
Extending analytics for eye
tracking data linked to source

code based on iTrace

Dennis Bøgelund Olesen

Kongens Lyngby 2018

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

The goal of the thesis is to create a tool for visualizing data gathered by the
gaze to source code mapping Eclipse plugin, iTrace. The solution covers the
steps necessary to analyze the data collected using iTrace. Starting with updat-
ing the iTrace interface connecting to the eye tracker to use the current state
of the art Tobii eye tracker software development kit. Followed by extending
the data storage of iTrace to support a database setup making several iTrace
sessions readily available for the analysis tools. A python library, iTraceAnal-
yser is created to convert the iTrace gaze data into fixations while retaining the
source code information. Finally the thesis propose two visualization solutions.
The first being simple data visualizations using bar plots to quickly view data
for single sessions. The second being a method of creating event logs making
comparison of several sessions available through existing process mining tools.

ii

Summary (Danish)

Målet for denne afhandling er at bygge et værktøj for visualisering af data samlet
af Eclipse pluginnet iTrace som forbinder blikke til kildekode. Løsningen dækker
de nødvendige trin for at analysere dataen samlet ved brug af iTrace. Første
delmål er at opdatere interfacet mellem iTrace og eye trackeren således at iTrace
kan bruges med moderne Tobii eye tracker software development kits. Herefter
skal dataopbevaringen udvides så iTrace støtter en database opsætning. Dette vil
gøre flere iTrace sessioner tilgængelige samtidig for analyse værktøjet. Et python
bibliotek, iTraceAnalyser, er implementeret for at konvertere iTrace blik data
til fikseringer uden tab af kildekode information. Til sidst forslår afhandlingen
to visualiseringer til analyse af dataen. Den første visualisering bruger bar plots
til at skabe et hurtigt overblik over dataen for enkelte sessioner. Den anden
foreslåede løsning skaber event logs ud fra fikseringerne og bruger dette til at
mine processen med eksisterende værktøjer.

iv

Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements for
acquiring an M.Sc. in Computer Science and Engineering under the supervision
of Barbara Weber and assistant supervisor Andrea Burattin

The thesis deals with state of the art eye tracking data visualization and anal-
ysis using process mining on data collected using the gaze-aware Eclipse plugin
iTrace.

Lyngby, 14-January-2018

vi

Dennis Bøgelund Olesen

I would like to acknowledge the following people for their contributions:

Barbara Weber, my supervisor for providing meaningful input to the direction
of the project through regular meetings.

Andrea Burattin, assistant supervisor for providing input and ideas primarily
regarding the practical implementations.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

vii

1 Introduction 1

2 Theory 3
2.1 Eye tracking . 3

2.1.1 Introduction . 3
2.1.2 Fixations . 5

2.2 iTrace . 9
2.2.1 Introduction . 9
2.2.2 Structure . 10
2.2.3 Additional features . 11
2.2.4 Related Work . 12

2.3 Process mining . 12
2.3.1 Business process models 12
2.3.2 The three stages of process mining 12
2.3.3 Disco . 13

3 Method 15
3.1 The process . 15
3.2 Producing gaze data . 17

3.2.1 Java native interface . 17
3.3 Exporting gaze data . 22

x CONTENTS

3.3.1 Solvers . 22
3.3.2 Database . 24

3.4 Converting gazes to fixations . 27
3.5 Analysing The Data . 29

3.5.1 Performing Static Source Code Entity Analysis 29
3.5.2 Performing Process Mining Analysis 30

4 Evaluation 35
4.1 Setup . 35
4.2 Analysis . 37

4.2.1 Fixations . 37
4.2.2 Bar Plots Fixation Data Analysis 40
4.2.3 Bar Plots Type Analysis 44
4.2.4 Process Mining . 46

5 Discussion 69
5.1 Data Preparation . 69

5.1.1 Data Collection . 69
5.1.2 Fixations . 70

5.2 Fixation Data Analysis . 70
5.3 Process Mining . 71
5.4 Future Work . 71

6 Conclusion 73

A Glossary 75

B Components installation 77
B.1 JNI . 77
B.2 Database . 78

C JNI, New SDK 79

D iTraceAnalyser.py 95

E iTrace.sql 107

F SQLGazeExportSolver.java 109

G MagicSort.java 117

H iTraceAnalyserScript.py 123

Bibliography 125

Chapter 1

Introduction

With eye tracking becoming more commonplace and businesses using eye track-
ing to determine behaviours of users in examples such as advertising [JL] it
would make sense to look into using eye tracking for other purposes. One such
purpose was made visible with the release of an Eclipse plugin, iTrace [TRS15],
which couples eye tracking to source code. This presents information on not only
the coordinates where the user was looking but also of the underlying source.
Through this iTrace has provided a tool for gathering information on the be-
haviour of developers reading and attempting to understand code. However the
iTrace data anlysis performed by others are limited to static representations of
single sessions through visualizations such as heatmaps and gaze maps [BC17].
As such this thesis will attempt to provide ideas and solutions for how to transi-
tion from the data gathered using iTrace to an understanding of the process the
user has gone through while developing, primarily focusing on process mining
for data visualisation. The intention is for this to be used primarily in teaching
environments where it would be worth noting certain patterns in the way the
student works. In order to provide insight and provide assistance in the areas
where they are struggling.

In order to set up a system for performing an analysis of iTrace data a couple
of goals needs to be met. First the interface connecting the eye tracker to
iTrace needs to be updated as the current implementation uses an old software
development kit which is no longer available. The rebuilding of this is going to

2 Introduction

be covered in order to allow for actual eye tracking information and can be seen
as a prerequisite for the analysis.

Additionally the data storage was changed as iTrace stores the file separately
which makes comparison across sessions and users inconvenient. As such a
database setup will be proposed and the remaining analysis will use the data
placed there. This also assists in providing additional insight into the structure
of iTrace.

Before the data can be used for comprehension purposes it will be necessary to
clean and structure the data into fixations to determine which parts of the data
is relevant.

The data analysis will be split into two parts. One part which focuses on
representing the values in static plots which provide information on the time
spent on different elements of the source code and additional information of
that sort. This helps provide a quick overview of a specific session without
going into a more in depth exploratory analysis.

The second part will involve treating the task of understanding the source code
as a process and consider each gaze as an activity where the user is trying to
understand the related code. As such the fixation data will be converted into
event logs which can be read by process mining tools and thereby provides the
base for exploratory and comparison of several sessions. Doing this allow finding
users who work in ways that are outside the expected and the norm. Providing
a base for helping the person correct some of the issues and knowing where to
put in additional work for improvement.

Chapter 2

Theory

This section will go over the theoretical knowledge which builds the founda-
tion of the thesis. There will be an overview of the information related to eye
tracking in Section 2.1, iTrace in Section 2.2 and process mining in Section 2.3
which is intended as relevant background knowledge for the systems created in
the method Chapter 3 and the evaluation of the systems along with analysis
performed with the systems at Chapter 4. The discussion of the systems and
their results in the Discussion Chapter 5. For a brief overview of the some of
the used terms see the glossary in Appendix A

2.1 Eye tracking

2.1.1 Introduction

Eye tracking[AS14] is the act of tracking the eye movement in relation what is
being observed, such as a computer screen, to determine where the person is
looking. Eye tracking is being developed for several devices such as computers
and wearable devices. This thesis will be focusing on eye tracking coupled to a
stationary computer screen using the Tobii eye tracker 4C[Tob17a].

4 Theory

Eye tracking is the act of tracking eye movements and collecting gazes. Gazes
are the raw output collected from eye tracking. Each gaze is a point on the
screen with an X,Y coordinate set relating to the pixel position. A gaze may
be attributed more values depending on the tool. Most relevant for this thesis
are the recorded time for the gaze and the source code data related to the gaze
point especially the line attribute.

In order to collect the gazes it is necessary to track the eyes. This can be
done in several ways [HC84]. Four methods mentioned by H.R Chennamma
are Electro-Oculography, Sceleral Search Coils, Infrared Oculography, Video
Oculography. The Electro-Oculography method uses sensors placed on the skin
around the eyes to estimate the position of the eye. The Sceleral Search Coils
method places wires on a contact lens which allows for tracking eye movement
very accurately. Infrared Oculography uses infrared light to calculate how the
eye moves based on the amount of light reflected. The last method is Video
Oculography which uses cameras and light to collect and process images of the
eye to estimate movement and gaze locations.

In the case of the Tobii eye trackers, the tracking is done using a near infrared
light along with a camera. The eye tracker then process the images taken of the
eyes and use the position of the reflected light to determine where on the screen
the subject is looking. a quick description of the setup can be seen in Figure 2.1

Figure 2.1: Eye tracking setup

As people’s eyes are slightly different [RvdL] and the characteristics of the eyes
and the way the light reflects may vary it is typically necessary to perform a
calibration test [Tob17c] before starting any tracking session. These calibrations
typically use points on the screen which the user then will focus on for a few
seconds, to map out what the eyes look like when looking at different areas, and

2.1 Eye tracking 5

thereby changing the settings so the eye tracker is more accurate.

The procedure of determining where the user is looking is then performed as
fast as is allowed by the technology. For one of the newer models, the Tobii 4C
tracker by Tobii, this is at 90 Hz [Tob17b]. Each recording is then transformed
into data which is commonly referred to as a Gaze. In a very simple setup
a gaze would just consist of the x and y coordinates relating to the screen in
pixels. However for analytic purposes gazes also include device time stamps as
well as information on pupil including dilation and position and a validation,
which indicates the correctness of the recorded gaze. Among other data. This
data allows us to not only detect where the person is looking, but sort out bad
gazes and use pupil information to perform additional analysis.

2.1.2 Fixations

Gazes are by themselves not particularly interesting, as it has been found that
a person only comprehends what is being looked at after fixating on it for about
100 to 200ms [Wid84].

As such an important of step of cleaning the data is to transition from gazes
to fixations. Fixations [AS14] are points where the user concentrates for an
extended time. As such a fixation relates to gazes as fixations can be considered
a cluster of gazes around the same point over an extended time. Fixation points
typically contains X and Y coordinates and a start time and an end time. This
can be done using grouping algorithms to group neighbouring gazes, which are
collected immediately after each other, and are sufficiently close. These groups
can then be considered fixations, and the transition from one fixation to another
is considered a saccade. Saccades are the movement between fixations. When
the areas are moving from one point of focus to another the gazes in between
are considered the saccade. An illustration of going from gazes to fixations can
be seen on figure 4.2

6 Theory

Figure 2.2: Gazes to fixations

It is however worth considering how to group these fixations as it can have a big
impact on the rest of the analysis. Some of the issues which may be expected
to arise if there is bad grouping are too few fixations if the algorithm is being
too strict and too many fixations if it is not strict enough. On top of this some
algorithms are more robust than others and handle issues such as fluctuations
in the gazes better than others.

When looking at fixation identification algorithms [DDS00], which are the al-
gorithms used for identifying the fixations in a group of gazes, it is possible
to use a taxonomy considering some of the important criteria . One proposed
way to define these criteria can be as accuracy, speed, robustness and ease of
implementation. Here one may consider accuracy by how good the algorithm is
in determining whether a gaze is part of the current fixation or if it belongs to
a new fixation or saccade. The speed defines how quickly the algorithm groups
the fixations. this is primarily important in any analysis done online and when
large amounts of data are considered. Robustness is graded by how resistant the
algorithm is to wrongful fluctuations in the data. The ease of implementation
is worth considering when deciding upon the right algorithm for your product,
as you may consider whether implementing a stronger algorithm is worth the
effort depending on the precision and quality with which you collect your data.

Before deciding which fixation identification algorithm will be the right one
for an analysis it is worth looking into a few different ones. This section will
be looking at a velocity based algorithm Velocity-Threshold identification (I-
VT). A dispersion based algorithm, Dispersion-Threshold identification (I-DT).
There are other alternatives such as a model using probabilistic methods, Hidden
Markov model identification (I-HMM), however these are not covered in this
thesis. These models have slightly different approaches to how to determine the

2.1 Eye tracking 7

fixations. However the basics of the algorithm remains the same and can be
described as the pseudo code shown in figure 2.3

Figure 2.3: Fixation identification pseudo

Loop over the gazes and for each gaze.
decide whether the current gaze is
part of the same fixation as the previous gaze or gazes.

if a gaze is not part of the fixation:
Group the previous gazes as a fixation
and start over from the remaining data.
Remove fixation if duration is less than threshold

The challenge is then to decide whether the gazes are part of the same fixation.
Additionally it may be worth mentioning as previously stated, a fixation needs
to have a minimum length in order to avoid single gazes along a saccade to be
considered a fixation. This also abides to the idea that a person only records
what is being looked at after a short time, this time is usually considered to be
around 100 to 200ms.[Wid84]

2.1.2.1 Velocity-Threshold fixation identification

The I-VT approach [DDS00] looks at the velocity between two gazes. This uses
the idea that a fixation is steady within an area and as such it has only very small
movements in the eyes. Where as any saccade would involve rapid movement
from one point to another. Calculating this velocity can be done as the distance
in pixels over time, or using the movement of the eyes in degrees to achieve a
degrees/secon velocity. These values are then used to assess whether the gaze is
fixated at a point near the previous gaze or if the movement can be considered
rapid. It is generally considered sufficient to determine a static criteria for
the velocity thresholds. Defining the threshold will depend whether you are
using the angular velocities or if you only know the point to point velocities.
If you are using the angular velocities previous research has approximated 20
deg/seconds to be a good threshold [TS84]. If these values are not available
andt he point to point velocities are being used, a suitable threshold may be
found using explorative analysis for the specific setup. The threshold may vary
depending on resolution and the screen size, as the pixels are closer together

8 Theory

in high resolutions, as well as the fluctuations in the recorded data. When the
velocity is known the algorithm can be described as seen on figure 2.4 [DDS00]

Figure 2.4: Velocity-Threshold identification, Adopted from [DDS00]

Calculate point to point velocity for each gaze

Label velocities under threshold as a fixation point

Collapse consecutive fixation points into a fixation group
Remove saccades

For each fixation group,
determine the start time and the end time
find the centroid of the points

Return the fixations

2.1.2.2 Dispersion-Threshold fixation identification

The dispersion based identification algorithm [DDS00] calculates the dispersion
between the points in order to determine whether they belong in the same
fixation. This relies on the idea that any fixation would consist of several gazes
clustered together, allowing us to group together nearby gazes. This differs from
the I-VT as the dispersion is based on the maximum and minimum values for
all the gazes positions in the fixation window rather than only comparing two
points at a time. However in the same manner as the I-VT in order to use the
I-DT it is necessary to determine the a suitable threshold. The dispersion itself
is calculated as (max(x)−min(x)) + (max(y)−min(y)).

The dispersion threshold can be found using exploratory analysis, seeing which
value provides you with the best data over several sets. This is necessary as it
may depend on resolution, screen size and the data fluctuation as well as the
individual users fixation characteristics [RvdL]. It is also considered that if you
can calculate the angle to the screen a dispersion of roughly 0.5 to 1 degree [P09]
can be used as a general threshold. Additionally to avoid describing saccades as
fixations we make sure any fixation is at least 100-200 ms long The algorithm
itself works as described in figure 2.5

2.2 iTrace 9

Figure 2.5: Velocity-Threshold identification, Adopted from [DDS00]

Loop over each gaze
Add points until the duration threshold is covered

If dispersion of window points <= threshold
Add next gazes until dispersion threshold > threshold
Calculate the centroid
Collapse into a fixation.

If dispersion of window points > threshold
remove first point in window.

2.2 iTrace

2.2.1 Introduction

iTrace [TRS15] is an Eclipse plugin by the Software Engineering Research and
Empirical Studies Lab, which enables eye tracking in a programming environ-
ment and allow the gazes within Eclipse to be linked to corresponding source
code entities, SCE. The SCEs are defined as entities which are represented in
the Eclipse editor as styled text. This includes declarations, invocations, state-
ments, methods and comments.

The tool exclusively works for the Eclipse environment and as such it does not
offer support for gaze tracking outside the Eclipse window. The data we receive
from iTrace provide information on both the gaze itself which includes data
about the eyes, time and positions as well as data about the corresponding area
in Eclipse. The Eclipse data includes information about the source code entity
in the area such as type and a unique name. SCEs are parts of the source
code that can be categorized. These include highlighted words and comments.
Additionally it also provides us with the line and column which can be useful for
code sections that do not fit on a regular screen and require scrolling. [TRS15]

10 Theory

2.2.2 Structure

The structure of iTrace is segmented into parts handling the different parts of
the process. The process consists of capturing a gaze using the eye tracker,
converting the recordings from the eye tracker into a gaze containing the base
data such as position, time and pupil information. Then iTrace need to handle
the data which makes the gaze into a gaze response which is a data type that
defines both the gaze and the corresponding part in the editor. This includes
lines as well as SCE depending on the type of gaze response. Once you have
the gaze response it will be passed to the solver which is responsible for out-
putting the gaze as readable data, by default XML and JSON. These different
parts are split into the classes IGazeHandler, iGazeResponse and ISolver. The
IGazeHandler is the component of iTrace which is responsible for collecting the
data from the tracker and collecting further information about the connected
SCEs, line numbers and more. The IGazeResponse is the structured gaze data
which includes the information collected by the IGazeHandler. The ISolver is
the super class responsible for outputting the IGazeResponses to other external
sources such as XML and JSON. The actions of these classes are then done
in parallel in threads using gaze and gaze response queues to avoid waiting in
between them. As the solvers are writing the output every time they receive a
gaze response the data is gathered online. The process for a single gaze can be
described as seen on Figure 2.6. This process is repeated once the tracking is
started, and ends when the user presses the Stop tracking button in the iTrace
controller.

Figure 2.6: iTrace gaze handling process

2.2 iTrace 11

In order to get the information that is at the gaze point iTrace opens Eclipse as
a plugin which gives them access to the widget class allowing them to segment
the Eclipse window as well as accessing information such as offset and relative
positions. Additionally iTrace maintains an abstract syntax tree (AST) of the
content within the editor. This syntax tree allow for mapping absolute positions
in the widget to the content using the ASTParser. In relation to iTrace the
abstract syntax tree holds the structure for the source code in order to find
information on the specific SCEs. The AST also allow for information about
the surrounding content.

The data outputted by the iTrace solvers are made available as JSON and XML
files in seperate folders for each session. Additionally a JSON description of the
session itself is created beside the gaze data.

In order to connect to the eye trackers an IEyeTracker class has been defined
[TRS15] which defines the necessary functionality of the gaze collection and
calibration. In the case of the Tobii eye trackers the SDKs are not directly
available for java implementation, and as such a java native interface, JNI, is
implemented for using the SDK in a different language. JNI is a java library
used for calling C and C++ code in a java environment. In this thesis the
term JNI or driver is used to describe the C++ module connecting to the eye
trackers software development kit (SDK). In this case the Tobii eye tracker is
implemented as a C++ driver using the old Tobii Analytics SDK . This SDK is
no longer available and a new or updated implementation will be needed prior
to use. The newest SDK is the Tobii Pro SDK.

2.2.3 Additional features

Besides capturing gazes and providing data iTrace include some additional fea-
tures which assist in making it friendly for use in a test environment. The first
thing when beginning an experiment iTrace will ask you to define the session.
This session definition allow for intuitive separation of the data collected over
several individual experiments, or sessions. Additionally it provides the oppor-
tunity to define users, the purpose of the session and creates a unique session
id.

iTrace acknowledges that the precision of the eye tracking may vary depending
on the user, despite an initial calibration [TRS15]. To combat this issue it is
possible to manually change the X and Y position displacement drift. as well
as a marker on the screen where you are looking, which works to give you an
impression of the accuracy of the tracking

12 Theory

2.2.4 Related Work

One of the modern proposals on how to analyse and visualize the data collected
with iTrace is the iTraceVis [BC17] solution. iTraceVis supports visualizations
of the gaze data within the Eclipse plugin and supports heatmaps of the source
code entities values in the editor, gaze maps which show how the user looked
around the file, a gaze skyline visualization showing which lines were viewed over
time. These visualizations were found to be useful for information regarding a
single user and session.

2.3 Process mining

2.3.1 Business process models

Business process models, BPMs,[dA11] are being used to provide a meaningful
way of describing the processes within many different business applications and
work flows. BPMs are a way of describing a process in such detail and structure
that it is often possible to recognize if there exists waste within the process.
It is often used in regards to automating and optimizing processes and rely on
defining actions and the flow with which these actions are done, in order to
know how an event is to be handled. Regular business process models can help
provide insight into the flow of the process as well as provide a guide for those
who are part of the process.

2.3.2 The three stages of process mining

In some cases there is no detailed model that the users are aware of and as
such they do not necessarily follow a specific flow. It is however still possible
that there may be similarities between the way the process is performed across
sessions. In these cases, if adequate log data exists process mining can be used
to get further insight into the process.

The use of process mining is often put in three categories. Discovery, confor-
mance and enhancement. These three categories can be used depending on the
goal of the task.

Discovery is the act of gathering log events and producing a graph showing
events and transitions explaining the behaviour. This will present you with

2.3 Process mining 13

model showing how the process have been performed and make available infor-
mation which can be investigated to acquire insight into the process.

Conformance is the act of comparing an existing BPM to an event log. This
will allow you to determine whether the actual performed process matches the
described model. This comparison can then be used in either direction, as it
may mean the existing BPM is missing something, or simply not in tune with
the real world. Or check if the event log represents a process which is wrong
either by choice, someone finding the process bad, or by mistake.

Finally when considering using process mining for enhancement it is often done
through the use of event logs to enhance the BPM. This can be used for repairing
the BPM by adding flows that were missed in the creation but exists within the
event logs. Or adding additional information to the model, for instance by using
new information from the even logs, such as timings, to extend the quality of
the model.[dA11]

2.3.3 Disco

With the event log information available, there exists tools for visualizing the
flow and provide process mining information. One of these tools, Disco [Flu17],
provide a platform for discovering the process behind the event logs. Disco allow
us to look at the individual cases as well as getting an overview of the process as
a combination of all events. It will allow us to get information of which events
have been performed the most times as well as the duration of these events.

14 Theory

Chapter 3

Method

3.1 The process

In this chapter we are looking at the process of building the system with the
purpose of providing the tools for creating an extended analysis of the iTrace
data in a testing and teaching environment. The goal of this section is to
understand how the system is built and how the different components operate
together, this includes the process from start to finish as well as the interaction
and responsibility of each component and sub process in the created system. On
top of this we hope to understand the reasoning behind the decisions made in
regards to what is built, what is left out and why certain methods were chosen
over others.

A model for the process of main aspects of the system going from the start to
the end can be seen on figure 3.1.

The first step of the system requires a re-write of the java native interface as
the Tobii SDK used in the official release of iTrace is outdated.
The second step of the process includes an update to the data storage to
support future potential cross machine sharing and to centralize the data in one
collection rather than the previous separate file setup as this will make analysis
and comparison of several sessions more available.

16 Method

The third step consists of having to clean the data by converting from gazes
to fixations and removing saccades. This ensures that only the areas which the
user has focused on is passed along for analysis.
The fourth step is a simple analysis of the fixation data created in step three,
intended to get a quick overview of the values of a single session.
Step five and six is a more in depth analysis using process mining as visual-
ization. The process mining tools are available however the data needs to be
structured as event logs in order to use existing tools such as Disco [Flu17].

Figure 3.1: Analysis process, start to end

As we can see on the model the process has to go through a number of steps.
It is worth noting that neither of these steps are readily available before this

3.2 Producing gaze data 17

extension.

To produce gaze data using iTrace in step one we need to update the JNI with
the new SDK to allow use of the eye tracker. This sub process is described in
section 3.2.1.

To export the gaze data to database in step two it is necessary to set up a
database, as well as add a new solver which works with the database. This sub
process is described in section 3.3.2.

To perform step three we must implement a fixation identification algorithm
which maintains data of interest from the iTrace gaze responses. This sub
process is described in section 3.4.

Performing the SCE analysis in step four requires presenting and structuring
the fixation data, with respect to the source code entity attributes. This sub
process is described in section 3.5.1.

Converting fixations to event logs in steps five require a definition of events, as
well as a conversion implementation. Performing the process mining on event
logs in step six can be done drawing conclusions from a process mining tool such
as disco. This sub process is described in section 3.5.2.

Each of these steps can be considered separately but in concession as they
depend on findings from previous steps in the way defined in figure 3.1 .

For installing the implementation see Appendix B.

3.2 Producing gaze data

3.2.1 Java native interface

The basis of the project relies on using iTrace for the gaze tracking. The tools
provided in iTrace are by themselves complete for gathering the gazes as pre-
sented in section 2.2. However as the company developing the eye trackers
continue to improve the development kits the drivers used in the current version
of iTrace, Tobii analytics 3.0, are out of date and are no longer freely available.
As such a rewrite of the java native interface is necessary to connect to the
newer tobii devices.

18 Method

3.2.1.1 Java Native Interface Responsibilities

The JNI is responsible for all communication with the eye tracker both in regards
to data sent from the eye tracker to the plugin, as well as instructions sent from
the plugin to the eye tracker.

First it is necessary to understand what has changed since the previous version
of the SDK. The rework meant that the C++ libraries in Tobii Analytics 3.0
has been replaced by C libraries in the new Tobii Pro SDK.

This does however not prevent a reuse of the old JNI implementation, as with
minor changes to the SDK headers the C libraries are compatible with the C++
JNI implementation, however without the addition of an external c definition
in the C headers, the compilers will not read the function calls in the libraries.
Once the libraries are made compatible with the old JNI it is then possible to
rewrite the Tobii eye tracker JNI to function with newer Tobii trackers.

Using the eye trackers with the JNI requires a couple of steps. First iTrace
need to create a background thread for the eye tracker to run on. Afterwards
iTrace connects to the eye tracker. Once these two steps are completed it is
then possible to either start the tracking immediately, or set up a calibration.
The calibration requires setting the eye tracker in a calibration mode, and then
add points as the user is focusing on them. When enough points are added the
eye tracker leaves the calibration mode and computes the data gathered from
the points. At this point the calibration can be repeated or the tracking can be
started. At this point the eye tracker repeatedly handles each registered gaze,
and passes it along to the plugin.

The flow of these steps, named by their corresponding function in the JNI im-
plementation can be seen in Figure 3.2

3.2 Producing gaze data 19

Figure 3.2: iTrace JNI flow

In order to update the old implementation with a new SDK it would not be
enough to rely on the method names alone as these have changed with the new
SDK and as such it is worth looking into the responsibilities of each method.

The jniTobiiMainLoop method is responsible for initializing the native data,
which holds information about the eye tracker and the eye tracking main loop
functionality. The mainloop and the jni function has the functionality which is
often seen in initialization functions.

The jniConnectTobiiTrackermethods responsibility is to connect to the tobii
tracker. In order to do this it is required to find which eye trackers are available
on the system. This is done using the library functionality of an eye tracking
browser which scans and waits for any information on any eye trackers plugged
into the system. Afterwards the eye tracker in the program is created using the
information from the browser.

20 Method

The jniStartTracking method sets the eye tracker in tracking mode and main-
tains a listener responding to captured gazes. Every time a gaze is captured the
HandleGazeData method is called. The HandleGazeData processes the gaze
and forwards a wrapped version of the gaze to the Eclipse plugin.

The jniStopTracking method leaves the tracking state and resets the tracking
data to clean up after the tracking session.

The calibration part consists of four methods, jniStartCalibration, jniStop-
Calibration, jniAddPoint and jniGetCalibration. The method jniStart-
Calibration enters the eye tracker into calibration mode and clears the current
calibration data, to free up for a new one. jniStopCalibration is responsible
for leaving the calibration mode and additionally it computes the calibration
data and applies the calibration on the eye tracker. In between these two it is
necessary to add calibration points during the calibration. The calibration is
done using points on the screen which the user is asked to focus on for a few
seconds. While the user is focusing on these points the method jniAddPoint is
called to collect the gaze position relative to the point they were supposed to
focus. The system has to collect enough of these points in order to compute
a proper calibration in the end. When the calibration is done iTrace can call
jniGetCalibration to get the calibrated points, for visualizing them as a result
to the user to provide an overview of how accurate the calibration were.

3.2.1.2 Updating the Java Native Interface

With the understanding of how the previous JNI implementation works it is
necessary looking into what has changed since this version of the SDK. As the
required tasks are the same as previously it is expected for the new SDK imple-
mentation to contain all the same functionality. The task is then to determine
which methods are changed, and what impact the structural changes have on
the implementation.

The major changes since the previous version is the change previously mentioned
transition from C++ to C. On top of this the old JNI uses a main loop to form
a frame around the eye tracking process. This loop took control of the eye
tracking and was responsible for providing the browsing information used to
gather information on the eye tracker and create the eye tracker. As such the
mainloop structure played a large role in the old implementation. This has since
been removed and no immediate replacement exists. This appear to be due to
a change in the structure where they no longer rely on the mainloop class to
access the eye tracking information, but rather have them all available in C
methods, which in turn take eye tracking information as arguments rather than

3.2 Producing gaze data 21

inheriting it from the mainloop class.

This change has a structural impact on the way we are storing calibration infor-
mation as well, as it used to all be kept within the classes, and calibration data
remained within the eye tracker class. The new implementation require keeping
the calibration data outside and passing them into the calibration computation
methods alongside the eye tracker class.

An example of this change can be seen in figure 3.3. From this it should be visible
that much of the data has been moved from the class structures to variables
outside the classes, as well as the methods are now called independent of a class
in addition to the name changes.

Figure 3.3: Calibration implementation example

//Original implementation
eye_tracker->computeCalibration();
eye_tracker->stopCalibration();

//New implementation
TobiiResearchStatus status =
tobii_research_screen_based_calibration_compute_and_apply(
eye_tracker, calibration_result);

tobii_research_screen_based_calibration_leave_calibration_mode(
eye_tracker);

Additionally some methods have had their functionality combined, an example
of this is the start tracking which used to consist of a method for entering
tracking mode, and setting up a listener which calls a helper function whenever
a gaze is recorded. This has been moved into a single method, which takes
a callback method and while in the tracking state this will function like the
previous listener.

These changes were implemented in a new version of the tobiitracker.cpp file
with the structural and convention wise changes described and can be seen in
Appendix C.

22 Method

3.3 Exporting gaze data

3.3.1 Solvers

Due to the segmented structure of iTrace the export of data is mainly performed
in the solver class as mentioned in section 2.2.2. The solver classes receive gaze
responses which allows for collecting all the information created in the process.
As such the solver is responsible for step five in figure 2.6 extracting the values
in the responses and structure and forward it to an output file or database.

The implementation from iTrace saves XML and JSON files with the data in a
folder named after the session id. As such accessing the data from several ses-
sions at once is not intuitive. Additionally this setup does not support having a
centralized data storage outside the computer where the eye tracking experiment
is performed.

To combat these issues a new solver supporting SQL has been implemented
and a database structure has been proposed. It is worth noting that for any
cross machine sharing a networking setup would be necessary, but this has been
deemed out of scope for this thesis. However as this provides the foundation
for the remaining data analysis the changes required should be limited. The
majority of the implementation resides within the solver class, where a gaze
response is passed. It is worth noting that iTrace implements several types of
gazes. Of these types the focus will only be on gazes on lines with no source code
entities, and styled text gazes which include information regarding the SCEs on
the line. This is done by readying a SQL statement for updating the database
with the new data, depending on the gaze type, and appending all the SCEs
afterwards and. At the same time the solver needs to connect to a database
which is currently hard coded within the solver.

For the solver to work it is not enough to build the new SQL solver. The
program still needs the solver integrated with the rest of the system. By this
the gaze responses must be passed to an instance of the class, and additionally
the user should still be able to decide whether or not to have the SQL solver
toggled.

3.3 Exporting gaze data 23

Figure 3.4: iTrace gaze exportation

To integrate a new solver involves a couple of additions to the controlling classes
of iTrace. as seen on figure 3.4 it requires coupling the solver to the iTrace main
class. In iTrace.java along side the previous existing xmlSolver and jsonSolver
a new instance of the sqlSolver is needed. With the new sqlSolver instance it
is then possible to pass along the responses as they are made. As a change
from the XML and JSON solvers the sqlSolver requires a specific config call to
insert the session information in the database. The session information is the
developer user name and name along with the purpose of the session and the
session description. These are originally stored in a file separately from the XML
and JSON files and are as such not immediately available without specifically
adding an additional sql config method. The implementation can be seen in
Appendix F

The ControlView is responsible for adding new buttons to the console panel and
handles the user interface aspect of the implementation. It is in this UI the user
sets the sqlSolverEnabled variable which is used by iTrace.java to determine
whether or not to do the sql export. When these aspects are set up iTrace will
be able to export into the database. The next subsection will take a close look
at the database and the data being exported.

24 Method

3.3.2 Database

Previously to the database implementation iTrace saved the data as either JSON
or XML files in separate folders for each session. By looking at a gaze from the
JSON data it can be seen that the data consists of the base gaze information
such as coordinates, pupil etc. Additionally it contains a variable amount of
source code entities. The full list and the structure can be seen in Figure 3.5

3.3 Exporting gaze data 25

Figure 3.5: Example JSON data

"gazes": [
{

"name": "example.java",
"type": "java",
"x": 775,
"y": 452,
"left_validation": 0.75,
"right_validation": 0.75,
"left_pupil_diameter": 3.4242401123046875,
"right_pupil_diameter": 3.9959869384765625,
"timestamp": "2017-10-05T13:14:41.332+01:00",
"session_time": 973895205,
"tracker_time": 240730,
"system_time": 1507202081332,
"nano_time": 1709448837018574,
"path": "C:\\test\\src\\test\\example.java",
"line_height": 28,
"font_height": 18,
"line": 18,
"col": 13,
"line_base_x": 424,
"line_base_y": 449,
"sces": [

{
"name": "java.io.PrintStream.println(java.lang.String)",
"type": "METHOD",
"how": "USE",
"total_length": 30,
"start_line": 18,
"end_line": 18,
"start_col": 4,
"end_col": 34

},
{

The database structure were then created with the goals of being able to hold
several sessions with several different users. As well as making sure the data
available in the previous XML and JSON implementation are still available in
the database implementation.

26 Method

In the original iTrace structure there is also a separate file containing the sessions
information. The session information contains a unique session id. The session
purpose which is entered upon beginning a session. The session description.
The developer user name and the developer name.

The goal is then to combine these into a database. By looking at the data
it resembles tables already as there is a session information file which all the
gazes belong to. Also for each gaze there are a group of SCEs with identical
attributes. These different SCEs are the source code entity which the gaze is
located at and the surrounding SCEs in sorted order from nearest to furthest.
The surrounding SCEs are limited to the SCEs related to the entity gazed at.
In other words if looking at a statement in a loop within a class the SCEs would
cover the statement, the loop statement, the main declaration and the class
declaration. As such depending on the depth of the SCE any gaze needs to
contain a variable amount of SCEs. In order to keep the SCEs sorted and thus
keep the information about the depth of SCE an attribute has been added which
defines the depth of each SCE. As such if the user is interested in the tree like
SCE structure it can be recreated by sorting the depth attribute for SCEs with
the same ID. However if the analysis is done entirely on the object at the gaze
point all sces with a depth of one or higher can be discarded.

Figure 3.6: iTrace database schema

Figure 3.6 shows the database schema for the implemented solution. This solu-
tion reuses the unique session IDs created by iTrace to ensure the uniqueness of

3.4 Converting gazes to fixations 27

the individual sessions. In order to couple several source code entity entries to
an entry in the gaze table each gaze must have a unique primary key the SCE
table entries can use to relate to their parent gaze. In addition to this each gaze
belongs to a session and as such have been given the session ID as a foreign
key to ensure the relation. With this setup the three tables are related and the
data is ready to be cleaned and analysed. The iTrace.sql file for building the
database can be seen in Appendix E.

3.4 Converting gazes to fixations

Before any valuable analysis can be done on the data it is necessary to determine
fixations from the gaze data. To do this the algorithms discussed in section 2.1.2
can be used. From these the choice was reduced to either the velocity based
identification algorithm or the dispersion based. These were chosen as they
both scored well by Dario D. Salvucci and Joseph H. Goldberg [DDS00] as
they are both fast and robust while not requiring any unnecessarily complicated
implementations. From the velocity based algorithm and the dispersion based
algorithm the dispersion based identification algorithm were arbitrarily chosen
as either would work for the data.

As seen in section 2.1.2.2 the dispersion based algorithm depends on defining a
threshold for how large of a dispersion is allowed for gazes to be considered part
of the same fixaton. To calculate this dispersion threshold needed to determine
whether gazes are part of a fixation or a saccade this implementation relies
purely on the dispersion of pixels, as there is no static setup to ensure the
distance to user and the angle from user to tracker, which would allow us to use
angles instead of pixels. As such it also requires the user to pick a dispersion
threshold for the algorithm measured in pixels. This dispersion threshold may
have to vary between different uses and tasks so the ability to change this has
been given to the user.

The algorithms were implemented in python from scratch in order to get full
control over which parts of the data are passed during the conversion. In order
to make the system usable for a user the fixation gathering has been coupled
directly into a method which takes the database information as input and out-
puts a list of fixations. Each of these fixations contains a start time, end time,
x and y coordinates. Additionally it is implemented in such a way additional
data from the database can be added as well.

When the gazes are grouped as fixations, each fixation consists of a list of gazes.
This presents an issue with knowing which data to use if the fixation is on the

28 Method

edge of a line and as such consist information from different lines. For example
at times some gazes would suggest the SCE type is a for statement and other
gazes suggest the line is a print statement. To combat this the current solution
picks the attributes repeated the most time. Different approaches could be
to determine it based on the line used the most times or basing it off which
data values has the most milliseconds of view rather than number of gazes.
This happens in much the same way as the calculation of X and Y coordinate
centroids.

All of this is being done in the implemented library class iTraceAnalyser which
handles connecting to the data base, creating the fixation and the event logs
discussed in section 3.5.2. The import is done by the user by calling the get
session function bringing along the database information and the unique session
id as seen in Figure 3.7.

Figure 3.7: iTraceAnalyser Get Session

import iTraceAnalyser as IA
#Importing the test subjects data
iTrace1 = IA.get_session("localhost","root",
"1234","iTrace",'20171201T092946-0684+0100',15)
iTrace2 = IA.get_session("localhost","root"
,"1234","iTrace",'20171201T101056-0578+0100',15)
iTrace3 = IA.get_session("localhost","root"
,"1234","iTrace",'20171205T100741-0299+0100',15)
iTrace4 = IA.get_session("localhost","root"
,"1234","iTrace",'20171205T102737-0035+0100',15)
iTrace5 = IA.get_session("localhost","root"
,"1234","iTrace",'20171205T105857-0765+0100',15)

When this is called the variables iTrace1 to 5 are lists of fixations that are ready
to be used in other methods. It is also possible to get the raw gazes with the
get_raw_gazes() method and the same arguments, if those are of interest.

3.5 Analysing The Data 29

3.5 Analysing The Data

3.5.1 Performing Static Source Code Entity Analysis

Before looking into the process mining for comparison between several sessions,
a quick view of specific sessions and their data may be of interest. As such a
couple of methods were implemented to work with the fixation data collected
in the previous section 3.4. These methods are intended to function as a quick
overview of the fixations for a single session.

The main idea behind using this functionality over the process mining is not
the quality of the data shown, or it being more in depth than the process
mining data. Rather most of what can be seen from these methods in the
iTraceAnalyser class seen in Appendix D can also be discovered using the process
mining suggested in section 3.5.2. The idea is to give quick access to certain
values and views that may be interesting before going into a more comprehensive
analysis.

To reach this goal the methods were designed to keep them generalized enough
that they will work for any attribute passed along with the fixations acquired
in the get session methods seen in Section 3.4 Figure 3.7. This helps in case
further work is done on the iTraceAnalyser class where other attributes is being
placed in the fixations.

The methods implemented covers bar plots of the following:

• number of fixations.

• Total fixation duration.

• Average fixation duration.

• Maximum fixation duration.

Additionally a method has been made for the total duration of the session in
seconds.

In Figure 3.8 the methods are called for creating the bar plots with the fixations
created in Figure 3.7. These plots are used and shown and in section 4.2.2.1.

30 Method

Figure 3.8: iTraceAnalyser, plots and duration

print IA.session_duration(iTrace1)

#Creating bar plots for Chapter 4 section 3.
IA.fixation_count_bar(iTrace1,"count_lines","line")
IA.fixation_count_bar(iTrace1,"count_types","sce_type")

IA.fixation_duration_bar(iTrace1,"dur_lines","line")
IA.fixation_duration_bar(iTrace1,"dur_types","sce_type")

IA.fixation_average_duration_bar(iTrace1,"avg_dur_lines","line")
IA.fixation_average_duration_bar(iTrace1,"avg_dur_types"
,"sce_type")

IA.fixation_max_duration_bar(iTrace1,"dur_max_lines","line")
IA.fixation_max_duration_bar(iTrace1,"dur_max_types","sce_type")

These methods were chosen as they provide insight into what areas the user has
been the most interested in four aspects. Where did the user spend the majority
of the time. Which area did the user repeatedly come back to and which areas
did the user on average spend the longest. Finally which location did the user
spend the longest single fixation, as important areas may be re-visited many
times, which lowers the average duration of a fixation at that area.

3.5.2 Performing Process Mining Analysis

This section covers the tools created to perform a proper process mining analysis
of the fixation data. This part of the process consists of converting the fixations
to events which can be read by the process mining tool Disco. Additionally it
will contain a few remarks about the tools Disco provides which can be used.

Process mining was chosen as the primary source of analysis for the data col-
lected using iTrace due to how effectively it can present information regarding
how the users have behaved. Additionally it allows for much smoother compari-
son between several users than individual visualizations such as heatmaps would.
For longer sessions it is also less cluttered than would be expected from scan
path visualizations. The process mining provides strong tools for comparing the
events completed in each session.

3.5 Analysing The Data 31

In order to perform the process mining analysis the data needs to exist in an
event log form. This form needs to include a unique identifier which separates
the different processes. In addition each entry needs to be considered as an
activity and as such needs an activity name. The activities are not necessar-
ily unique and typically represent one or more actions that are done together.
Finally it makes sense to have a start and end time for each event as they are
represented as fixations. This presents knowledge about both the duration of
each event and it also let the user know the time in transition between events.
When working with this fixation data the unique identifier may very well be
the session ID as this has been brought along throughout the process and it
uniquely identifies each session.

Which value to use as the event descriptor is more interesting as the analysis
changes depending on how the event is defined. First thing to notice is that
events in this case can be considered to be fixating on a point. The difference
then depend on what you decide to take from the fixation. One way could
be using the X and Y coordinates and create an event for each X Y fixation
combination. This presents a couple of issues in regards to the readability of
the mined processes. It would not be trivial for the reader to couple screen
coordinates to the code viewed. This becomes increasingly difficult when the
code is large enough that scrolling is involved and position X,Y is no longer
deterministic as the scrolling offset is unknown.

3.5.2.1 Lines

To get around these issues each line could be considered an event. In this way
the offset is no longer a problem and with having the code next to the diagram
the line can easily be coupled to a section on the screen. An example use of this
is if the user spent an extraordinary amount of time on a line, the reader can
look up the line in the code and judge if this makes sense. This allows for an
exploratory analysis of the session.

In order to make it easier to relate the activities seen in the process mined data
to the content of the lines in the source code the SCE types that have been
viewed on that fixation point has been appended to each event. As such an
event would be named "34 - FORSTATEMENT" rather than just 34. This
makes it easier to understand what exists on the line without changing the tree.

An example of the mapping from source code to the activities in the mined
process for the line wise method can be seen in Figure 3.9

32 Method

Figure 3.9: Source code to Event log mapping, lines

The proposed solution works as a general implementation and requires no out-
side interference from the reader and provides a process which can be analyzed
and hopefully clarify differences in approaches and behaviour of the user. How-
ever an additional method is proposed to help alleviate a few issues. The first
issue is when the eye tracking is not accurate enough to do pixel, or line, perfect
gaze capture. Secondly the more events, in this case lines, the process contains
the harder the analysis is to read. In addition the naming using lines requires a
lot of back and forth between the code and the process mined diagram.

3.5.2.2 Area of Interest

The alternative method allows the user to define areas of interest. The area
of interest, AOI, are then used as events. An example AOI could be line 1-10,
which may consist of an introduction to the file and could be named by this.
This would allow the user to define larger areas and name them in ways that
are easily relatable to the source code and lessen the need for looking up in the
source files. As for the accuracy issue as the areas are intended to be larger and
in some cases a slight padding can be added it prevents issues where accuracy
makes the user leave the AOI which he is actually looking at.

Figure 3.10 shows the area of the source code which is mapped to its matching
activity in the mined process. In this example the Sort method is defined as an
activity. This makes the entire section a single activity in the process mining
diagram.

3.5 Analysing The Data 33

Figure 3.10: Source code to Event log mapping

When creating these events a few decisions were made in regards to implementa-
tion. When two or more consecutive fixations are on the same event, assuming
the transition is less than a second they are collapsed into one event. This may
happen due to spikes in data or moving from one point within the area to an-
other. This allows for longer events, while still allowing catching cases where
the user is looking away from the screen and then returns to the same area.

These solutions has been implemented as a python library, iTraceAnalyser Ap-
pendix D which handles collecting data from the db, converting it to fixations
as well as creating event logs and bar plots of the fixation data.

34 Method

Chapter 4

Evaluation

4.1 Setup

When the data was collected a few goals were set with respect to the extent of the
report. It would not make sense to use example data as this does not provide any
real insight into what kind of results could be seen using the proposed analysis
process. As such one goal was to gather data from outside sources. At the same
time it was decided not to formalize the testing entirely and the test task was
kept small and relatively simple with only one file. The testing environment
was kept informal and was done using students around campus at the Technical
University of Denmark.

The physical setup consists of a laptop with a Tobii 4C tracker placed in the
section between screen and keyboard using adhesives to keep the tracker in place
facing towards the user. The users was also given a pen and some paper, in case
they needed to note down the list to be sorted.

To enhance the quality of the tracking each session began with the user looking
at a test file with a letter they were asked to focus on. Using the crosshair
in iTrace it was possible to determine how close it was to the letter. Small
deviations could be solved using the drift tool in iTrace and larger deviations
ran the calibration.

36 Evaluation

The test itself was done using an implementation of Insertion sort available from
and authored by Robert Sedgewick and Kevin Wayne [RS17]. Minor changes
was done to this file in order to make the test more extensive and can be seen in
Appendix G. First the name was changed to avoid the user immediately seeing
which sort is being used. The name was however not removed from the comment
fields. Additionally the sorting loop was made to begin the iterations from i=1
as opposed to the original i=0 as the first iteration would otherwise do nothing.

The Insertion sort file consists of several methods. The ones to consider are
Sort with one argument is the sort method the user is asked to work on, this
sort takes only one argument.
Sort with multiple arguments is the sorts which take different arguments.
The user is not supposed to look at these. It is however a large section covering
70 lines which means that several short fixations within this area is expected.
Less is a method comparing two values. Less is called in the Sort method.
Exch is a method switching around the position of two values. Exchange is
called in the Sort method
isSorted is a method used in asserting that the list is sorted for a given interval.
isSorted is called in the Sort method. Show is a method printing the list.
Main is the main method calling Sort with one argument.

The test subjects were then asked to first figure out which method was called as
the implementation consists of several sorts with different amounts of arguments.
The sort is called by the main method using one argument containing the list
[4,2,1,3]. This question was used to ensure they all worked on the same method.
They were also asked what the array would look like after the first iteration of
the outer loop. As the algorithm is insertion sort the first iteration will compare
the first two indexes and swap if the first element is lower than the second
element. The sorting algorithm is written as seen in 4.1 and shows two other
functions, less and exch. These exists in other sections of the code.

4.2 Analysis 37

Figure 4.1: Insertion sort

public static void sort(Comparable[] a) {
int n = a.length;
for (int i = 1; i < n; i++) {

for (int j = i; j > 0 && less(a[j], a[j-1]); j--) {
exch(a, j, j-1);

}
assert isSorted(a, 0, i);

}
assert isSorted(a);

}

These questions were asked to five testers where four of them completed the
task.

4.2 Analysis

This analysis section goes over the data collected using the methods described
in the previous chapter and performs an analysis of what is seen at the results
in order to provide an example of the kind of analysis which can be done using
the system.

Results and analysis will be seen of the following parts of the system.

• Fixations, accuracy and choice of dispersion threshold. From Section 3.4

• Fixation data analysis with python plots. From Section 3.5.1

• Process Mined data of event logs. Both line by line analysis and User
Defined area of interest analysis. From Section 3.5.2

4.2.1 Fixations

In the setup in Section 4.1 it was described how gaze data from five students
were gathered during a small test. With the collected gazes it can be of interest

38 Evaluation

to determine how well the gazes are translated to fixations. This also allows for
checking the output depending on a few different dispersion threshold settings.
In Figure 4.2 a comparison of the raw gazes and the fixations achieved can
be seen with a dispersion threshold of 15 pixels which appears to be a decent
value for the gazes collected as it covers the expected areas without creating
fixations in the saccade areas. The gaze data used is not related to the test
setup mentioned in Section 4.1 as the coordinates do not take into account
scrolling and a smaller data section help provide a more clear image of the gaze
to fixation transformation.

Figure 4.2: Gazes to fixations

From the images seen in Figure 4.2 it is clear that a lot of gaze data is produced
when looking around the screen. As such the fixation identification algorithm
effectively removes a lot of the noisy data and present a clearer image of which
areas were actually being focused at. For this example the size of the dots
depend on the duration of the fixation.

Besides the transformation it can also be seen how the choice of dispersion
threshold changes the results drastically. According to a study published by the
National Center for Biotechnology Information they found that
Quote: "there are considerable differences in the characteristics of fixations not
only between these tasks, but also between individuals." [RvdL].
They point out that the eye movements differ depending on the type of task and
from person to person. As seen on Figure 4.3 the fixations vary greatly based
on the dispersion threshold and it should provide an idea of how the analysis
may change depending on the choice.

Here the dispersion threshold of 15 pixels were chosen as it covers the same
fixational areas as the the others without creating additional fixations such as
the 25 and 30 threshold.

4.2 Analysis 39

Figure 4.3: Gazes to fixations

As previously stated the cut off point for threshold between gazes is not trivially
found for all cases of the tracking and need to be considered for the individual
setup. As such a look is taken at the behaviour of the fixation algorithm for
data gathered with the setup used throughout the experiments. The results of
these thresholds can be seen in Figure 4.3. From these it can be seen that the
gazes which are not clustered together, the saccaddes, are removed for all the
tested values. It is also seen that with thresholds between 15 and 30 the areas
remain the same while the number of fixations identified differs. This gives
the impression that values between these would offer decent results for further
analysis. It is however not immediately clear which value is the most accurate
without a more rigorous analysis.

40 Evaluation

4.2.2 Bar Plots Fixation Data Analysis

4.2.2.1 Bar Plots Fixation Line Analysis

In this section we will look at the data for a single session. The user was a
masters student at the Computer Science and Engineering study line at DTU
and were put to the task defined in Section 4.1. The goal here is to see if the
data can be used to get an impression of how the user worked. In particular it
is interesting to see if the user was able to determine the critical parts in the
source code for answering the questions.

To assist in reading the plots the methods and their lines are:

• The correct Sort method line 54 to 69.

• Other sort methods line 70 to 140.

• Less method line 141 to 160.

• Exchange method line 161 to 168.

• isSorted method line 169 to 192.

• Show method line 194 to 201.

• Main method line 202 to 214.

With these lines in mind the first step in seeing how the user worked could be
to look at the total duration spent on each line. This can be seen in Figure 4.4
with added boxes to better see which lines belong to which methods.

4.2 Analysis 41

Figure 4.4: Total duration, lines

One thing to notice here is that this type of visualization is limited by the number
of the bars shown. It is clear that if the file had been larger or if the user had
fixated on each line it would quickly become unreadable. An alternative is then
to use a histogram rather than a bar plot. This would provide readability at
the cost of precision. Information specific to each line would be lost using a
histogram.

For the specific case however it appears line 56 to 62 has been focused at a
lot. These lines are part of the Sort method we expected the user to focus
on. Additionally line 141 to 173 stands out with a small peak compared to the
surrounding lines. These lines are within the Less and exchange method. Finally
there is another peak at line 206 to 210, which represents the main method, this
peak is significantly more noticeable than the less and exchange peak.

From this it can be seen that over all the user was primarily interested in the
Sort method, the Less and to some extend the exchange method and noticibly
interested in the Main method with a very large peak around the sort method.

In order to get an idea of the flow of the process it is worth looking at how many
fixations were on each line. This can be seen in Figure 4.5

42 Evaluation

Figure 4.5: Fixation Count, lines

From the fixation counts the first thing to notice is that it shows almost the
same picture as the total duration bars. It evens out the areas in between the
peaks but otherwise the same is shown. The peaks are still around the Sort
as the largest peak. The Less and exchange method as a peak area and the
main method having three lines that are visited a lot. This makes sense as the
Sort method is the method performing the logical operations and are as such
expected to be the most complex method. The main method must be viewed
in order to know which method is called and the values being sorted. Less and
exchange are both called from the Sort method, and specifically Less may be
interesting as its operations could be going both ways, in the sense of which
argument is less than which argument.

In order to get an idea of how long all the fixations were on average at a place
we can compare to the average fixation duration in Figure 4.6 to the number of
fixations.

4.2 Analysis 43

Figure 4.6: Average Fixation Duration, lines

Looking at the average duration diagram it does not appear to present much
information about the process. It does however show that, not accounting for
the rare cases with large averages such as line 120, the fixations were mostly
between 100 and 300 ms. with one line going up to 400 ms. These numbers
are within the expected range for fixations. The values show little impact from
areas which were more complex than others. This is likely due to the complex
areas having a large number of fixations which dilutes the maximum values.

Next a look will be taken at the maximum fixation duration of each line in order
to see if the complexity of areas meant the user had longer fixations on these
areas. The maximum duration for each line can be seen in Figure 4.7

44 Evaluation

Figure 4.7: Maximum Fixation Duration, lines

Here it can be seen that line 60 and 58 have the longest fixations. Where 60 are
the outer for-statement and 58 is the Sort method declaration. There are also
some slightly longer fixations at the main method.

The fixation of over two seconds at line 58 appear too long in comparison to
the remaining fixations. However looking at the number of fixations and the
average fixation duration, the value at 58 appear to be out of the ordinary and
is not a typical occurrence as the average duration is not larger than other lines.

These values shows that the Sort method must have had a degree of complexity
as the user dwelled long within a short area. The length is however much longer
than expected of fixations and may be due to small saccades that was not caught
by the threshold we used. On the rest of the data we see that the main method
has a peak as well.

4.2.3 Bar Plots Type Analysis

From the bar plots in Figure 4.8 it can be seen that despite method declarations
being the most viewed types in total time and number of fixations, the for

4.2 Analysis 45

statement type has the longest fixations on average. This gives the impression
that the hardest to read parts of the code was happening within for statements
despite method statements being more common.

Figure 4.8: Bar plots For Source Code Entity Types

4.2.3.1 Bar Plots Analysis Conclusion

By simply looking at these data plots it seems likely that the user understood
the task and was able to find the most important sections in the source code
which would assist in answering the questions. The analysis shows that the user
worked primarily on the Sort method, the Main method and to a lesser extend
the Less method, while there was no discernible peaks during the other sorts.
It shows that the Sort method was the most challenging of the three, with the
For statement being the line looked at the longest in one fixation. The analysis
does however not provide any insight into the order of the fixations apart from
the fixation count which presents how many times the area was re-visited in the
sense of how many fixations were at the area.

46 Evaluation

4.2.4 Process Mining

Before looking at the process mined data for the five users we will take a look
at what the expected process looks like.

While it is very unlikely that the users will follow a specific process of reading
the source code, it can be expected in order for them to answer the questions, to
follow the process described in Figure 4.9 at some sub path of reading process.
This does not take into account anything visited while looking for the specific
methods, or any re-reading in case the user becomes unsure.

Figure 4.9: Insertion Sort reading sub process

To create the event logs the script in figure 4.10 was used along with the fixations
created in Figure 3.7. The full script used to create plots and event logs can be

4.2 Analysis 47

found in Appendix H

Figure 4.10: iTrace analysis script

IA.process_mining_data([iTrace1,iTrace2,iTrace3
,iTrace4,iTrace5],"test_sort_lines.csv",'lines')
IA.process_mining_data([iTrace1,iTrace2,iTrace3,iTrace4
,iTrace5],"test_sort_userdef.csv"
,'user_defined',"insertion.csv")

For all the figures in the analysis it is worth noting that all the Disco diagrams
shown section has had their activities and paths lowered, meaning that the least
visited areas and transition paths are removed. This is to avoid having upwards
of 200 nodes with an equal amount of paths going to them.

4.2.4.1 Disco Lines Analysis

In this part of the analysis a look will be taken at the event logs where each line
is considered an activity. As mentioned in 3.5.2. The lines have the SCE types
which exists on the line written as well as the line number. This is intended
to assist in readability to make the reader less dependent of having the source
code on the side. An overview of what methods are on which lines can be seen
in Section 4.2.2.1

Looking at Figure 4.11 it can be seen that similar information as we saw in
the bar plots can be gathered here. However Figure 4.11 represents all four
users who finished the task, and consecutive fixations on the same line has been
aggregated. Looking at the diagram for the total duration spent on each activity
combined for all the users, it can be seen that lines 58 to 61 are the most visited
lines. This matches what we saw in the Bar plot analysis in Section 4.2.2. It is
also expected that the Main method, line 202 to 214, and the Less method, line
141 to 160, had significant time spent on them.

It can be seen that line 209,206 and 208 each made it through the exclusion
made by Disco. While they have significantly less time spent on them, as also
seen in the bar plot analysis, they still appear significant.

On the left side in Figure 4.11 we see the lines 143,146,147 and 152 next to
each other. These are the important part of the Less method which contains

48 Evaluation

the method declaration and the return statement.

It is also seen that the less statement is typically read in concession and is
thereby consecutive in the diagram. Whereas the Sort and main method are
split up in different sections of the diagram as the Sort method is visited more
often from various sections of the code.

4.2 Analysis 49

Figure 4.11: Line wise, total duration

50 Evaluation

Figure 4.12 shows how long the longest views within the lines were. This figure
shows that line 58 and 60 have the longest views. This is the same result as
seen in the Bar plot analysis, however here it is for all four users, providing even
more assurance that these lines take longer to understand than other lines in
the source code.

4.2 Analysis 51

Figure 4.12: Line wise, max duration

52 Evaluation

Figure 4.13 shows the frequencies for each action. The frequencies are the
number of times an action is performed. The figure shows the same results as
the previous two Disco diagrams in the sense that the activities with the most
time spent also tend to have been visited the most times.

4.2 Analysis 53

Figure 4.13: Line wise, frequencies

54 Evaluation

Lastly we look at the disco diagram for all the users, including the user who
did not finish. This can be seen in Figure 4.14. It would make sense to look at
the user who did not finish the task by himself, however Disco does not remove
paths and activities if there is only one case. The user who did not finish fixated
on 118 lines. In order to get an idea of the idea of the difference between the
the fifth user and the remaining four, we will explore the statistics.

4.2 Analysis 55

Figure 4.14: Line wise, All users

56 Evaluation

Some statistics to be seen on the different users in the statistics part of Disco:
Number of activities, unique activities not including re visits and session dura-
tion.

• User 1: 76 Activities, Duration: 4m50s

• User 2: 65 Activities, Duration: 4m25s

• User 3: 76 Activities, Duration: 6m58s

• User 4: 68 Activities, Duration: 3m15s

• User 5: 118 Activities, Duration: 11m9s

As such it can be seen that the first four user fixated on 65 to 76 unique lines.
Additionally by looking at the total number of unique activities for the four
users who finished it can be seen that had a total of 114 unique lines in total.

This shows that the user who did not finish was significantly more thorough in
reading most of the code than the users who finished were. This along with the
time spent gives the impression the user was trying to find something in the
code for longer, resulting thorough scanning of most of the lines and thereby
more time spent.

4.2.4.2 Disco Lines Analysis Conclusion

The first thing to notice was that the most common lines were represented in
the diagram, which presented the same image as we saw in Section 4.2.2. Which
is that the Main method, the less method and the Sort method were the three
most viewed sections in the source code. This holds true for the Disco analysis
and as such the same values were available. It was seen that the majority of the
time was spent on the Sort method, the lines in the Sort method was the most
frequently visited parts and had the longest single fixations.

As for the process it was hard to get a full idea of how they worked due to the
large number of activities and paths as there were 114 activities for the four who
finished. This forced us to look at a very low number of paths and activities
which lost a lot of the context. It may be possible to look into these individually
however the complexity makes it undesirable.

4.2 Analysis 57

4.2.4.3 Disco User Defined Area of Interests Analysis

To make the process less complex and provide a higher level analysis rather
than a line by line analysis the iTraceAnalyser was made to allow the user to
define areas of interest. On the same set of fixations as the Line analysis was
conducted, an event log has been created with a set of user defined activities
created for the specific experiment.

These activities are made to represent areas of interests, AoIs. The idea of an
AoI is to group together lines which represent the same section. The example
of sections used here is the methods we are interested in. The areas in between
these methods.

As seen in Figure 4.9 the areas we are interested in are the Main method, the
Sort method and the Less method. In addition to these it may be interest to
see if the users also looked at the Exchange method.

Thus in this analysis each AoI is considered an activity instead of considering
each line an activity. Figure 4.15 shows the .csv file used to defined the AoIs.

Figure 4.15: Insertion.csv rules for areas of interest

Sort,54,69
Other sorts,70,140
Less,141,160
Exchange,161,168
isSorted,169,192
Show,194,201
Main,202,214

With these rules an event log with seven actions are created based on the meth-
ods described in 4.1.
Sort is the sort method the user is asked to work on.
Other sorts is the sorts which take different arguments. The user is not sup-
posed to look at these. It is however a large section covering 70 lines which
means that several short fixations within this area is expected.
Less is a method comparing two values. Less is called in the Sort method.
Exchange is a method switching around the position of two values
isSorted is a method used in asserting that the list is sorted for a given interval.
Show is a method printing the list.

58 Evaluation

Main is the main method calling Sort.

Looking at Figure 4.16 it can be seen similarly to the Disco line analysis and the
Bar plot analysis, that the majority of the time was spent on the Sort method,
with the Main and Less methods also receiving some focus. The Show, exchange
and isSorted have all had less than 10 seconds of fixations on average per user.

Due to the low number of activities the diagram can easily contain all the
activities without being cluttered. The complexity will still increase if all paths
were added so for this example it will be left at the lowest number of paths.
This should also help see which paths were the most general across the users.

This solution provides a clearer representation of the general process flow. A
couple of observations to be seen:

• Sort transitions to Other sorts

• Other sorts transition to either Show or Exchange

• Show transitions to Main.

• Main transitions isSorted

• isSorted transitions to Less

• Exchange transitions to Sort

• isSorted transitions to Main

• Less transitions to Sort.

• Sort, Less and Main all transition to themselves.

The diagram as such essentially shows that Sort is the primary area the user
fixations resides. From here it moves down to Main and Less and back up to
Sort. Alternately it moves from Other sorts down to Exchange and back up to
Sort again.

This reasonably matches the assumption of the user going to the Main method
to see which values are in the list, and then back to Sort until they decide to
check the Less method. As such this diagram gives the impression that the users
are following the flow of the method calls. The sub process seen in 4.9 is also
seen in the movement of the process.

4.2 Analysis 59

The loop transitions in the Sort activity is most likely due to the user looking
away from the screen and then back. In this setup the users was allowed to use
paper and pencils which will have caused the long transitions where they look
at the Sort method followed by looking at the paper and then finally looking
back at the Sort method.

60 Evaluation

Figure 4.16: User defined, total duration

4.2 Analysis 61

Figure 4.17 shows the graph depicting the maximum duration. Here it can be
seen that the Sort method has the longest single viewing. The values here differs
from the longest view in the Line wise analysis. This is due to the collapsing
of consecutive fixations on the same AoI within the same area with less than a
second between the fixations. This is happening over a significantly larger area
than it did in the line wise analysis. As mentioned in Section 3.5.2 this is made
due to an interest in knowing how long they focused within a specific area, and
the areas with this method may be large enough that you can change area of
fixation and remain within the same area of interest.

62 Evaluation

Figure 4.17: User defined, max duration

4.2 Analysis 63

Figure 4.18 shows the frequencies of each activity. The major take away here
which was not as visible in the previous analysis is how often the the user
transitioned within the Sort method. The figure also shows that less had almost
twice the revisits of the Main method, despite the duration of both only being
five seconds apart.

64 Evaluation

Figure 4.18: User defined, frequencies

4.2 Analysis 65

Due to the low number of activities it is possible to look at the process for the
user who did not finish the task. This process can be seen in Figure 4.19. Here
it can be seen that including transitions the user spent four minutes inside the
Other sort section. Compared to the 77 seconds from the other four users in
total, this is a very significant time. The user also spent almost a minute reading
the main method.

Connecting this with the number found in the line wise analysis where it was
seen that the user looked at more lines than the other four users in total. This
gives the idea that the user who did not complete may have attempted reading
the entire file before answering the question.

The process of moving from Sort to main and back to Sort is also seen here,
however the durations tell us that this process happend over a significant time
compared to the other users.

66 Evaluation

Figure 4.19: User defined, Did not complete the task

4.2.4.4 Disco User Defined Analysis Conclusion

The user defined sections makes it easier to read the Disco results as it abstracts
away from the source code and provides a higher level analysis. While this so-
lution did not present any information about the individual source code entities
or lines, it made the overall process easier to read as the number of activities

4.2 Analysis 67

and paths were significantly reduced.

Additionally the analysis revealed how the user who did not finish, read the
code different to the other users and did not appear to follow the flow of the
code but rather read all the sort methods. Making it appear the user did not
immediately understand which sections of the file was necessary to answer the
questions.

68 Evaluation

Chapter 5

Discussion

5.1 Data Preparation

5.1.1 Data Collection

The data collection mostly worked as expected in the test cases used with the
eye tracking working within a lines accuracy for all the users and for most users
the crosshair was close enough to the actual point which the user looked at that
there did not appear to be any issues with the accuracy of the tracking.

The export to the database also worked seamlessly and all were saved in the
first try, that is to say no tests were discarded due to bad calibration, bad saves
or other crashes.

These results were as expected as the work was done with iTrace which already
presented itself as a working piece of software, and the implementation of the
new native interface was done in way matching the old implementation and
should not have any loss of functionality.

The number of tests and test subjects are very limited in that each session were
3-7 minutes. With the user who did not finish spending 11 minutes. As such

70 Discussion

it was done in short sessions and on a low number of users. This means a lot
more work can be done on collecting and analyzing real world data. This thesis
does however provide some insight into what the analysis can look like. As well
as providing the tools for collecting and storing the data.

5.1.2 Fixations

Fixation identification of the gaze data remains an important aspect of the
analysis as the data loses value and credibility if the user cannot trust that the
identified fixations are the true fixations. As such the implementation relied on
a trusted algorithm for the identification of the fixations.

In Section 2.1.2 we see an analysis of the implemented fixation identification al-
gorithm in use. While it is not clear which threshold provides the most accurate
results, it is clear that while the threshold is not set to an extreme such as 5
pixels, the fixations are covering the same areas but with different amounts and
duration of the fixations.

So while further work can be done to ensure the most accurate results the
fixations collected does to some extent match what is expected from seeing the
gaze clusters.

5.2 Fixation Data Analysis

The analysis of the fixation data in Section 4.2.2.1 provides a quick view of some
statistics of the fixation data. This serves the purpose giving quick access to
certain metrics of the data.

While it does allow the user to understand where the majority of the time and
fixations were placed, as well as which areas required the most focus. This type
of analysis does not appear to provide the same degree of insight and possibilities
for further analysis as the process mining method. This may in part be due to
the size of the data and how the plots does not make it immediately relateable to
a source code editor. For this other visualizations should provide more useful,
and for this thesis the focus was then moved to considering the fixations as
processes.

5.3 Process Mining 71

5.3 Process Mining

The idea of using process mining as the primary visualization method for analyz-
ing the fixation data of a source code reading session provided a very valid way
of seeing how the users approached the source code. By grouping neighbouring
fixations at the same areas of interest it helps raise the level of abstraction to
a point where it is more immediately clear what the user was working on at a
given time in the process.

For the analysis in Section 4.2.4 two separate methods were used. The analysis
approach remains mostly the same with the major difference being in the way
the event logs are created.

Of the line wise events and the user defined area of interest events both provide
insight and statistics on the cases. It is however clear that for analysis of larger
scale tests it may be a clear advantage to raise the abstraction to larger areas
and create more meaningful names to each area.

For smaller parts, such as understanding which part of a given source code area
the user spent the time and focus on, it may however be an advantage to see it
line by line. In some cases even SCE by SCE.

In this thesis the conformance and compliance checking was done very informally
with merely having an idea of what was expected to be seen, which four of the
users to a large extent lived up too and the fifth user varying from the assumed
approach.

There may be a lot to gain by formalizing the compliance testing to find if there
exists sub routines which conforms to the expected process.

This may have the potential for use in regards to using heuristics to score each
user and get immediate approximations of how well the user did before perform-
ing exploratory analysis on each user in detail.

5.4 Future Work

This thesis covered the proposed tools for and methods for creating an analysis
of code comprehension tasks by developers. The examples used in the evaluation
in Section 4, are limited in number of users and complexity of the task as well
as number of tasks. Larger scale testing would be necessary in order to be more

72 Discussion

certain of the usefullness of the solution.

Additionally conformance testing and compliance checking could be used for
automating estimates of how well a user is doing. This along with the right
heuristics may make it possible to detect developers who had issues automati-
cally.

Chapter 6

Conclusion

This thesis presents a system for creating visualizations of eye tracking data
gathered using the gaze to source code mapping Eclipse plugin, iTrace. The
first task of the thesis serves to update the native driver connecting to the eye
tracker to function with the current versions of the Tobii SDK. The second task
implements a solution which extends the iTrace system with a MySQL database
and the ability to transfer gaze data seamlessly into the local database. The
proposed system includes a two part python analysis library, iTraceAnalyser.
The tool loads a session from the database and converts the gazes into fixations.
The analyzer provides an easy way of creating simple visualizations representing
the fixation data in Bar plots for quick overview of single sessions. The primary
purpose of the tool is to convert the data gathered with iTrace into event logs
compatible with process mining tools such as Disco by Celonis. The evaluations
of the tool has shown that the event logs, which come as both a general line
wise activity definition and activities which can be defined by the user, serves
as a good all around tool for analyzing and comparing several sessions at once.
The larger the areas of interests are the higher level of analysis can be done on
the processes by the users.

74 Conclusion

Appendix A

Glossary

Abstract syntax tree. In relation to iTrace the abstract syntax tree holds the
structure for the source code in order to find information on the specific SCEs.

Calibration. In eye tracking calibration is the act of updating the eye trackers
knowledge of the characteristics of the users eye, such as shape, light refraction
and reflection properties of parts of the eye. [Tob17c]

Eye tracker. The eye tracker is the hardware used for eye tracking and is a
camera with near infrared lights used to take images of the eyes for use in eye
tracking.

Eye tracking, using a camera to detect where on the screen the users eyes are
looking. It maps the position of the users eye to a position on the screen and
returns X and Y pixel coordinates.

Fixation. Fixations are points where the user concentrates for an extended
time. As such a fixation relates to gazes as fixations can be considered a cluster
of gazes around the same point over an extended time. Fixations at the very
minimum contains X and Y coordinates and a start time and an end time.

Gaze. Gazes are the raw outputs from the eye tracking. Each gaze is an X,Y
coordinate set relating to a pixel area on the screen. A gaze may be attributed

76 Glossary

more values depending on the tool most relevant for this thesis among these
are the recorded time for the gaze and the source code data related to the gaze
point.

Saccades. Saccades are the movement between fixations. When the areas are
moving from one point of focus to another the gazes in between are considered
the saccade.

Fixation identification algorithms. The algorithms used for converting
gazes into fixations.

IGazeHandler is the component of iTrace which is responsible for collecting
the data from the tracker and collecting further information about the connected
SCEs, line numbers etc. Outputs the gaze data as an IGazeResponse

IGazeResponse is the structured gaze data which includes the information
collected by the IGazeHandler.

ISolver is the super class responsible for outputting the IGazeResponses to
other external sources such as XML and JSON.

iTrace. An Eclipse plugin which couples eye tracking gazes with the source
code entities in Eclipse.

Java native interface is a java library used for calling C and C++ code in a
java environment. In this thesis the term JNI or driver is used to describe the
C++ module connecting to the eye trackers software development kit (SDK).

Source code entity. SCEs are parts of the source code that can be categorized.
These include highlighted words and comments.

Tobii Analytics 3.0 is the old Tobii SDK which is no longer available since
the release of the Tobii Pro SDK.

Tobii Pro is the current SDK for Tobii eye trackers as of the composing of the
thesis.

Appendix B

Components installation

B.1 JNI

If you download and install iTrace from their Github, you can just replace their
version of the file at iTrace-Archive/tree/master/jni/TobiiTracker With the one
in appendix C.

You will need to manually change the location of your license on line 209 to the
location of your license.:

license_success = apply_licenses_example(
native_data->eye_tracker,"C:/Users/Dennis/Desktop/Tobii_license");

Additionally when you have downloaded the SDK from
https://www.tobiipro.com/product-listing/tobii-pro-sdk/Download
(You must download 32bit C)

You need to add

78 Components installation

#ifdef __cplusplus
extern "C" {
#endif

At the top of the each of the headers in the include folder before the code section.

And:

#ifdef __cplusplus
}
#endif __cplusplus

at the bottom of the file.

To install iTrace you can follow the guide on the readme at https://github.com/SERESLab/iTrace-
Archive Or build it in an IDE such as visual studio. (This will allow you to
explicitly tell the compiler where all the libraries are in case the makefiles have
trouble finding them)

As a checklist for installing it, make sure you have installed: - Ivy plugin for
Eclipse,

- Have the SDK somewhere your compiler can see it. If you choose to use a
compiler in something like Visual studio you can explicitly tell it where the
header and library files are. (With the extern C lines in the headers)

- An up-to-date Java development kit

- Also you need the JNI It should be installed along side the JDK. but not all ver-
sions have it. Mine was found in jdk1.8.014432whichineededtoexplicitlytellmyvisualstudiocompiler.

B.2 Database

To get the database working to use the python class iTraceAnalyser the following
is needed: MySQL, run the SQL file in Appendix E
Replace the Controlview.java and iTraceJava with the new versions of the files.
Add the SQLGazeExportSolver.java in Appendix F

Appendix C

JNI, New SDK

edu_ysu_itrace_trackers_TobiiTracker.cpp
Note. The lines commented out are parts of the old implementation left in for
comparison.

1 #define _CRT_SECURE_NO_DEPRECATE
2 #include <ctime>
3 #include <exception>
4 #include <tobii_research.h>
5 #include <tobii_research_calibration.h>
6 #include <tobii_research_eyetracker.h>
7 #include <tobii_research_streams.h>
8 #include <iostream>
9

10 /**include <tobii/sdk/cpp/MainLoop.hpp>
11 #include <tobii/sdk/cpp/EyeTracker.hpp>
12 #include <tobii/sdk/cpp/EyeTrackerInfo.hpp>
13 #include <tobii/sdk/cpp/EyeTrackerException.hpp>
14 #include <tobii/sdk/cpp/EyeTrackerBrowser.hpp>
15 #include <tobii/sdk/cpp/EyeTrackerBrowserFactory.hpp>
16 #include <tobii/sdk/cpp/EyeTrackerFactory.hpp>
17 #include <tobii/sdk/cpp/GazeDataItem.hpp>
18 **/

80 JNI, New SDK

19 #include "edu_ysu_itrace_trackers_TobiiTracker.h"
20 #include

"edu_ysu_itrace_trackers_TobiiTracker_BackgroundThread.h"↪→

21 #include "edu_ysu_itrace_trackers_TobiiTracker_Calibrator.h"
22

23 //using namespace tobii::sdk::cpp;
24

25 struct TobiiNativeData
26 {
27 JavaVM* jvm;
28 jobject j_tobii_tracker;
29 jobject j_background_thread;
30 TobiiResearchEyeTracker* eye_tracker;
31 TobiiResearchCalibrationData* calibration_data = NULL;
32 TobiiResearchCalibrationResult* calibration_result =

NULL;↪→

33 //MainLoop main_loop;
34

35

36 };
37

38

39

40 //Only one TobiiTracker can be active at one time.
41 bool g_already_initialised = false;
42 //Sort of ugly but necessary. When connecting to eye tracker,

this is used to↪→

43 //pass the tracker information to the main thread.
44 //EyeTrackerInfo::pointer_t g_et_info =

EyeTrackerInfo::pointer_t();↪→

45 //Also not very clean.
46 TobiiNativeData* g_native_data_current = NULL;
47

48 void throwJException(JNIEnv* env, const char* jclass_name, const
char* msg)↪→

49 {
50 jclass jclass = env->FindClass(jclass_name);
51 env->ThrowNew(jclass, msg);
52 env->DeleteLocalRef(jclass);
53 }
54

55 jfieldID getFieldID(JNIEnv* env, jobject obj, const char* name,
const char* sig)↪→

56 {

81

57 jclass jclass = env->GetObjectClass(obj);
58 if (jclass == NULL)
59 return NULL;
60 jfieldID jfid = env->GetFieldID(jclass, name, sig);
61 if (jfid == NULL)
62 return NULL;
63 return jfid;
64 }
65

66 TobiiNativeData* getTobiiNativeData(JNIEnv* env, jobject obj)
67 {
68 jfieldID jfid_native_data = getFieldID(env, obj,

"native_data",↪→

69 "Ljava/nio/ByteBuffer;");
70

71 if (jfid_native_data == NULL)
72 {
73 return NULL;
74 }
75

76 jobject native_data_bb = env->GetObjectField(obj,
jfid_native_data);↪→

77

78 return (TobiiNativeData*)
env->GetDirectBufferAddress(native_data_bb);↪→

79 }
80

81 JNIEXPORT jboolean JNICALL
82 Java_edu_ysu_itrace_trackers_TobiiTracker_00024BackgroundThread_
83 jniBeginTobiiMainloop
84 (JNIEnv* env, jobject obj)
85 {
86

87 //Initialise Tobii SDK if not yet initialised, else an
error condition has↪→

88 //occurred.
89 if (g_already_initialised)
90 return JNI_FALSE;
91 else
92 {
93 //tobii::sdk::cpp::Library::init();
94 g_already_initialised = true;
95 }

82 JNI, New SDK

96 //Get native data ByteBuffer field in TobiiTracker
object.↪→

97 jfieldID jfid_parent = getFieldID(env, obj, "parent",
98 "Ledu/ysu/itrace/trackers/TobiiTracker;");
99 if (jfid_parent == NULL)

100 return JNI_FALSE;
101 jobject parent_tobii_tracker = env->GetObjectField(obj,

jfid_parent);↪→

102 jfieldID jfid_native_data = getFieldID(env,
parent_tobii_tracker,↪→

103 "native_data", "Ljava/nio/ByteBuffer;");
104 if (jfid_native_data == NULL)
105 return JNI_FALSE;
106 //Create structure to hold instance-specific data.
107

108 TobiiNativeData* native_data = new TobiiNativeData();
109

110

111 jobject native_data_bb = env->NewDirectByteBuffer((void*)
native_data,↪→

112 sizeof(TobiiNativeData));
113 //Set java virtual machine and BackgroundThread

reference.↪→

114 env->GetJavaVM(&native_data->jvm);
115 native_data->j_background_thread =

env->NewGlobalRef(obj);↪→

116 //Store structure reference in Java object.
117 env->SetObjectField(parent_tobii_tracker,

jfid_native_data, native_data_bb);↪→

118

119

120 //Run!
121 //native_data->main_loop.run();
122

123 //This code does not execute until the main loop has been
stopped.↪→

124 //delete native_data;
125

126 //return JNI_TRUE;
127 }
128

129 /**void handleBrowserEvent(EyeTrackerBrowser::event_type_t type,
130 EyeTrackerInfo::pointer_t et_info)
131 {

83

132 if (type == EyeTrackerBrowser::TRACKER_FOUND)
133 g_et_info = et_info;
134 }**/
135 int apply_licenses_example(TobiiResearchEyeTracker* eyetracker,

const char* license_file_path) {↪→

136 #define NUM_OF_LICENSES 1
137 char* license_key_ring[NUM_OF_LICENSES];
138 FILE *license_file = fopen(license_file_path, "rb");
139 if (!license_file) {
140 printf("License not found!\n");
141 return 0;
142 }
143 fseek(license_file, 0, SEEK_END);
144 size_t file_size = (size_t)ftell(license_file);
145 rewind(license_file);
146 if (file_size <= 0) {
147 printf("License is empty!\n");
148 return 0;
149 }
150 license_key_ring[0] = (char*)malloc(file_size);
151 if (license_key_ring[0]) {
152 fread(license_key_ring[0], sizeof(char),

file_size, license_file);↪→

153 }
154 fclose(license_file);
155 printf("Applying license from %s.\n", license_file_path);
156 fflush(stdout);
157 TobiiResearchLicenseValidationResult validation_results;
158 TobiiResearchStatus retval =

tobii_research_apply_licenses(eyetracker, (const
void**)license_key_ring, &file_size,
&validation_results, NUM_OF_LICENSES);

↪→

↪→

↪→

159 free(license_key_ring[0]);
160 if (retval == TOBII_RESEARCH_STATUS_OK &&

validation_results ==
TOBII_RESEARCH_LICENSE_VALIDATION_RESULT_OK) {

↪→

↪→

161 printf("Successfully applied license from list of
keys.\n");↪→

162 fflush(stdout);
163 return 1;
164 }
165 return 0;
166 }
167 JNIEXPORT jboolean JNICALL

84 JNI, New SDK

168 Java_edu_ysu_itrace_trackers_TobiiTracker_jniConnectTobiiTracker(
169 JNIEnv* env, jobject obj, jint timeout_seconds)
170 {
171 //Get native data from object.
172

173 TobiiNativeData* native_data = getTobiiNativeData(env,
obj);↪→

174

175 if (native_data == NULL)
176 {
177 return JNI_FALSE;
178 }
179 //Set TobiiTracker reference.
180

181 native_data->j_tobii_tracker = env->NewGlobalRef(obj);
182 //Find Tobii trackers.
183 /**EyeTrackerBrowser::pointer_t browser =
184 EyeTrackerBrowserFactory::createBrowser(native_data->main_loop);**/
185 /**browser->start();
186 browser->addEventListener(handleBrowserEvent);**/
187 time_t start_time = time(NULL);
188 //Wait until found or timeout occurs.
189 //Currently does not have this
190 while (0)//g_et_info == NULL)
191 {
192 if (time(NULL) > start_time + timeout_seconds)
193 {
194 //browser->stop();
195 return JNI_FALSE;
196 }
197 }
198 //EyeTrackerInfo::pointer_t et_info = g_et_info;
199 //browser->stop();
200

201 //Connect eye tracker
202 /**cker = et_info->getEyeTrackerFactory()->
203 createEyeTracker(native_data->main_loop); **/
204 TobiiResearchEyeTrackers* eyetrackers = NULL;
205 TobiiResearchStatus result =

tobii_research_find_all_eyetrackers(&eyetrackers);↪→

206 native_data->eye_tracker = eyetrackers->eyetrackers[0];
207 //Setting license
208 int license_success;
209 //HARD CODED. BAD

85

210 license_success =
apply_licenses_example(native_data->eye_tracker,
"C:/Path/To/Tobii_license");

↪→

↪→

211

212 //Needs a check for whether eyetracker is found.
213

214

215 // int64_t system_time_stamp;
216 // TobiiResearchStatus status =

tobii_research_get_system_time_stamp(&system_time_stamp);↪→

217

218 return JNI_TRUE;
219 }
220

221

222 JNIEXPORT void JNICALL
Java_edu_ysu_itrace_trackers_TobiiTracker_close↪→

223 (JNIEnv* env, jobject obj)
224 {
225 //Get native data from object.
226 TobiiNativeData* native_data = getTobiiNativeData(env,

obj);↪→

227

228

229 if (native_data == NULL)
230 {
231 throwJException(env,

"java/lang/RuntimeException",↪→

232 "Cannot find native data.");
233 return;
234 }
235

236 //Shut down main loop
237 //native_data->main_loop.quit();
238 }
239

240 void handleGazeData(TobiiResearchGazeData* gaze_data)
241 {
242 JNIEnv* env = NULL;
243 g_native_data_current->jvm->AttachCurrentThread((void**)

&env, NULL);↪→

244 jint rs = g_native_data_current->jvm->GetEnv((void**)
&env, JNI_VERSION_1_6);↪→

245 if (rs != JNI_OK || env == NULL) {

86 JNI, New SDK

246 return;
247 }
248 jobject obj = g_native_data_current->j_tobii_tracker;
249

250 jclass tobii_tracker_class = env->GetObjectClass(obj);
251 if (tobii_tracker_class == NULL)
252 return;
253 jmethodID jmid_new_gaze_point =

env->GetMethodID(tobii_tracker_class,↪→

254 "newGazePoint", "(JDDDDIIDD)V");
255 //Just pretend nothing happened.
256 if (jmid_new_gaze_point == NULL)
257 return;
258 //Call newGazePoint.
259 env->CallVoidMethod(obj, jmid_new_gaze_point,

(jlong)gaze_data->device_time_stamp,↪→

260 gaze_data->left_eye.gaze_point.position_on_display_area.x,
gaze_data->right_eye.gaze_point.position_on_display_area.y,↪→

261 gaze_data->right_eye.gaze_point.position_on_display_area.x,
gaze_data->right_eye.gaze_point.position_on_display_area.y,↪→

262 gaze_data->left_eye.pupil_data.validity,
gaze_data->right_eye.pupil_data.validity,↪→

263 gaze_data->left_eye.pupil_data.diameter,
gaze_data->right_eye.pupil_data.diameter);↪→

264

265 /**env->CallVoidMethod(obj, jmid_new_gaze_point, (jlong)
gaze_data->time_stamp,↪→

266 gaze_data->leftGazePoint2d.x,
gaze_data->rightGazePoint2d.y,↪→

267 gaze_data->rightGazePoint2d.x,
gaze_data->rightGazePoint2d.y,↪→

268 gaze_data->leftValidity,
gaze_data->rightValidity,↪→

269 gaze_data->leftPupilDiameter,
gaze_data->rightPupilDiameter);**/↪→

270 }
271

272 void gaze_data_callback(TobiiResearchGazeData* gaze_data, void*
user_data) {↪→

273 handleGazeData(gaze_data);
274 //memcpy(user_data, gaze_data, sizeof(*gaze_data));
275 }
276

277

87

278 JNIEXPORT void JNICALL
Java_edu_ysu_itrace_trackers_TobiiTracker_startTracking↪→

279 (JNIEnv* env, jobject obj)
280 {
281

282 //Do not continue if already tracking
283 if (g_native_data_current != NULL)
284 {
285 throwJException(env, "java/io/IOException",

"Already tracking.");↪→

286 return;
287 }
288

289

290 //Get native data from object.
291 TobiiNativeData* native_data = getTobiiNativeData(env,

obj);↪→

292 if (native_data == NULL)
293 {
294 throwJException(env,

"java/lang/RuntimeException",↪→

295 "Cannot find native data.");
296 return;
297 }
298 //Set native data for current tracking TobiiTracker.
299 g_native_data_current = native_data;
300 //Setting gaze data
301 TobiiResearchGazeData gaze_data;
302 try
303 {
304 tobii_research_subscribe_to_gaze_data(native_data->eye_tracker,

gaze_data_callback, &gaze_data);↪→

305 //handleGazeData(&gaze_data);
306 //native_data->eye_tracker->startTracking();
307 //native_data->eye_tracker->addGazeDataReceivedListener(handleGazeData);
308 }
309 catch (const std::invalid_argument& e)
310 {
311 throwJException(env, "java/io/IOException",

e.what());↪→

312 return;
313 }
314 }
315

88 JNI, New SDK

316

317 JNIEXPORT void JNICALL
Java_edu_ysu_itrace_trackers_TobiiTracker_stopTracking↪→

318 (JNIEnv* env, jobject obj)
319 {
320

321 try
322 {
323 tobii_research_unsubscribe_from_gaze_data(g_native_data_current->eye_tracker,

gaze_data_callback);↪→

324 g_native_data_current = NULL;
325 }
326 catch (const std::invalid_argument& e)
327 {
328 throwJException(env, "java/io/IOException",

e.what());↪→

329 return;
330 }
331 }
332

333 JNIEXPORT void
334 JNICALL

Java_edu_ysu_itrace_trackers_TobiiTracker_00024Calibrator_jniAddPoint↪→

335 (JNIEnv* env, jobject obj, jdouble x, jdouble y)
336 {
337

338 //Get native data from parent TobiiTracker
339 jfieldID jfid_parent = getFieldID(env, obj, "parent",
340 "Ledu/ysu/itrace/trackers/TobiiTracker;");
341 if (jfid_parent == NULL)
342 {
343 throwJException(env,

"java/lang/RuntimeException",↪→

344 "Parent TobiiTracker not found.");
345 return;
346 }
347 jobject parent_tobii_tracker = env->GetObjectField(obj,

jfid_parent);↪→

348 TobiiNativeData* native_data = getTobiiNativeData(env,
parent_tobii_tracker);↪→

349

350 try
351 {
352 TobiiResearchNormalizedPoint2D point[1] = {x,y};

89

353 //Add new calibration point
354 tobii_research_screen_based_calibration_collect_data(native_data->eye_tracker,

point->x, point->y);↪→

355

356 /** if
(tobii_research_screen_based_calibration_collect_data(native_data->eye_tracker,
point->x, point->y) != TOBII_RESEARCH_STATUS_OK) {

↪→

↪→

357 /* Try again if it didn't go well the
first time. */↪→

358 /* Not all eye tracker models will fail
at this point, but instead fail on
ComputeAndApply. */

↪→

↪→

359 //tobii_research_screen_based_calibration_collect_data(native_data->eye_tracker,
point->x, point->y);↪→

360 //}
361

362

363 //native_data->eye_tracker->addCalibrationPoint(Point2d(
364 // (double) x, (double) y));
365 }
366 catch (const std::invalid_argument& e)
367 {
368 throwJException(env, "java/io/IOException",

e.what());↪→

369 return;
370 }
371 }
372

373 JNIEXPORT void JNICALL
374 Java_edu_ysu_itrace_trackers_TobiiTracker_00024Calibrator_jniStartCalibration
375 (JNIEnv* env, jobject obj)
376 {
377

378 //Get native data from parent TobiiTracker
379 jfieldID jfid_parent = getFieldID(env, obj, "parent",
380 "Ledu/ysu/itrace/trackers/TobiiTracker;");
381 if (jfid_parent == NULL)
382 {
383 throwJException(env,

"java/lang/RuntimeException",↪→

384 "Parent TobiiTracker not found.");
385 return;
386 }

90 JNI, New SDK

387 jobject parent_tobii_tracker = env->GetObjectField(obj,
jfid_parent);↪→

388 TobiiNativeData* native_data = getTobiiNativeData(env,
parent_tobii_tracker);↪→

389 try
390 {
391 //Start and clear
392 tobii_research_screen_based_calibration_enter_calibration_mode(native_data->eye_tracker);
393 //native_data->eye_tracker->startCalibration();
394 //native_data->eye_tracker->clearCalibration();
395 }
396 catch (const std::invalid_argument& e)
397 {
398 throwJException(env, "java/io/IOException",

e.what());↪→

399 return;
400 }
401 }
402

403 JNIEXPORT void JNICALL
404 Java_edu_ysu_itrace_trackers_TobiiTracker_00024Calibrator_jniStopCalibration
405 (JNIEnv* env, jobject obj)
406 {
407

408 //Get native data from parent TobiiTracker
409 jfieldID jfid_parent = getFieldID(env, obj, "parent",
410 "Ledu/ysu/itrace/trackers/TobiiTracker;");
411 if (jfid_parent == NULL)
412 {
413 throwJException(env,

"java/lang/RuntimeException",↪→

414 "Parent TobiiTracker not found.");
415 return;
416 }
417 jobject parent_tobii_tracker = env->GetObjectField(obj,

jfid_parent);↪→

418 TobiiNativeData* native_data = getTobiiNativeData(env,
parent_tobii_tracker);↪→

419

420 try
421 {
422 //Compute and stop calibration
423

424

91

425 TobiiResearchStatus status =
tobii_research_screen_based_calibration_compute_and_apply(native_data->eye_tracker,
&native_data->calibration_result);

↪→

↪→

426 tobii_research_screen_based_calibration_leave_calibration_mode(native_data->eye_tracker);
427 //old
428 //native_data->eye_tracker->computeCalibration();
429 //native_data->eye_tracker->stopCalibration();
430 }
431 catch (const std::invalid_argument& e)
432 {
433 throwJException(env, "java/io/IOException",

e.what());↪→

434 return;
435 }
436 }
437

438 JNIEXPORT jdoubleArray JNICALL
439 Java_edu_ysu_itrace_trackers_TobiiTracker_00024Calibrator_jniGetCalibration
440 (JNIEnv *env, jobject obj)
441 {
442 //Get native data from parent TobiiTracker
443 jfieldID jfid_parent = getFieldID(env, obj, "parent",
444 "Ledu/ysu/itrace/trackers/TobiiTracker;");
445 if (jfid_parent == NULL)
446 {
447 throwJException(env,

"java/lang/RuntimeException",↪→

448 "Parent TobiiTracker not found.");
449 return NULL;
450 }
451 jobject parent_tobii_tracker = env->GetObjectField(obj,

jfid_parent);↪→

452 TobiiNativeData* native_data = getTobiiNativeData(env,
parent_tobii_tracker);↪→

453

454 try
455 {
456 //Get calibration
457 //Calibration::pointer_t calibrationData =
458 // native_data->eye_tracker->getCalibration();
459 // Calibration::plot_data_vector_t

calibrationPlotData =
calibrationData->getPlotData();

↪→

↪→

92 JNI, New SDK

460 //TobiiResearchCalibrationResult*
calibration_result = NULL;↪→

461 //status =
tobii_research_screen_based_calibration_compute_and_apply(native_data->eye_tracker,
&calibration_result);

↪→

↪→

462

463 //int itemCount =
static_cast<int>(calibration_result->calibration_point_count);↪→

464

465 int itemCount =
static_cast<int>(native_data->calibration_result->calibration_point_count);↪→

466 jdoubleArray calibrationPoints =
env->NewDoubleArray(4 * itemCount); //
allocate

↪→

↪→

467

468 if (NULL == calibrationPoints) return NULL;
469

470 jdouble *points =
env->GetDoubleArrayElements(calibrationPoints,
0);

↪→

↪→

471

472 TobiiResearchCalibrationPoint item;
473 //tobii_research_apply_calibration_data(native_data->eye_tracker,

calibration_data);↪→

474

475 //Writing data. for test
476

477 for(int i = 0; i < itemCount; i++)
478 {
479

480 item =
native_data->calibration_result->calibration_points[i];↪→

481 points[i] =
item.calibration_samples->left_eye.position_on_display_area.x;↪→

482 points[itemCount + i] =
item.calibration_samples->left_eye.position_on_display_area.y;↪→

483 points[2 * itemCount + i] =
item.calibration_samples->right_eye.position_on_display_area.x;↪→

484 points[3*itemCount+i] =
item.calibration_samples->right_eye.position_on_display_area.y;↪→

485

486 //points[i] = item.leftMapPosition.x;
487 //points[itemCount+i] =

item.leftMapPosition.y;↪→

93

488 //points[2*itemCount+i] =
item.rightMapPosition.x;↪→

489 //points[3*itemCount+i] =
item.rightMapPosition.y;↪→

490 }
491

492 env->ReleaseDoubleArrayElements(calibrationPoints,
points, 0);↪→

493 return calibrationPoints;
494 }
495 catch (const std::invalid_argument& e)
496 {
497 throwJException(env, "java/io/IOException",

e.what());↪→

498 return NULL;
499 }
500 }

94 JNI, New SDK

Appendix D

iTraceAnalyser.py

1 import MySQLdb
2 import pandas
3 import matplotlib
4 import matplotlib.pyplot as plt
5 import math
6 import csv
7 from matplotlib import rcParams
8 rcParams.update({'figure.autolayout': True})
9

10 #Returns a dictionary of Fixations
11

12 def get_session(host,user,passwd,db, session_id, threshold):
13 db = MySQLdb.connect(host=host,
14 user=user,
15 passwd=passwd,
16 db=db)
17

18 cursor = db.cursor()
19 session_info = cursor.execute("SELECT * FROM session_info

WHERE session_id='"+session_id+"'")↪→

96 iTraceAnalyser.py

20 df = pandas.read_sql("SELECT * FROM (SELECT * FROM gazes
JOIN sces ON gazes.gaze_id=sces.sce_gaze_id) a WHERE
a.gaze_session_id='" + session_id + "';", db)

↪→

↪→

21 #df has all sces. dfu only has sce of depth 0.
22 dfu = df.drop_duplicates(subset="gaze_id")
23

24 # I-VT. let's find some fixations!
25 fixations = []
26 saccades = []
27

28 fix_list = []
29 fixation = []
30 prev_index = []
31

32

33 for index, row in dfu.iterrows():
34 curr_index = {'session_time' : row['session_time'],
35 'x':row['x'], 'y':row['y'],

'sce_name':row['sce_name'],↪→

36 'depth':row['depth'],
'gaze_name':row['gaze_name'],
'sce_type':row['sce_type'],

↪→

↪→

37 'gaze_session_id':row['gaze_session_id'],
38 'line':row['line']}
39 if not fixation:
40 fixation.append(curr_index)
41 #If time is less than 100
42 if (fixation[len(fixation)-1]['session_time']/1e6 -

fixation[0]['session_time']/1e6) < 100:↪→

43 fixation.append(curr_index)
44 #Ensure that while time is less than 100,

threshold is met.↪→

45 while get_dispersion(fixation) > threshold:
46 fixation.pop(0)
47 continue
48 #If time is over 100, but threshold is less than

threshold↪→

49

50

51

52 if get_dispersion(fixation) <= threshold:
53 fixation.append(curr_index)
54

55 if get_dispersion(fixation) > threshold:

97

56 fixation.pop(len(fixation)-1)
57 #print "fixation dispersion " +

str(get_dispersion(fixation))↪→

58 fix_list.append(fixation)
59 fixation = [curr_index]
60

61 for fix in fix_list:
62 #Getting the x and y values, for centroid
63 x_list = []
64 y_list = []
65 sce_list = []
66 sce_type_list = []
67 line_list = []
68 id_list = []
69 for i in fix:
70 x_list.append(i['x'])
71 y_list.append(i['y'])
72 sce_list.append(i['sce_name'])
73 sce_type_list.append(i['sce_type'])
74 line_list.append(i['line'])
75 id_list.append(i['gaze_session_id'])
76

77

78 centroid_x = sum(x_list)/len(x_list)
79 centroid_y = sum(y_list)/len(y_list)
80

81 #startTime, endTime and duration in seconds.
82 startTime = fix[0]['session_time']/1e9
83 endTime = fix[len(fix)-1]['session_time']/1e9
84 duration = endTime - startTime
85

86 depth = 0 #Not supported, but some day, maybe?
87

88 fileName = fix[0]['gaze_name']
89 #Sce name, if two source code entities are very

close, we pick the one with the most gazes.↪→

90 sce_name = max(set(sce_list), key=sce_list.count)
91 sce_type = max(set(sce_type_list),

key=sce_type_list.count)↪→

92 line = max(set(line_list), key=line_list.count)
93 gaze_session_id = max(set(id_list),

key=id_list.count)↪→

94

95

98 iTraceAnalyser.py

96 #Returns a dictionary of Fixations (startTime,
endTime, duration, X, Y, sceName, depth, file)↪→

97 fixations.append({'start_time':startTime,
98 'end_time':endTime,

'duration':duration,↪→

99 'x':centroid_x, 'y':centroid_y,
100 'sce_name':sce_name, 'depth':depth,
101 'file_name':fileName,
102 'sce_type':sce_type, 'line':line,
103 'gaze_session_id':gaze_session_id})
104 return fixations#, saccades
105

106 def get_dispersion(fixation):
107 #Finding distance between the points
108 min_x = 999999
109 max_x = 0;
110 max_y = 0;
111 min_y = 999999;
112 min_line = 999999;
113 max_line = 0
114 for i in fixation:
115 if i['x'] > max_x:
116 max_x = i['x']
117 if i['x'] < min_x:
118 min_x = i['x']
119 if i['y'] > max_y:
120 max_y = i['y']
121 if i['y'] < min_y:
122 min_y = i['y']
123 if i['line'] < min_line:
124 min_line = i['line']
125 if i['line'] > max_line:
126 max_line = i['line']
127

128

129 dispersion = (max_x-min_x) + (max_y-min_y)
130 if (max_line - min_line) > 2:
131 dispersion += 1000
132 return dispersion
133

134

135

136 def get_raw_gazes(host,user,passwd,db, session_id):
137 db = MySQLdb.connect(host=host,

99

138 user=user,
139 passwd=passwd,
140 db=db)
141 cursor = db.cursor()
142 session_info = cursor.execute("SELECT * FROM

session_info WHERE
session_id='"+session_id+"'")

↪→

↪→

143 df = pandas.read_sql("SELECT * FROM (SELECT *
FROM gazes JOIN sces ON
gazes.gaze_id=sces.sce_gaze_id) a WHERE
a.gaze_session_id='" + session_id + "';", db)

↪→

↪→

↪→

144 #df has all sces. dfu only has sce of depth 0.
145 dfu = df.drop_duplicates(subset="gaze_id")
146 return dfu
147

148 def fixation_scatter_plot(fixations, fig, title):
149 x_list = []
150 y_list = []
151 s_list = []
152

153 for point in fixations:
154 x_list.append(point['x'])
155 y_list.append(point['y'])
156 s_list.append(point['duration']*1000)
157 plt.xlim(200, 700)
158 plt.ylim(0, 600)
159 plt.title(title)
160 plt.gca().invert_yaxis()
161 plt.scatter(x_list,y_list, s=s_list)
162 #Uncomment for numbers in order.
163 #i = 0
164 #for x, y in zip(x_list, y_list):
165 # plt.text(x, y, str(i), color="red", fontsize=12)
166 # i += 1
167 plt.savefig(fig + ".png", format='png')
168

169 plt.show()
170

171 def gaze_scatter_plot(gazes, fig,title):
172 x_list = []
173 y_list = []
174 for index, point in gazes.iterrows():
175 x_list.append(point['x'])
176 y_list.append(point['y'])

100 iTraceAnalyser.py

177 plt.xlim(200, 700)
178 plt.ylim(0, 600)
179 plt.title(title)
180 plt.gca().invert_yaxis()
181 plt.scatter(x_list,y_list)
182 plt.savefig(fig + ".png", format='png')
183

184 plt.show()
185

186

187 def process_mining_data(fixations_list, csv_name, aoi,
user_def='No'):↪→

188 #Make buckets, and define name of AoIs
189 if(aoi == 'lines'):
190 area = 'line'
191

192 if (aoi == 'sce_grouped'):
193 area = 'sce_type'
194 if (aoi == 'sce'):
195 area = 'sce_name'
196

197 if (aoi == 'user_defined'):
198 aoi_defs = []
199 with open(user_def, 'rb') as csvfile:
200 csv_reader = csv.reader(csvfile)
201 for line in csv_reader:
202 start = int(line[1])
203 end = int(line[2])
204 aoi_defs.append([line[0],[i for i in

range(start,end+1)]])↪→

205

206

207 with open(csv_name, 'w') as csvfile:
208 #initialising csv file
209 csv_writer = csv.writer(csvfile, delimiter=',')
210 csv_writer.writerow(["subject", "area of interest",

"start", "end"])↪→

211

212 #creating a name dictionary
213 if aoi == 'lines':
214 name_dict = {}
215 for fixations in fixations_list:
216 for fixation in fixations:
217 if fixation['line'] in name_dict:

101

218 name_dict[fixation['line']] =
name_dict[fixation['line']] +
[fixation['sce_type']]

↪→

↪→

219 else:
220 name_dict[fixation['line']] =

[fixation['sce_type']]↪→

221 for fixations in fixations_list:
222 #go through fixations and see if it matches a bucket.

"empty" buckets whenever you find something from
a new bucket.

↪→

↪→

223 subject = ''
224 name_of_aoi = ''
225 start = 0
226 end = 0
227 aoi_list = []
228 area_of_interest = []
229 prev_fix = {}
230 prev_group = ""
231 fix_group = ""
232 inAoI = False
233 for fix in fixations:
234 if(aoi == 'user_defined'):
235 for aoi_index in aoi_defs:
236 if (fix['line'] in aoi_index[1]):
237 inAoI = True
238 if (inAoI == False):
239 if not(area_of_interest == []):
240 aoi_list.append(area_of_interest)
241 area_of_interest = []
242 prev_fix = {}
243 prev_group = ""
244 continue
245

246

247 if prev_fix == {}:
248 prev_fix = fix
249 if(aoi == 'user_defined'):
250 for aoi_index in aoi_defs:
251 if (prev_fix['line'] in

aoi_index[1]):↪→

252 prev_group = aoi_index[0]
253 continue
254

255 area_of_interest.append(prev_fix)

102 iTraceAnalyser.py

256

257 if(aoi == 'user_defined'):
258 #if we don't set previous group (doesn't

belong in any AoI), we dont append it.↪→

259 #finding group for each fix
260 for aoi_index in aoi_defs:
261 if (fix['line'] in aoi_index[1]):
262 fix_group = aoi_index[0]
263 if (prev_group == fix_group and not

(prev_fix['end_time']+1 <
fix['start_time'])):

↪→

↪→

264 prev_fix = fix
265 prev_group = fix_group
266

267 else:
268 aoi_list.append(area_of_interest)
269 area_of_interest = []
270 prev_fix = fix
271 prev_group = fix_group
272

273 #Not user_defined
274 else:
275 if (prev_fix[area] == fix[area] and not

(prev_fix['end_time']+1 <
fix['start_time'])):

↪→

↪→

276 area_of_interest.append(prev_fix)
277 prev_fix = fix
278

279 else:
280 aoi_list.append(area_of_interest)
281 area_of_interest = []
282 prev_fix = fix
283 #special case for last
284 if (fix == fixations[len(fixations)-1]):
285 area_of_interest.append(fix)
286 aoi_list.append(area_of_interest)
287

288 for l in aoi_list:
289 name_of_aoi = ""
290 subject = l[0]['gaze_session_id']
291 start = l[0]['start_time']
292 end = l[len(l)-1]['end_time']
293 if (aoi == 'user_defined'):
294 for aoi_index in aoi_defs:

103

295 if (l[0]['line'] in aoi_index[1]):
296 name_of_aoi = aoi_index[0]
297 #That special case, where the last fixation,

which we had to add↪→

298 if name_of_aoi == "":
299 continue
300 else:
301 #print

str(set(name_dict[l[0]['line']]))[5:-2].↪→

302 print
str(set(name_dict[l[0]['line']]))[5:-2].replace(",",
" ")

↪→

↪→

303 if aoi == 'lines':
304 name_of_aoi = str(l[0][area]) + " " +

str(set(name_dict[l[0]['line']]))[5:-2].replace(",",
" ")

↪→

↪→

305 else:
306 name_of_aoi = str(l[0][area])
307

308

csv_writer.writerow([subject,name_of_aoi,start,end])↪→

309

310

311 def fixation_average_duration_bar(fixations, filename,
attribute):↪→

312 x = []
313 y = []
314 x_ticks = []
315 #fixations = sorted(fixations, key=lambda k: k[attribute])
316

317 for i in fixations:
318 x_ticks.append(i[attribute])
319

320 x_ticks = sorted(list(set(x_ticks)))
321 print x_ticks
322 durr = 0
323 for ftype in x_ticks:
324 avg_counter = 0
325 for i in fixations:
326 if i[attribute] == ftype:
327 avg_counter += 1
328 durr += i['duration']
329 y.append(durr/avg_counter)
330 durr = 0

104 iTraceAnalyser.py

331 x = [i for i in range(len(x_ticks))]
332 plt.xticks(x,x_ticks,rotation=90)
333 if(len(x) > 15):
334 plt.tick_params(axis='both', which='major', labelsize=5)
335 plt.title(attribute + ' average fixation duration, seconds')
336 #plt.tight_layout()
337 plt.xlabel(str(attribute))
338 plt.ylabel("seconds")
339

340 plt.bar(x,y)
341 plt.savefig(filename + ".png", format='png')
342

343 plt.show()
344

345

346

347 def fixation_duration_bar(fixations, filename, attribute):
348 x = []
349 y = []
350 x_ticks = []
351 for i in fixations:
352 x_ticks.append(i[attribute])
353

354 x_ticks = sorted(list(set(x_ticks)))
355 durr = 0
356 for ftype in x_ticks:
357 for i in fixations:
358 if i[attribute] == ftype:
359 durr += i['duration']
360 y.append(durr)
361 durr = 0
362 x = [i for i in range(len(x_ticks))]
363 plt.xticks(x,x_ticks,rotation=90)
364 if(len(x) > 15):
365 plt.tick_params(axis='both', which='major', labelsize=6)
366 plt.title(attribute + ' total fixation duration, seconds')
367 #plt.tight_layout()
368 plt.xlabel(str(attribute))
369 plt.ylabel("seconds")
370

371

372 plt.bar(x,y)
373 plt.savefig(filename + ".png", format='png')
374

105

375 plt.show()
376

377 def fixation_max_duration_bar(fixations, filename, attribute):
378 x = []
379 y = []
380 x_ticks = []
381 for i in fixations:
382 x_ticks.append(i[attribute])
383

384 x_ticks = sorted(list(set(x_ticks)))
385 durr = 0
386 for ftype in x_ticks:
387 for i in fixations:
388 if i[attribute] == ftype:
389 if i['duration'] > durr:
390 durr = i['duration']
391 y.append(durr)
392 durr = 0
393 x = [i for i in range(len(x_ticks))]
394 plt.xticks(x,x_ticks,rotation=90)
395 if(len(x) > 15):
396 plt.tick_params(axis='both', which='major', labelsize=6)
397 plt.title(attribute + ' max fixation duration, seconds')
398 #plt.tight_layout()
399 plt.xlabel(str(attribute))
400 plt.ylabel("seconds")
401

402

403 plt.bar(x,y)
404 plt.savefig(filename + ".png", format='png')
405

406 plt.show()
407

408

409

410 def fixation_count_bar(fixations, filename, attribute):
411 x = []
412 y = []
413 x_ticks = []
414 for i in fixations:
415 x_ticks.append(i[attribute])
416

417 x_ticks = sorted(list(set(x_ticks)))
418 count = 0

106 iTraceAnalyser.py

419 for ftype in x_ticks:
420 for i in fixations:
421 if i[attribute] == ftype:
422 count += 1
423 y.append(count)
424 count = 0
425 x = [i for i in range(len(x_ticks))]
426 plt.xticks(x,x_ticks,rotation=90)
427 if(len(x) > 15):
428 plt.tick_params(axis='both', which='major', labelsize=6)
429 plt.title(attribute + ' fixation count')
430 #plt.tight_layout()
431 plt.xlabel(str(attribute))
432 plt.ylabel("# of fixations")
433

434

435

436 plt.bar(x,y)
437 plt.savefig(filename + ".png", format='png')
438 plt.show()
439

440 def session_duration(fixations):
441 start = int(fixations[0]['start_time'])
442 end = int(fixations[len(fixations)-1]['end_time'])

Appendix E

iTrace.sql

1 CREATE DATABASE iTrace;
2

3 CREATE TABLE session_info
4 (
5 session_ID varchar(255),
6 session_purpose varchar(255),
7 session_descrip varchar(255),
8 developer_username varchar(255),
9 developer_name varchar(255),

10 screen_width int,
11 screen_height int,
12 PRIMARY KEY (session_ID)
13);
14

15 CREATE TABLE gazes
16 (
17 gaze_id int AUTO_INCREMENT,
18 gaze_session_id varchar(255),
19 name varchar(255),
20 type varchar(255),
21 x int,
22 y int,

108 iTrace.sql

23 left_validation float,
24 right_validation float,
25 left_pupil_diameter float,
26 right_pupil_diameter float,
27 timestamp varchar(255),
28 session_time bigint,
29 tracker_time bigint,
30 system_time bigint,
31 nano_time bigint,
32 path varchar(255),
33 line_height int,
34 font_height int,
35 line int,
36 col int,
37 line_base_x int,
38 line_base_y int,
39 PRIMARY KEY (gaze_id),
40 FOREIGN KEY (gaze_session_id) REFERENCES

session_info(session_ID)↪→

41

42);
43

44 CREATE TABLE sces
45 (
46 sce_gaze_id int,
47 name varchar(255),
48 type varchar(255),
49 how varchar(255),
50 total_length int,
51 start_line int,
52 end_line int,
53 start_col int,
54 end_col int,
55 depth int,
56 FOREIGN KEY (sce_gaze_id) REFERENCES gazes(gaze_id)
57

58);

Appendix F

SQLGazeExportSolver.java

package edu.ysu.itrace.solvers;

import java.awt.Dimension;
import java.awt.Toolkit;
import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import javax.activation.DataSource;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.swing.UIManager;

import org.eclipse.e4.core.services.events.IEventBroker;
import org.eclipse.ui.PlatformUI;
import org.osgi.service.event.Event;
import org.osgi.service.event.EventHandler;

110 SQLGazeExportSolver.java

import edu.ysu.itrace.Gaze;
import edu.ysu.itrace.AstManager.SourceCodeEntity;
import edu.ysu.itrace.gaze.IGazeResponse;
import edu.ysu.itrace.gaze.IStyledTextGazeResponse;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
public class SQLGazeExportSolver implements IFileExportSolver,

EventHandler {↪→

private Dimension screenRect;
private String sessionID;
private String sessionPurpose;
private String sessionDescrip;
private String devName;
private String devUsername;
private IEventBroker eventBroker;
private String outFile;
Connection conn;

public SQLGazeExportSolver() {
UIManager.put("swing.boldMetal", new Boolean(false)); //make

UI font plain↪→

eventBroker =
PlatformUI.getWorkbench().getService(IEventBroker.class);↪→

}

/**
* Any initialization work with side effects, such as opening
files. This↪→

* method should very probably be called before calling process
or dispose.↪→

*/
public void init() {

screenRect = Toolkit.getDefaultToolkit().getScreenSize();
outFile = "Set";
System.out.println("init is called HAHASDHASHDHASDHASDHASD");

}

public void setSessionInfo() {

111

try {
System.out.println("Connecting to DB");
Class.forName("com.mysql.jdbc.Driver");
this.conn = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/iTrace","root","1234");
// Insert session info into db.
int rs;
System.out.println("WE ARE CONNECTED");
String statement = "INSERT INTO session_info"

+
"(session_ID,session_purpose,session_descrip,developer_username,
"

↪→

↪→

+ "developer_name) VALUES ("
+ "'" + this.sessionID + "',"
+ "'" + this.sessionPurpose + "',"
+ "'" + this.sessionDescrip + "',"
+ "'" + this.devUsername + "',"
+ "'" + this.devName + "')";

// + "'" + String.format("%d",this.screenRect.getWidth())
+ ","↪→

// + "'" +
String.format("%d",this.screenRect.getHeight()) + ");";↪→

rs = conn.createStatement().executeUpdate(statement);
System.out.println(statement);

}

catch(SQLException e) {
e.printStackTrace();

} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

}

/**
* Called to process new gazes.
*/

public void process(IGazeResponse response) {
int screenX =

(int) (screenRect.width * response.getGaze().getX());
int screenY =

(int) (screenRect.height *
response.getGaze().getY());↪→

112 SQLGazeExportSolver.java

Gaze gaze = response.getGaze();
String statementInsert = "INSERT INTO gazes (name, type,

gaze_session_id, x, y,"↪→

+ "left_validation, right_validation,
left_pupil_diameter,"↪→

+ "right_pupil_diameter, timestamp, session_time,
tracker_time,"↪→

+ "system_time, nano_time";

String statementValues = " VALUES ('"
+ response.getName() + "','"
+ response.getGazeType() + "','"
+ this.sessionID + "','"
+ screenX + "','"
+ screenY + "','"
+ gaze.getLeftValidity() + "','"
+ gaze.getRightValidity() + "','"
+ gaze.getLeftPupilDiameter() + "','"
+ gaze.getRightPupilDiameter() + "','"
+ gaze.getTimestamp() + "','"
+ gaze.getSessionTime() + "','"
+ gaze.getTrackerTime() + "','"
+ gaze.getSystemTime() + "','"
+ gaze.getNanoTime() + "'";

String nostyle = statementInsert + ")" + statementValues +
");";↪→

// gazes
if (response instanceof IStyledTextGazeResponse) {

IStyledTextGazeResponse styledResponse =
(IStyledTextGazeResponse) response;

statementInsert += ", path, line_height, font_height,
line,"↪→

+ "col, line_base_x, line_base_y";

statementValues += ",'" + styledResponse.getPath() + "','"
+ styledResponse.getLineHeight() + "','"
+ styledResponse.getFontHeight() + "','"
+ styledResponse.getLine() + "','"
+ styledResponse.getCol() + "','"
+ styledResponse.getLineBaseX() + "','"
+ styledResponse.getLineBaseY() + "'";

113

String style = statementInsert + ")" + statementValues +
");";↪→

try {
System.out.println("style");
System.out.println(style);
this.conn.createStatement().executeUpdate(style);

} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

// sces
int depth = 0;
String sce_gaze_id = "";
try {
ResultSet rs =

this.conn.createStatement().executeQuery("SELECT
max(gaze_id) FROM gazes WHERE gaze_session_id='" +
sessionID +"';");

↪→

↪→

↪→

rs.next();
sce_gaze_id = rs.getString("max(gaze_id)");
System.out.println(sce_gaze_id);

} catch (SQLException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();

}
for (SourceCodeEntity sce : styledResponse.getSCEs()) {

String statementSCE = "INSERT INTO sces (sce_gaze_id, "
+ "name, type, how, total_length,"
+ "start_line, end_line, start_col, end_col, depth)"
+ "VALUES ('" + sce_gaze_id + "','"
+ sce.getName() +"','"
+ sce.type.toString() + "','"
+ sce.how.toString() + "','"
+ sce.totalLength + "','"
+ sce.startLine + "','"
+ sce.endLine + "','"
+ sce.startCol + "','"
+ sce.endCol + "','"
+ depth + "');";

depth++;

114 SQLGazeExportSolver.java

try {
this.conn.createStatement().executeUpdate(statementSCE);

} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}

}
else {

try {
System.out.println("nostyle");
System.out.println(nostyle);
this.conn.createStatement().executeUpdate(nostyle);

} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}

}

public String friendlyName() {
return "SQL Gaze export";

}

/**
* Configure the export filename.
*/

public void config(String sessionID, String devUsername) {
// TODO Auto-generated method stub

}

public void configSQL(String sessionID, String devUsername,
String devName, String sessionDescrip, String

sessionPurpose){↪→

this.sessionID = sessionID;
this.devUsername = devUsername;
this.devName = devName;
this.devUsername = devUsername;

115

this.sessionDescrip = sessionDescrip;
this.sessionPurpose = sessionPurpose;

}

/**
* Launch dialog to display the export filename.
*/

public void displayExportFile() {

}

/**
* Frees any resources. It is very likely a bad idea to process
new data↪→

* after calling dispose. Not sure if we need this, either.
*/

public void dispose() {
this.conn = null;

}

@Override
public void handleEvent(Event event) {

// TODO Auto-generated method stub
if(outFile == null) this.init();
String[] propertyNames = event.getPropertyNames();
IGazeResponse response =

(IGazeResponse)event.getProperty(propertyNames[0]);↪→

this.process(response);

}

@Override
public String getFilename() {

// TODO Auto-generated method stub
return null;

}
}

116 SQLGazeExportSolver.java

Appendix G

MagicSort.java

import java.util.Comparator;

/**
* The {@code Insertion} class provides static methods for

sorting an↪→

* array using insertion sort.
* <p>
* This implementation makes ~ 1/2 n^2 compares and exchanges in
* the worst case, so it is not suitable for sorting large

arbitrary arrays.↪→

* More precisely, the number of exchanges is exactly equal to
the number↪→

* of inversions. So, for example, it sorts a partially-sorted
array↪→

* in linear time.
* <p>
* The sorting algorithm is stable and uses O(1) extra memory.
* <p>
* See InsertionPedantic.java↪→

* for a version that eliminates the compiler warning.
* <p>

118 MagicSort.java

* For additional documentation, see Section
2.1 of

↪→

↪→

* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin
Wayne.↪→

*
* @author Robert Sedgewick
* @author Kevin Wayne
*/

public class MagicSort {

// This class should not be instantiated.
private MagicSort() { }

/**
* Rearranges the array in ascending order, using the natural

order.↪→

* @param a the array to be sorted
*/

public static void sort(Comparable[] a) {
int n = a.length;
for (int i = 1; i < n; i++) {

for (int j = i; j > 0 && less(a[j], a[j-1]); j--) {
exch(a, j, j-1);

}
assert isSorted(a, 0, i);

}
assert isSorted(a);

}

/**
* Rearranges the subarray a[lo..hi) in ascending order,

using the natural order.↪→

* @param a the array to be sorted
* @param lo left endpoint (inclusive)
* @param hi right endpoint (exclusive)
*/

public static void sort(Comparable[] a, int lo, int hi) {
for (int i = lo; i < hi; i++) {

for (int j = i; j > lo && less(a[j], a[j-1]); j--) {
exch(a, j, j-1);

}
}

119

assert isSorted(a, lo, hi);
}

/**
* Rearranges the array in ascending order, using a

comparator.↪→

* @param a the array
* @param comparator the comparator specifying the order
*/

public static void sort(Object[] a, Comparator comparator) {
int n = a.length;
for (int i = 0; i < n; i++) {

for (int j = i; j > 0 && less(a[j], a[j-1],
comparator); j--) {↪→

exch(a, j, j-1);
}
System.out.println(a);
assert isSorted(a, 0, i, comparator);

}
assert isSorted(a, comparator);

}

/**
* Rearranges the subarray a[lo..hi) in ascending order,

using a comparator.↪→

* @param a the array
* @param lo left endpoint (inclusive)
* @param hi right endpoint (exclusive)
* @param comparator the comparator specifying the order
*/

public static void sort(Object[] a, int lo, int hi,
Comparator comparator) {↪→

for (int i = lo; i < hi; i++) {
for (int j = i; j > lo && less(a[j], a[j-1],

comparator); j--) {↪→

exch(a, j, j-1);
}
System.out.println(a);

}
assert isSorted(a, lo, hi, comparator);

}

120 MagicSort.java

// return a permutation that gives the elements in a[] in
ascending order↪→

// do not change the original array a[]
/**
* Returns a permutation that gives the elements in the array

in ascending order.↪→

* @param a the array
* @return a permutation {@code p[]} such that {@code

a[p[0]]}, {@code a[p[1]]},↪→

* ..., {@code a[p[n-1]]} are in ascending order
*/

public static int[] indexSort(Comparable[] a) {
int n = a.length;
int[] index = new int[n];
for (int i = 0; i < n; i++)

index[i] = i;

for (int i = 0; i < n; i++)
for (int j = i; j > 0 && less(a[index[j]],

a[index[j-1]]); j--)↪→

exch(index, j, j-1);

return index;
}

/***↪→

* Helper sorting functions.

***/↪→

// is v < w ?
private static boolean less(Comparable v, Comparable w) {

return v.compareTo(w) < 0;
}

// is v < w ?
private static boolean less(Object v, Object w, Comparator

comparator) {↪→

return comparator.compare(v, w) < 0;
}

// exchange a[i] and a[j]
private static void exch(Object[] a, int i, int j) {

121

Object swap = a[i];
a[i] = a[j];
a[j] = swap;

}

// exchange a[i] and a[j] (for indirect sort)
private static void exch(int[] a, int i, int j) {

int swap = a[i];
a[i] = a[j];
a[j] = swap;

}

/***↪→

* Check if array is sorted - useful for debugging.

***/↪→

private static boolean isSorted(Comparable[] a) {
return isSorted(a, 0, a.length);

}

// is the array a[lo..hi) sorted
private static boolean isSorted(Comparable[] a, int lo, int

hi) {↪→

for (int i = lo+1; i < hi; i++)
if (less(a[i], a[i-1])) return false;

return true;
}

private static boolean isSorted(Object[] a, Comparator
comparator) {↪→

return isSorted(a, 0, a.length, comparator);
}

// is the array a[lo..hi) sorted
private static boolean isSorted(Object[] a, int lo, int hi,

Comparator comparator) {↪→

for (int i = lo+1; i < hi; i++)
if (less(a[i], a[i-1], comparator)) return false;

return true;
}

// print array to standard output
private static void show(Comparable[] a) {

122 MagicSort.java

for (int i = 0; i < a.length; i++) {
System.out.println(a[i]);

//StdOut.println(a[i]);
}

}

/**
* Reads in a sequence of strings from standard input;

insertion sorts them;↪→

* and prints them to standard output in ascending order.
*
* @param args the command-line arguments
*/

public static void main(String[] args) {
String[] a = {"4","2","1","3"}; //StdIn.readAllStrings();
MagicSort.sort(a);
//show(a);

}
}

Appendix H

iTraceAnalyserScript.py

import iTraceAnalyser as IA

#Creating session fixation data for a specific user at different
sensitivities. For Chapter 4 section 2.↪→

rawGazes = IA.get_raw_gazes("localhost","root","1234"
,"iTrace",'20171219T095731-0417+0100')
fixations5 = IA.get_session("localhost","root","1234"
,"iTrace",'20171219T095731-0417+0100', 5)
fixations10 = IA.get_session("localhost","root","1234"
,"iTrace",'20171219T095731-0417+0100',10)
fixations15 = IA.get_session("localhost","root","1234"
,"iTrace",'20171219T095731-0417+0100',15)
fixations20 = IA.get_session("localhost","root","1234"
,"iTrace",'20171219T095731-0417+0100',20)
fixations25 = IA.get_session("localhost","root","1234"
,"iTrace",'20171219T095731-0417+0100',25)
fixations30 = IA.get_session("localhost","root","1234"
,"iTrace",'20171219T095731-0417+0100',30)

#Creating scatter plots for the fixation sesnsitivity analysis
Chapter 4 section 2.↪→

124 iTraceAnalyserScript.py

IA.gaze_scatter_plot(rawGazes, "TestGaze", "Gazes")
IA.fixation_scatter_plot(fixations5,"TestFix5", "Fixations 5")
IA.fixation_scatter_plot(fixations10,"TestFix10", "Fixations 10")
IA.fixation_scatter_plot(fixations15,"TestFix15", "Fixations 15")
IA.fixation_scatter_plot(fixations20,"TestFix20", "Fixations 20")
IA.fixation_scatter_plot(fixations25,"TestFix25", "Fixations 25")
IA.fixation_scatter_plot(fixations30,"TestFix30", "Fixations 30")

#Importing the test subjects data
iTrace1 = IA.get_session("localhost","root","1234","iTrace"
,'20171201T092946-0684+0100',15)
iTrace2 = IA.get_session("localhost","root","1234","iTrace"
,'20171201T101056-0578+0100',15)
iTrace3 = IA.get_session("localhost","root","1234","iTrace"
,'20171205T100741-0299+0100',15)
iTrace4 = IA.get_session("localhost","root","1234","iTrace"
,'20171205T102737-0035+0100',15)
iTrace5 = IA.get_session("localhost","root","1234","iTrace"
,'20171205T105857-0765+0100',15)

#Creating bar plots for Chapter 4 section 3.
IA.fixation_count_bar(iTrace1,"count_lines","line")
IA.fixation_count_bar(iTrace1,"count_types","sce_type")

IA.fixation_duration_bar(iTrace1,"dur_lines","line")
IA.fixation_duration_bar(iTrace1,"dur_types","sce_type")

IA.fixation_average_duration_bar(iTrace1,"avg_dur_lines","line")
IA.fixation_average_duration_bar(iTrace1,"avg_dur_types","sce_type")

IA.fixation_max_duration_bar(iTrace1,"dur_max_lines","line")
IA.fixation_max_duration_bar(iTrace1,"dur_max_types","sce_type")

#creating event logs for chapter 4 section 4
IA.process_mining_data([iTrace1,iTrace2,iTrace3,iTrace4,iTrace5]
,"test_sort_lines.csv",'lines')
IA.process_mining_data([iTrace1,iTrace2,iTrace3,iTrace4,iTrace5]
,"test_sort_userdef.csv",'user_defined',"insertion.csv")

Bibliography

[AS14] Romano Bergstrom Andrew Schall, Jennifer. INTRODUCTION TO
EYE TRACKING. Elsevier Inc., 2014.

[BC17] Bonita Sharif Benjamin Clark. iTraceVis: Visualizing Eye Movement
Data Within Eclipse. IEEE Working Conference on Software Visual-
ization, Cambridge, MA 02142 USA, 2017.

[dA11] Wil M. P. Van der Aalst. Process mining Discovery, Conformance,
and Enhancement of business processes). Springer, 2011.

[DDS00] Joseph H. Goldberg Dario D. Salvucci. Identifying Fixations and Sac-
cades in Eye-Tracking Protocols). ACM press, Cambridge, MA 02142
USA, 2000.

[Flu17] Fluxicon. Disco, product. Fluxicon, http://www.fluxicon.com/disco/,
2017.

[HC84] Xiaohui Yuan H.R. Chennamma. A SURVEY ON EYE-GAZE
TRACKING TECHNIQUES. Indian Journal of Computer Science
and Engineering (IJCSE)„ Department of MCA, Sri Jayachamarajen-
dra College of Engineering, Mysore, Karnataka, INDIA, 1984.

[JL] Jae-Hyeon Ahn Joowon Lee. Attention to Banner Ads and Their
Effectiveness: An Eye-Tracking Approach. ResearchGate.

[P09] Blignaut P. Fixation identification: the optimum threshold for a dis-
persion algorithm. National Center for Biotechnology Information,
2009.

[RS17] Kevin Wayne Robert Sedgewick. Insertion.java. Princeton, 2017.

126 BIBLIOGRAPHY

[RvdL] Rik Pieters Ralf van der Lans, Michel Wedel. Defining eye-fixation se-
quences across individuals and tasks: the Binocular-Individual Thresh-
old (BIT) algorithm. National Center for Biotechnology Information.

[Tob17a] Tobii. How do Tobii Eye Trackers work. Tobii.com, 2017.

[Tob17b] Tobii. Specifications for the Tobii Eye Tracker 4C. Tobii.com, 2017.

[Tob17c] Tobii. What happens during the eye tracker calibration. Tobii.com,
2017.

[TRS15] Braden M. Walters Sebastian C. Müller Michael Falcone Bonita Sharif
Timothy R. Shaffer, Jenna L. Wise. iTrace: Enabling Eye Tracking
on Software Artifacts Within the IDE to Support Software Engineering
Tasks). University of Zurich, Switzerland Department of Informatics,
2015.

[TS84] Ted Megaw Tayyar Sen. The Effects of Task Variables and Prolonged
Performance on Saccadic Eye Movement Parameters. Elsevier Inc.,
1984.

[Wid84] Heino Widdel. Operational Problems in Analysing Eye Movements.
Elsevier Science Publiahels B.V. (North-Holland)„ Forschungsinstitut
fur Anthropotechnik Wachtberg-Werthhoven FRG, 1984.

	Summary (English)
	Summary (Danish)
	Preface
	
	Contents
	1 Introduction
	2 Theory
	2.1 Eye tracking
	2.1.1 Introduction
	2.1.2 Fixations

	2.2 iTrace
	2.2.1 Introduction
	2.2.2 Structure
	2.2.3 Additional features
	2.2.4 Related Work

	2.3 Process mining
	2.3.1 Business process models
	2.3.2 The three stages of process mining
	2.3.3 Disco

	3 Method
	3.1 The process
	3.2 Producing gaze data
	3.2.1 Java native interface

	3.3 Exporting gaze data
	3.3.1 Solvers
	3.3.2 Database

	3.4 Converting gazes to fixations
	3.5 Analysing The Data
	3.5.1 Performing Static Source Code Entity Analysis
	3.5.2 Performing Process Mining Analysis

	4 Evaluation
	4.1 Setup
	4.2 Analysis
	4.2.1 Fixations
	4.2.2 Bar Plots Fixation Data Analysis
	4.2.3 Bar Plots Type Analysis
	4.2.4 Process Mining

	5 Discussion
	5.1 Data Preparation
	5.1.1 Data Collection
	5.1.2 Fixations

	5.2 Fixation Data Analysis
	5.3 Process Mining
	5.4 Future Work

	6 Conclusion
	A Glossary
	B Components installation
	B.1 JNI
	B.2 Database

	C JNI, New SDK
	D iTraceAnalyser.py
	E iTrace.sql
	F SQLGazeExportSolver.java
	G MagicSort.java
	H iTraceAnalyserScript.py
	Bibliography

