2 Data
	4.3 Model complexity
	4.4 One Day Model

	5 Solution Method
	5.1 Adaptive Large Neighborhood Search

	6 Computational Tests
	6.1 Construction Algorithm
	6.2 Parameter Tuning
	6.3 Results

	7 Discussion
	7.1 Modeling
	7.2 Solution Method
	7.3 Concluding Remarks

	A The Linear Programming Relaxation
	A.1 The Linear Programming Relaxation

	B ALNS Implementation
	B.1 Strict Greedy Schedule Repair Heuristic
	B.2 Destroy and Repair Methods

	C Parameter Tuning
	C.1 Parameter ξ and λ overview
	C.2 Parameter Combination Performance Overviews
	C.3 Reward Distribution

	Bibliography

