
Extending analytics for eye
tracking data linked to source

code based on iTrace

Dennis Bøgelund Olesen

Kongens Lyngby 2018

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

The goal of the thesis is to create a tool for visualizing data gathered by the
gaze to source code mapping Eclipse plugin, iTrace. The solution covers the
steps necessary to analyze the data collected using iTrace. Starting with updat-
ing the iTrace interface connecting to the eye tracker to use the current state
of the art Tobii eye tracker software development kit. Followed by extending
the data storage of iTrace to support a database setup making several iTrace
sessions readily available for the analysis tools. A python library, iTraceAnal-
yser is created to convert the iTrace gaze data into fixations while retaining the
source code information. Finally the thesis propose two visualization solutions.
The first being simple data visualizations using bar plots to quickly view data
for single sessions. The second being a method of creating event logs making
comparison of several sessions available through existing process mining tools.

ii

Summary (Danish)

Målet for denne afhandling er at bygge et værktøj for visualisering af data samlet
af Eclipse pluginnet iTrace som forbinder blikke til kildekode. Løsningen dækker
de nødvendige trin for at analysere dataen samlet ved brug af iTrace. Første
delmål er at opdatere interfacet mellem iTrace og eye trackeren således at iTrace
kan bruges med moderne Tobii eye tracker software development kits. Herefter
skal dataopbevaringen udvides så iTrace støtter en database opsætning. Dette vil
gøre flere iTrace sessioner tilgængelige samtidig for analyse værktøjet. Et python
bibliotek, iTraceAnalyser, er implementeret for at konvertere iTrace blik data
til fikseringer uden tab af kildekode information. Til sidst forslår afhandlingen
to visualiseringer til analyse af dataen. Den første visualisering bruger bar plots
til at skabe et hurtigt overblik over dataen for enkelte sessioner. Den anden
foreslåede løsning skaber event logs ud fra fikseringerne og bruger dette til at
mine processen med eksisterende værktøjer.

iv

Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements for
acquiring an M.Sc. in Computer Science and Engineering under the supervision
of Barbara Weber and assistant supervisor Andrea Burattin

The thesis deals with state of the art eye tracking data visualization and anal-
ysis using process mining on data collected using the gaze-aware Eclipse plugin
iTrace.

Lyngby, 14-January-2018

vi

Dennis Bøgelund Olesen

I would like to acknowledge the following people for their contributions:

Barbara Weber, my supervisor for providing meaningful input to the direction
of the project through regular meetings.

Andrea Burattin, assistant supervisor for providing input and ideas primarily
regarding the practical implementations.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

vii

1 Introduction 1

2 Theory 3
2.1 Eye tracking . 3

2.1.1 Introduction . 3
2.1.2 Fixations . 5

2.2 iTrace . 9
2.2.1 Introduction . 9
2.2.2 Structure . 10
2.2.3 Additional features . 11
2.2.4 Related Work . 12

2.3 Process mining . 12
2.3.1 Business process models 12
2.3.2 The three stages of process mining 12
2.3.3 Disco . 13

3 Method 15
3.1 The process . 15
3.2 Producing gaze data . 17

3.2.1 Java native interface . 17
3.3 Exporting gaze data . 22

x CONTENTS

3.3.1 Solvers . 22
3.3.2 Database . 24

3.4 Converting gazes to �xations . 27
3.5 Analysing The Data . 29

3.5.1 Performing Static Source Code Entity Analysis 29
3.5.2 Performing Process Mining Analysis 30

4 Evaluation 35
4.1 Setup . 35
4.2 Analysis . 37

4.2.1 Fixations . 37
4.2.2 Bar Plots Fixation Data Analysis 40
4.2.3 Bar Plots Type Analysis 44
4.2.4 Process Mining . 46

5 Discussion 69
5.1 Data Preparation . 69

5.1.1 Data Collection . 69
5.1.2 Fixations . 70

5.2 Fixation Data Analysis . 70
5.3 Process Mining . 71
5.4 Future Work . 71

6 Conclusion 73

A Glossary 75

B Components installation 77
B.1 JNI . 77
B.2 Database . 78

C JNI, New SDK 79

D iTraceAnalyser.py 95

E iTrace.sql 107

F SQLGazeExportSolver.java 109

G MagicSort.java 117

H iTraceAnalyserScript.py 123

Bibliography 125

Chapter 1

Introduction

With eye tracking becoming more commonplace and businesses using eye track-
ing to determine behaviours of users in examples such as advertising [JL] it
would make sense to look into using eye tracking for other purposes. One such
purpose was made visible with the release of an Eclipse plugin, iTrace [TRS15],
which couples eye tracking to source code. This presents information on not only
the coordinates where the user was looking but also of the underlying source.
Through this iTrace has provided a tool for gathering information on the be-
haviour of developers reading and attempting to understand code. However the
iTrace data anlysis performed by others are limited to static representations of
single sessions through visualizations such as heatmaps and gaze maps [BC17].
As such this thesis will attempt to provide ideas and solutions for how to transi-
tion from the data gathered using iTrace to an understanding of the process the
user has gone through while developing, primarily focusing on process mining
for data visualisation. The intention is for this to be used primarily in teaching
environments where it would be worth noting certain patterns in the way the
student works. In order to provide insight and provide assistance in the areas
where they are struggling.

In order to set up a system for performing an analysis of iTrace data a couple
of goals needs to be met. First the interface connecting the eye tracker to
iTrace needs to be updated as the current implementation uses an old software
development kit which is no longer available. The rebuilding of this is going to

2 Introduction

be covered in order to allow for actual eye tracking information and can be seen
as a prerequisite for the analysis.

Additionally the data storage was changed as iTrace stores the �le separately
which makes comparison across sessions and users inconvenient. As such a
database setup will be proposed and the remaining analysis will use the data
placed there. This also assists in providing additional insight into the structure
of iTrace.

Before the data can be used for comprehension purposes it will be necessary to
clean and structure the data into �xations to determine which parts of the data
is relevant.

The data analysis will be split into two parts. One part which focuses on
representing the values in static plots which provide information on the time
spent on di�erent elements of the source code and additional information of
that sort. This helps provide a quick overview of a speci�c session without
going into a more in depth exploratory analysis.

The second part will involve treating the task of understanding the source code
as a process and consider each gaze as an activity where the user is trying to
understand the related code. As such the �xation data will be converted into
event logs which can be read by process mining tools and thereby provides the
base for exploratory and comparison of several sessions. Doing this allow �nding
users who work in ways that are outside the expected and the norm. Providing
a base for helping the person correct some of the issues and knowing where to
put in additional work for improvement.

Chapter 2

Theory

This section will go over the theoretical knowledge which builds the founda-
tion of the thesis. There will be an overview of the information related to eye
tracking in Section 2.1, iTrace in Section 2.2 and process mining in Section 2.3
which is intended as relevant background knowledge for the systems created in
the method Chapter 3 and the evaluation of the systems along with analysis
performed with the systems at Chapter 4. The discussion of the systems and
their results in the Discussion Chapter 5. For a brief overview of the some of
the used terms see the glossary in Appendix A

2.1 Eye tracking

2.1.1 Introduction

Eye tracking[AS14] is the act of tracking the eye movement in relation what is
being observed, such as a computer screen, to determine where the person is
looking. Eye tracking is being developed for several devices such as computers
and wearable devices. This thesis will be focusing on eye tracking coupled to a
stationary computer screen using the Tobii eye tracker 4C[Tob17a].

4 Theory

Eye tracking is the act of tracking eye movements and collecting gazes. Gazes
are the raw output collected from eye tracking. Each gaze is a point on the
screen with an X,Y coordinate set relating to the pixel position. A gaze may
be attributed more values depending on the tool. Most relevant for this thesis
are the recorded time for the gaze and the source code data related to the gaze
point especially the line attribute.

In order to collect the gazes it is necessary to track the eyes. This can be
done in several ways [HC84]. Four methods mentioned by H.R Chennamma
are Electro-Oculography, Sceleral Search Coils, Infrared Oculography, Video
Oculography. The Electro-Oculography method uses sensors placed on the skin
around the eyes to estimate the position of the eye. The Sceleral Search Coils
method places wires on a contact lens which allows for tracking eye movement
very accurately. Infrared Oculography uses infrared light to calculate how the
eye moves based on the amount of light re�ected. The last method is Video
Oculography which uses cameras and light to collect and process images of the
eye to estimate movement and gaze locations.

In the case of the Tobii eye trackers, the tracking is done using a near infrared
light along with a camera. The eye tracker then process the images taken of the
eyes and use the position of the re�ected light to determine where on the screen
the subject is looking. a quick description of the setup can be seen in Figure 2.1

Figure 2.1: Eye tracking setup

As people's eyes are slightly di�erent [RvdL] and the characteristics of the eyes
and the way the light re�ects may vary it is typically necessary to perform a
calibration test [Tob17c] before starting any tracking session. These calibrations
typically use points on the screen which the user then will focus on for a few
seconds, to map out what the eyes look like when looking at di�erent areas, and

2.1 Eye tracking 5

thereby changing the settings so the eye tracker is more accurate.

The procedure of determining where the user is looking is then performed as
fast as is allowed by the technology. For one of the newer models, the Tobii 4C
tracker by Tobii, this is at 90 Hz [Tob17b]. Each recording is then transformed
into data which is commonly referred to as a Gaze. In a very simple setup
a gaze would just consist of the x and y coordinates relating to the screen in
pixels. However for analytic purposes gazes also include device time stamps as
well as information on pupil including dilation and position and a validation,
which indicates the correctness of the recorded gaze. Among other data. This
data allows us to not only detect where the person is looking, but sort out bad
gazes and use pupil information to perform additional analysis.

2.1.2 Fixations

Gazes are by themselves not particularly interesting, as it has been found that
a person only comprehends what is being looked at after �xating on it for about
100 to 200ms [Wid84].

As such an important of step of cleaning the data is to transition from gazes
to �xations. Fixations [AS14] are points where the user concentrates for an
extended time. As such a �xation relates to gazes as �xations can be considered
a cluster of gazes around the same point over an extended time. Fixation points
typically contains X and Y coordinates and a start time and an end time. This
can be done using grouping algorithms to group neighbouring gazes, which are
collected immediately after each other, and are su�ciently close. These groups
can then be considered �xations, and the transition from one �xation to another
is considered a saccade. Saccades are the movement between �xations. When
the areas are moving from one point of focus to another the gazes in between
are considered the saccade. An illustration of going from gazes to �xations can
be seen on �gure 4.2

6 Theory

Figure 2.2: Gazes to �xations

It is however worth considering how to group these �xations as it can have a big
impact on the rest of the analysis. Some of the issues which may be expected
to arise if there is bad grouping are too few �xations if the algorithm is being
too strict and too many �xations if it is not strict enough. On top of this some
algorithms are more robust than others and handle issues such as �uctuations
in the gazes better than others.

When looking at �xation identi�cation algorithms [DDS00], which are the al-
gorithms used for identifying the �xations in a group of gazes, it is possible
to use a taxonomy considering some of the important criteria . One proposed
way to de�ne these criteria can be as accuracy, speed, robustness and ease of
implementation. Here one may consider accuracy by how good the algorithm is
in determining whether a gaze is part of the current �xation or if it belongs to
a new �xation or saccade. The speed de�nes how quickly the algorithm groups
the �xations. this is primarily important in any analysis done online and when
large amounts of data are considered. Robustness is graded by how resistant the
algorithm is to wrongful �uctuations in the data. The ease of implementation
is worth considering when deciding upon the right algorithm for your product,
as you may consider whether implementing a stronger algorithm is worth the
e�ort depending on the precision and quality with which you collect your data.

Before deciding which �xation identi�cation algorithm will be the right one
for an analysis it is worth looking into a few di�erent ones. This section will
be looking at a velocity based algorithm Velocity-Threshold identi�cation (I-
VT). A dispersion based algorithm, Dispersion-Threshold identi�cation (I-DT).
There are other alternatives such as a model using probabilistic methods, Hidden
Markov model identi�cation (I-HMM), however these are not covered in this
thesis. These models have slightly di�erent approaches to how to determine the

2.1 Eye tracking 7

�xations. However the basics of the algorithm remains the same and can be
described as the pseudo code shown in �gure 2.3

Figure 2.3: Fixation identi�cation pseudo

Loop over the gazes and for each gaze.
decide whether the current gaze is
part of the same fixation as the previous gaze or gazes.

if a gaze is not part of the fixation:
Group the previous gazes as a fixation
and start over from the remaining data.
Remove fixation if duration is less than threshold

The challenge is then to decide whether the gazes are part of the same �xation.
Additionally it may be worth mentioning as previously stated, a �xation needs
to have a minimum length in order to avoid single gazes along a saccade to be
considered a �xation. This also abides to the idea that a person only records
what is being looked at after a short time, this time is usually considered to be
around 100 to 200ms.[Wid84]

2.1.2.1 Velocity-Threshold �xation identi�cation

The I-VT approach [DDS00] looks at the velocity between two gazes. This uses
the idea that a �xation is steady within an area and as such it has only very small
movements in the eyes. Where as any saccade would involve rapid movement
from one point to another. Calculating this velocity can be done as the distance
in pixels over time, or using the movement of the eyes in degrees to achieve a
degrees/secon velocity. These values are then used to assess whether the gaze is
�xated at a point near the previous gaze or if the movement can be considered
rapid. It is generally considered su�cient to determine a static criteria for
the velocity thresholds. De�ning the threshold will depend whether you are
using the angular velocities or if you only know the point to point velocities.
If you are using the angular velocities previous research has approximated 20
deg/seconds to be a good threshold [TS84]. If these values are not available
andt he point to point velocities are being used, a suitable threshold may be
found using explorative analysis for the speci�c setup. The threshold may vary
depending on resolution and the screen size, as the pixels are closer together

8 Theory

in high resolutions, as well as the �uctuations in the recorded data. When the
velocity is known the algorithm can be described as seen on �gure 2.4 [DDS00]

Figure 2.4: Velocity-Threshold identi�cation, Adopted from [DDS00]

Calculate point to point velocity for each gaze

Label velocities under threshold as a fixation point

Collapse consecutive fixation points into a fixation group
Remove saccades

For each fixation group,
determine the start time and the end time
find the centroid of the points

Return the fixations

2.1.2.2 Dispersion-Threshold �xation identi�cation

The dispersion based identi�cation algorithm [DDS00] calculates the dispersion
between the points in order to determine whether they belong in the same
�xation. This relies on the idea that any �xation would consist of several gazes
clustered together, allowing us to group together nearby gazes. This di�ers from
the I-VT as the dispersion is based on the maximum and minimum values for
all the gazes positions in the �xation window rather than only comparing two
points at a time. However in the same manner as the I-VT in order to use the
I-DT it is necessary to determine the a suitable threshold. The dispersion itself
is calculated as(max(x) � min (x)) + (max(y) � min (y)) .

The dispersion threshold can be found using exploratory analysis, seeing which
value provides you with the best data over several sets. This is necessary as it
may depend on resolution, screen size and the data �uctuation as well as the
individual users �xation characteristics [RvdL]. It is also considered that if you
can calculate the angle to the screen a dispersion of roughly 0.5 to 1 degree [P09]
can be used as a general threshold. Additionally to avoid describing saccades as
�xations we make sure any �xation is at least 100-200 ms long The algorithm
itself works as described in �gure 2.5

2.2 iTrace 9

Figure 2.5: Velocity-Threshold identi�cation, Adopted from [DDS00]

Loop over each gaze
Add points until the duration threshold is covered

If dispersion of window points <= threshold
Add next gazes until dispersion threshold > threshold
Calculate the centroid
Collapse into a fixation.

If dispersion of window points > threshold
remove first point in window.

2.2 iTrace

2.2.1 Introduction

iTrace [TRS15] is an Eclipse plugin by the Software Engineering Research and
Empirical Studies Lab, which enables eye tracking in a programming environ-
ment and allow the gazes within Eclipse to be linked to corresponding source
code entities, SCE. The SCEs are de�ned as entities which are represented in
the Eclipse editor as styled text. This includes declarations, invocations, state-
ments, methods and comments.

The tool exclusively works for the Eclipse environment and as such it does not
o�er support for gaze tracking outside the Eclipse window. The data we receive
from iTrace provide information on both the gaze itself which includes data
about the eyes, time and positions as well as data about the corresponding area
in Eclipse. The Eclipse data includes information about the source code entity
in the area such as type and a unique name. SCEs are parts of the source
code that can be categorized. These include highlighted words and comments.
Additionally it also provides us with the line and column which can be useful for
code sections that do not �t on a regular screen and require scrolling. [TRS15]

10 Theory

2.2.2 Structure

The structure of iTrace is segmented into parts handling the di�erent parts of
the process. The process consists of capturing a gaze using the eye tracker,
converting the recordings from the eye tracker into a gaze containing the base
data such as position, time and pupil information. Then iTrace need to handle
the data which makes the gaze into a gaze response which is a data type that
de�nes both the gaze and the corresponding part in the editor. This includes
lines as well as SCE depending on the type of gaze response. Once you have
the gaze response it will be passed to the solver which is responsible for out-
putting the gaze as readable data, by default XML and JSON. These di�erent
parts are split into the classes IGazeHandler, iGazeResponse and ISolver. The
IGazeHandler is the component of iTrace which is responsible for collecting the
data from the tracker and collecting further information about the connected
SCEs, line numbers and more. The IGazeResponse is the structured gaze data
which includes the information collected by the IGazeHandler. The ISolver is
the super class responsible for outputting the IGazeResponses to other external
sources such as XML and JSON. The actions of these classes are then done
in parallel in threads using gaze and gaze response queues to avoid waiting in
between them. As the solvers are writing the output every time they receive a
gaze response the data is gathered online. The process for a single gaze can be
described as seen on Figure 2.6. This process is repeated once the tracking is
started, and ends when the user presses the Stop tracking button in the iTrace
controller.

Figure 2.6: iTrace gaze handling process

2.2 iTrace 11

In order to get the information that is at the gaze point iTrace opens Eclipse as
a plugin which gives them access to the widget class allowing them to segment
the Eclipse window as well as accessing information such as o�set and relative
positions. Additionally iTrace maintains an abstract syntax tree (AST) of the
content within the editor. This syntax tree allow for mapping absolute positions
in the widget to the content using the ASTParser. In relation to iTrace the
abstract syntax tree holds the structure for the source code in order to �nd
information on the speci�c SCEs. The AST also allow for information about
the surrounding content.

The data outputted by the iTrace solvers are made available as JSON and XML
�les in seperate folders for each session. Additionally a JSON description of the
session itself is created beside the gaze data.

In order to connect to the eye trackers an IEyeTracker class has been de�ned
[TRS15] which de�nes the necessary functionality of the gaze collection and
calibration. In the case of the Tobii eye trackers the SDKs are not directly
available for java implementation, and as such a java native interface, JNI, is
implemented for using the SDK in a di�erent language. JNI is a java library
used for calling C and C++ code in a java environment. In this thesis the
term JNI or driver is used to describe the C++ module connecting to the eye
trackers software development kit (SDK). In this case the Tobii eye tracker is
implemented as a C++ driver using the old Tobii Analytics SDK . This SDK is
no longer available and a new or updated implementation will be needed prior
to use. The newest SDK is the Tobii Pro SDK.

2.2.3 Additional features

Besides capturing gazes and providing data iTrace include some additional fea-
tures which assist in making it friendly for use in a test environment. The �rst
thing when beginning an experiment iTrace will ask you to de�ne the session.
This session de�nition allow for intuitive separation of the data collected over
several individual experiments, or sessions. Additionally it provides the oppor-
tunity to de�ne users, the purpose of the session and creates a unique session
id.

iTrace acknowledges that the precision of the eye tracking may vary depending
on the user, despite an initial calibration [TRS15]. To combat this issue it is
possible to manually change the X and Y position displacement drift. as well
as a marker on the screen where you are looking, which works to give you an
impression of the accuracy of the tracking

12 Theory

2.2.4 Related Work

One of the modern proposals on how to analyse and visualize the data collected
with iTrace is the iTraceVis [BC17] solution. iTraceVis supports visualizations
of the gaze data within the Eclipse plugin and supports heatmaps of the source
code entities values in the editor, gaze maps which show how the user looked
around the �le, a gaze skyline visualization showing which lines were viewed over
time. These visualizations were found to be useful for information regarding a
single user and session.

2.3 Process mining

2.3.1 Business process models

Business process models, BPMs,[dA11] are being used to provide a meaningful
way of describing the processes within many di�erent business applications and
work �ows. BPMs are a way of describing a process in such detail and structure
that it is often possible to recognize if there exists waste within the process.
It is often used in regards to automating and optimizing processes and rely on
de�ning actions and the �ow with which these actions are done, in order to
know how an event is to be handled. Regular business process models can help
provide insight into the �ow of the process as well as provide a guide for those
who are part of the process.

2.3.2 The three stages of process mining

In some cases there is no detailed model that the users are aware of and as
such they do not necessarily follow a speci�c �ow. It is however still possible
that there may be similarities between the way the process is performed across
sessions. In these cases, if adequate log data exists process mining can be used
to get further insight into the process.

The use of process mining is often put in three categories. Discovery, confor-
mance and enhancement. These three categories can be used depending on the
goal of the task.

Discovery is the act of gathering log events and producing a graph showing
events and transitions explaining the behaviour. This will present you with

2.3 Process mining 13

model showing how the process have been performed and make available infor-
mation which can be investigated to acquire insight into the process.

Conformance is the act of comparing an existing BPM to an event log. This
will allow you to determine whether the actual performed process matches the
described model. This comparison can then be used in either direction, as it
may mean the existing BPM is missing something, or simply not in tune with
the real world. Or check if the event log represents a process which is wrong
either by choice, someone �nding the process bad, or by mistake.

Finally when considering using process mining for enhancement it is often done
through the use of event logs to enhance the BPM. This can be used for repairing
the BPM by adding �ows that were missed in the creation but exists within the
event logs. Or adding additional information to the model, for instance by using
new information from the even logs, such as timings, to extend the quality of
the model.[dA11]

2.3.3 Disco

With the event log information available, there exists tools for visualizing the
�ow and provide process mining information. One of these tools, Disco [Flu17],
provide a platform for discovering the process behind the event logs. Disco allow
us to look at the individual cases as well as getting an overview of the process as
a combination of all events. It will allow us to get information of which events
have been performed the most times as well as the duration of these events.

14 Theory

Chapter 3

Method

3.1 The process

In this chapter we are looking at the process of building the system with the
purpose of providing the tools for creating an extended analysis of the iTrace
data in a testing and teaching environment. The goal of this section is to
understand how the system is built and how the di�erent components operate
together, this includes the process from start to �nish as well as the interaction
and responsibility of each component and sub process in the created system. On
top of this we hope to understand the reasoning behind the decisions made in
regards to what is built, what is left out and why certain methods were chosen
over others.

A model for the process of main aspects of the system going from the start to
the end can be seen on �gure 3.1.

The �rst step of the system requires a re-write of the java native interface as
the Tobii SDK used in the o�cial release of iTrace is outdated.
The second step of the process includes an update to the data storage to
support future potential cross machine sharing and to centralize the data in one
collection rather than the previous separate �le setup as this will make analysis
and comparison of several sessions more available.

16 Method

The third step consists of having to clean the data by converting from gazes
to �xations and removing saccades. This ensures that only the areas which the
user has focused on is passed along for analysis.
The fourth step is a simple analysis of the �xation data created in step three,
intended to get a quick overview of the values of a single session.
Step �ve and six is a more in depth analysis using process mining as visual-
ization. The process mining tools are available however the data needs to be
structured as event logs in order to use existing tools such as Disco [Flu17].

Figure 3.1: Analysis process, start to end

As we can see on the model the process has to go through a number of steps.
It is worth noting that neither of these steps are readily available before this

3.2 Producing gaze data 17

extension.

To produce gaze data using iTrace in step one we need to update the JNI with
the new SDK to allow use of the eye tracker. This sub process is described in
section 3.2.1.

To export the gaze data to database in step two it is necessary to set up a
database, as well as add a new solver which works with the database. This sub
process is described in section 3.3.2.

To perform step three we must implement a �xation identi�cation algorithm
which maintains data of interest from the iTrace gaze responses. This sub
process is described in section 3.4.

Performing the SCE analysis in step four requires presenting and structuring
the �xation data, with respect to the source code entity attributes. This sub
process is described in section 3.5.1.

Converting �xations to event logs in steps �ve require a de�nition of events, as
well as a conversion implementation. Performing the process mining on event
logs in step six can be done drawing conclusions from a process mining tool such
as disco. This sub process is described in section 3.5.2.

Each of these steps can be considered separately but in concession as they
depend on �ndings from previous steps in the way de�ned in �gure 3.1 .

For installing the implementation see Appendix B.

3.2 Producing gaze data

3.2.1 Java native interface

The basis of the project relies on using iTrace for the gaze tracking. The tools
provided in iTrace are by themselves complete for gathering the gazes as pre-
sented in section 2.2. However as the company developing the eye trackers
continue to improve the development kits the drivers used in the current version
of iTrace, Tobii analytics 3.0, are out of date and are no longer freely available.
As such a rewrite of the java native interface is necessary to connect to the
newer tobii devices.

18 Method

3.2.1.1 Java Native Interface Responsibilities

The JNI is responsible for all communication with the eye tracker both in regards
to data sent from the eye tracker to the plugin, as well as instructions sent from
the plugin to the eye tracker.

First it is necessary to understand what has changed since the previous version
of the SDK. The rework meant that the C++ libraries in Tobii Analytics 3.0
has been replaced by C libraries in the new Tobii Pro SDK.

This does however not prevent a reuse of the old JNI implementation, as with
minor changes to the SDK headers the C libraries are compatible with the C++
JNI implementation, however without the addition of an external c de�nition
in the C headers, the compilers will not read the function calls in the libraries.
Once the libraries are made compatible with the old JNI it is then possible to
rewrite the Tobii eye tracker JNI to function with newer Tobii trackers.

Using the eye trackers with the JNI requires a couple of steps. First iTrace
need to create a background thread for the eye tracker to run on. Afterwards
iTrace connects to the eye tracker. Once these two steps are completed it is
then possible to either start the tracking immediately, or set up a calibration.
The calibration requires setting the eye tracker in a calibration mode, and then
add points as the user is focusing on them. When enough points are added the
eye tracker leaves the calibration mode and computes the data gathered from
the points. At this point the calibration can be repeated or the tracking can be
started. At this point the eye tracker repeatedly handles each registered gaze,
and passes it along to the plugin.

The �ow of these steps, named by their corresponding function in the JNI im-
plementation can be seen in Figure 3.2

3.2 Producing gaze data 19

Figure 3.2: iTrace JNI �ow

In order to update the old implementation with a new SDK it would not be
enough to rely on the method names alone as these have changed with the new
SDK and as such it is worth looking into the responsibilities of each method.

The jniTobiiMainLoop method is responsible for initializing the native data,
which holds information about the eye tracker and the eye tracking main loop
functionality. The mainloop and the jni function has the functionality which is
often seen in initialization functions.

The jniConnectTobiiTracker methods responsibility is to connect to the tobii
tracker. In order to do this it is required to �nd which eye trackers are available
on the system. This is done using the library functionality of an eye tracking
browser which scans and waits for any information on any eye trackers plugged
into the system. Afterwards the eye tracker in the program is created using the
information from the browser.

20 Method

The jniStartTracking method sets the eye tracker in tracking mode and main-
tains a listener responding to captured gazes. Every time a gaze is captured the
HandleGazeData method is called. The HandleGazeData processes the gaze
and forwards a wrapped version of the gaze to the Eclipse plugin.

The jniStopTracking method leaves the tracking state and resets the tracking
data to clean up after the tracking session.

The calibration part consists of four methods, jniStartCalibration , jniStop-
Calibration , jniAddPoint and jniGetCalibration . The method jniStart-
Calibration enters the eye tracker into calibration mode and clears the current
calibration data, to free up for a new one. jniStopCalibration is responsible
for leaving the calibration mode and additionally it computes the calibration
data and applies the calibration on the eye tracker. In between these two it is
necessary to add calibration points during the calibration. The calibration is
done using points on the screen which the user is asked to focus on for a few
seconds. While the user is focusing on these points the method jniAddPoint is
called to collect the gaze position relative to the point they were supposed to
focus. The system has to collect enough of these points in order to compute
a proper calibration in the end. When the calibration is done iTrace can call
jniGetCalibration to get the calibrated points, for visualizing them as a result
to the user to provide an overview of how accurate the calibration were.

3.2.1.2 Updating the Java Native Interface

With the understanding of how the previous JNI implementation works it is
necessary looking into what has changed since this version of the SDK. As the
required tasks are the same as previously it is expected for the new SDK imple-
mentation to contain all the same functionality. The task is then to determine
which methods are changed, and what impact the structural changes have on
the implementation.

The major changes since the previous version is the change previously mentioned
transition from C++ to C. On top of this the old JNI uses a main loop to form
a frame around the eye tracking process. This loop took control of the eye
tracking and was responsible for providing the browsing information used to
gather information on the eye tracker and create the eye tracker. As such the
mainloop structure played a large role in the old implementation. This has since
been removed and no immediate replacement exists. This appear to be due to
a change in the structure where they no longer rely on the mainloop class to
access the eye tracking information, but rather have them all available in C
methods, which in turn take eye tracking information as arguments rather than

3.2 Producing gaze data 21

inheriting it from the mainloop class.

This change has a structural impact on the way we are storing calibration infor-
mation as well, as it used to all be kept within the classes, and calibration data
remained within the eye tracker class. The new implementation require keeping
the calibration data outside and passing them into the calibration computation
methods alongside the eye tracker class.

An example of this change can be seen in �gure 3.3. From this it should be visible
that much of the data has been moved from the class structures to variables
outside the classes, as well as the methods are now called independent of a class
in addition to the name changes.

Figure 3.3: Calibration implementation example

//Original implementation
eye_tracker->computeCalibration();
eye_tracker->stopCalibration();

//New implementation
TobiiResearchStatus status =
tobii_research_screen_based_calibration_compute_and_apply(
eye_tracker, calibration_result);

tobii_research_screen_based_calibration_leave_calibration_mode(
eye_tracker);

Additionally some methods have had their functionality combined, an example
of this is the start tracking which used to consist of a method for entering
tracking mode, and setting up a listener which calls a helper function whenever
a gaze is recorded. This has been moved into a single method, which takes
a callback method and while in the tracking state this will function like the
previous listener.

These changes were implemented in a new version of the tobiitracker.cpp �le
with the structural and convention wise changes described and can be seen in
Appendix C.

22 Method

3.3 Exporting gaze data

3.3.1 Solvers

Due to the segmented structure of iTrace the export of data is mainly performed
in the solver class as mentioned in section 2.2.2. The solver classes receive gaze
responses which allows for collecting all the information created in the process.
As such the solver is responsible for step �ve in �gure 2.6 extracting the values
in the responses and structure and forward it to an output �le or database.

The implementation from iTrace saves XML and JSON �les with the data in a
folder named after the session id. As such accessing the data from several ses-
sions at once is not intuitive. Additionally this setup does not support having a
centralized data storage outside the computer where the eye tracking experiment
is performed.

To combat these issues a new solver supporting SQL has been implemented
and a database structure has been proposed. It is worth noting that for any
cross machine sharing a networking setup would be necessary, but this has been
deemed out of scope for this thesis. However as this provides the foundation
for the remaining data analysis the changes required should be limited. The
majority of the implementation resides within the solver class, where a gaze
response is passed. It is worth noting that iTrace implements several types of
gazes. Of these types the focus will only be on gazes on lines with no source code
entities, and styled text gazes which include information regarding the SCEs on
the line. This is done by readying a SQL statement for updating the database
with the new data, depending on the gaze type, and appending all the SCEs
afterwards and. At the same time the solver needs to connect to a database
which is currently hard coded within the solver.

For the solver to work it is not enough to build the new SQL solver. The
program still needs the solver integrated with the rest of the system. By this
the gaze responses must be passed to an instance of the class, and additionally
the user should still be able to decide whether or not to have the SQL solver
toggled.

3.3 Exporting gaze data 23

Figure 3.4: iTrace gaze exportation

To integrate a new solver involves a couple of additions to the controlling classes
of iTrace. as seen on �gure 3.4 it requires coupling the solver to the iTrace main
class. In iTrace.java along side the previous existing xmlSolver and jsonSolver
a new instance of the sqlSolver is needed. With the new sqlSolver instance it
is then possible to pass along the responses as they are made. As a change
from the XML and JSON solvers the sqlSolver requires a speci�c con�g call to
insert the session information in the database. The session information is the
developer user name and name along with the purpose of the session and the
session description. These are originally stored in a �le separately from the XML
and JSON �les and are as such not immediately available without speci�cally
adding an additional sql con�g method. The implementation can be seen in
Appendix F

The ControlView is responsible for adding new buttons to the console panel and
handles the user interface aspect of the implementation. It is in this UI the user
sets the sqlSolverEnabled variable which is used by iTrace.java to determine
whether or not to do the sql export. When these aspects are set up iTrace will
be able to export into the database. The next subsection will take a close look
at the database and the data being exported.

24 Method

3.3.2 Database

Previously to the database implementation iTrace saved the data as either JSON
or XML �les in separate folders for each session. By looking at a gaze from the
JSON data it can be seen that the data consists of the base gaze information
such as coordinates, pupil etc. Additionally it contains a variable amount of
source code entities. The full list and the structure can be seen in Figure 3.5

3.3 Exporting gaze data 25

Figure 3.5: Example JSON data

"gazes" : [
{

"name": "example.java",
"type": "java",
"x": 775,
"y": 452,
"left_validation": 0.75,
"right_validation": 0.75,
"left_pupil_diameter": 3.4242401123046875,
"right_pupil_diameter": 3.9959869384765625,
"timestamp": "2017-10-05T13:14:41.332+01:00",
"session_time": 973895205,
"tracker_time": 240730,
"system_time": 1507202081332,
"nano_time": 1709448837018574,
"path": "C:\\test\\src\\test\\example.java",
"line_height": 28,
"font_height": 18,
"line": 18,
"col": 13,
"line_base_x": 424,
"line_base_y": 449,
"sces": [

{
"name": "java.io.PrintStream.println(java.lang.String)",
"type": "METHOD",
"how": "USE",
"total_length": 30,
"start_line": 18,
"end_line": 18,
"start_col": 4,
"end_col": 34

},
{

The database structure were then created with the goals of being able to hold
several sessions with several di�erent users. As well as making sure the data
available in the previous XML and JSON implementation are still available in
the database implementation.

26 Method

In the original iTrace structure there is also a separate �le containing the sessions
information. The session information contains a unique session id. The session
purpose which is entered upon beginning a session. The session description.
The developer user name and the developer name.

The goal is then to combine these into a database. By looking at the data
it resembles tables already as there is a session information �le which all the
gazes belong to. Also for each gaze there are a group of SCEs with identical
attributes. These di�erent SCEs are the source code entity which the gaze is
located at and the surrounding SCEs in sorted order from nearest to furthest.
The surrounding SCEs are limited to the SCEs related to the entity gazed at.
In other words if looking at a statement in a loop within a class the SCEs would
cover the statement, the loop statement, the main declaration and the class
declaration. As such depending on the depth of the SCE any gaze needs to
contain a variable amount of SCEs. In order to keep the SCEs sorted and thus
keep the information about the depth of SCE an attribute has been added which
de�nes the depth of each SCE. As such if the user is interested in the tree like
SCE structure it can be recreated by sorting the depth attribute for SCEs with
the same ID. However if the analysis is done entirely on the object at the gaze
point all sces with a depth of one or higher can be discarded.

Figure 3.6: iTrace database schema

Figure 3.6 shows the database schema for the implemented solution. This solu-
tion reuses the unique session IDs created by iTrace to ensure the uniqueness of

3.4 Converting gazes to �xations 27

the individual sessions. In order to couple several source code entity entries to
an entry in the gaze table each gaze must have a unique primary key the SCE
table entries can use to relate to their parent gaze. In addition to this each gaze
belongs to a session and as such have been given the session ID as a foreign
key to ensure the relation. With this setup the three tables are related and the
data is ready to be cleaned and analysed. The iTrace.sql �le for building the
database can be seen in Appendix E.

3.4 Converting gazes to �xations

Before any valuable analysis can be done on the data it is necessary to determine
�xations from the gaze data. To do this the algorithms discussed in section 2.1.2
can be used. From these the choice was reduced to either the velocity based
identi�cation algorithm or the dispersion based. These were chosen as they
both scored well by Dario D. Salvucci and Joseph H. Goldberg [DDS00] as
they are both fast and robust while not requiring any unnecessarily complicated
implementations. From the velocity based algorithm and the dispersion based
algorithm the dispersion based identi�cation algorithm were arbitrarily chosen
as either would work for the data.

As seen in section 2.1.2.2 the dispersion based algorithm depends on de�ning a
threshold for how large of a dispersion is allowed for gazes to be considered part
of the same �xaton. To calculate this dispersion threshold needed to determine
whether gazes are part of a �xation or a saccade this implementation relies
purely on the dispersion of pixels, as there is no static setup to ensure the
distance to user and the angle from user to tracker, which would allow us to use
angles instead of pixels. As such it also requires the user to pick a dispersion
threshold for the algorithm measured in pixels. This dispersion threshold may
have to vary between di�erent uses and tasks so the ability to change this has
been given to the user.

The algorithms were implemented in python from scratch in order to get full
control over which parts of the data are passed during the conversion. In order
to make the system usable for a user the �xation gathering has been coupled
directly into a method which takes the database information as input and out-
puts a list of �xations. Each of these �xations contains a start time, end time,
x and y coordinates. Additionally it is implemented in such a way additional
data from the database can be added as well.

When the gazes are grouped as �xations, each �xation consists of a list of gazes.
This presents an issue with knowing which data to use if the �xation is on the

28 Method

edge of a line and as such consist information from di�erent lines. For example
at times some gazes would suggest the SCE type is a for statement and other
gazes suggest the line is a print statement. To combat this the current solution
picks the attributes repeated the most time. Di�erent approaches could be
to determine it based on the line used the most times or basing it o� which
data values has the most milliseconds of view rather than number of gazes.
This happens in much the same way as the calculation of X and Y coordinate
centroids.

All of this is being done in the implemented library class iTraceAnalyser which
handles connecting to the data base, creating the �xation and the event logs
discussed in section 3.5.2. The import is done by the user by calling the get
session function bringing along the database information and the unique session
id as seen in Figure 3.7.

Figure 3.7: iTraceAnalyser Get Session

import iTraceAnalyser as IA
#Importing the test subjects data
iTrace1 = IA.get_session("localhost","root",
"1234","iTrace", ' 20171201T092946-0684+0100' ,15)
iTrace2 = IA.get_session("localhost","root"
,"1234","iTrace", ' 20171201T101056-0578+0100' ,15)
iTrace3 = IA.get_session("localhost","root"
,"1234","iTrace", ' 20171205T100741-0299+0100' ,15)
iTrace4 = IA.get_session("localhost","root"
,"1234","iTrace", ' 20171205T102737-0035+0100' ,15)
iTrace5 = IA.get_session("localhost","root"
,"1234","iTrace", ' 20171205T105857-0765+0100' ,15)

When this is called the variables iTrace1 to 5 are lists of �xations that are ready
to be used in other methods. It is also possible to get the raw gazes with the
get_ raw_ gazes() method and the same arguments, if those are of interest.

3.5 Analysing The Data 29

3.5 Analysing The Data

3.5.1 Performing Static Source Code Entity Analysis

Before looking into the process mining for comparison between several sessions,
a quick view of speci�c sessions and their data may be of interest. As such a
couple of methods were implemented to work with the �xation data collected
in the previous section 3.4. These methods are intended to function as a quick
overview of the �xations for a single session.

The main idea behind using this functionality over the process mining is not
the quality of the data shown, or it being more in depth than the process
mining data. Rather most of what can be seen from these methods in the
iTraceAnalyser class seen in Appendix D can also be discovered using the process
mining suggested in section 3.5.2. The idea is to give quick access to certain
values and views that may be interesting before going into a more comprehensive
analysis.

To reach this goal the methods were designed to keep them generalized enough
that they will work for any attribute passed along with the �xations acquired
in the get session methods seen in Section 3.4 Figure 3.7. This helps in case
further work is done on the iTraceAnalyser class where other attributes is being
placed in the �xations.

The methods implemented covers bar plots of the following:

ˆ number of �xations.

ˆ Total �xation duration.

ˆ Average �xation duration.

ˆ Maximum �xation duration.

Additionally a method has been made for the total duration of the session in
seconds.

In Figure 3.8 the methods are called for creating the bar plots with the �xations
created in Figure 3.7. These plots are used and shown and in section 4.2.2.1.

30 Method

Figure 3.8: iTraceAnalyser, plots and duration

print IA.session_duration(iTrace1)

#Creating bar plots for Chapter 4 section 3.
IA.fixation_count_bar(iTrace1,"count_lines","line")
IA.fixation_count_bar(iTrace1,"count_types","sce_type")

IA.fixation_duration_bar(iTrace1,"dur_lines","line")
IA.fixation_duration_bar(iTrace1,"dur_types","sce_type")

IA.fixation_average_duration_bar(iTrace1,"avg_dur_lines","line")
IA.fixation_average_duration_bar(iTrace1,"avg_dur_types"
,"sce_type")

IA.fixation_max_duration_bar(iTrace1,"dur_max_lines","line")
IA.fixation_max_duration_bar(iTrace1,"dur_max_types","sce_type")

These methods were chosen as they provide insight into what areas the user has
been the most interested in four aspects. Where did the user spend the majority
of the time. Which area did the user repeatedly come back to and which areas
did the user on average spend the longest. Finally which location did the user
spend the longest single �xation, as important areas may be re-visited many
times, which lowers the average duration of a �xation at that area.

3.5.2 Performing Process Mining Analysis

This section covers the tools created to perform a proper process mining analysis
of the �xation data. This part of the process consists of converting the �xations
to events which can be read by the process mining tool Disco. Additionally it
will contain a few remarks about the tools Disco provides which can be used.

Process mining was chosen as the primary source of analysis for the data col-
lected using iTrace due to how e�ectively it can present information regarding
how the users have behaved. Additionally it allows for much smoother compari-
son between several users than individual visualizations such as heatmaps would.
For longer sessions it is also less cluttered than would be expected from scan
path visualizations. The process mining provides strong tools for comparing the
events completed in each session.

3.5 Analysing The Data 31

In order to perform the process mining analysis the data needs to exist in an
event log form. This form needs to include a unique identi�er which separates
the di�erent processes. In addition each entry needs to be considered as an
activity and as such needs an activity name. The activities are not necessar-
ily unique and typically represent one or more actions that are done together.
Finally it makes sense to have a start and end time for each event as they are
represented as �xations. This presents knowledge about both the duration of
each event and it also let the user know the time in transition between events.
When working with this �xation data the unique identi�er may very well be
the session ID as this has been brought along throughout the process and it
uniquely identi�es each session.

Which value to use as the event descriptor is more interesting as the analysis
changes depending on how the event is de�ned. First thing to notice is that
events in this case can be considered to be �xating on a point. The di�erence
then depend on what you decide to take from the �xation. One way could
be using the X and Y coordinates and create an event for each X Y �xation
combination. This presents a couple of issues in regards to the readability of
the mined processes. It would not be trivial for the reader to couple screen
coordinates to the code viewed. This becomes increasingly di�cult when the
code is large enough that scrolling is involved and position X,Y is no longer
deterministic as the scrolling o�set is unknown.

3.5.2.1 Lines

To get around these issues each line could be considered an event. In this way
the o�set is no longer a problem and with having the code next to the diagram
the line can easily be coupled to a section on the screen. An example use of this
is if the user spent an extraordinary amount of time on a line, the reader can
look up the line in the code and judge if this makes sense. This allows for an
exploratory analysis of the session.

In order to make it easier to relate the activities seen in the process mined data
to the content of the lines in the source code the SCE types that have been
viewed on that �xation point has been appended to each event. As such an
event would be named "34 - FORSTATEMENT" rather than just 34. This
makes it easier to understand what exists on the line without changing the tree.

An example of the mapping from source code to the activities in the mined
process for the line wise method can be seen in Figure 3.9

32 Method

Figure 3.9: Source code to Event log mapping, lines

The proposed solution works as a general implementation and requires no out-
side interference from the reader and provides a process which can be analyzed
and hopefully clarify di�erences in approaches and behaviour of the user. How-
ever an additional method is proposed to help alleviate a few issues. The �rst
issue is when the eye tracking is not accurate enough to do pixel, or line, perfect
gaze capture. Secondly the more events, in this case lines, the process contains
the harder the analysis is to read. In addition the naming using lines requires a
lot of back and forth between the code and the process mined diagram.

3.5.2.2 Area of Interest

The alternative method allows the user to de�ne areas of interest. The area
of interest, AOI, are then used as events. An example AOI could be line 1-10,
which may consist of an introduction to the �le and could be named by this.
This would allow the user to de�ne larger areas and name them in ways that
are easily relatable to the source code and lessen the need for looking up in the
source �les. As for the accuracy issue as the areas are intended to be larger and
in some cases a slight padding can be added it prevents issues where accuracy
makes the user leave the AOI which he is actually looking at.

Figure 3.10 shows the area of the source code which is mapped to its matching
activity in the mined process. In this example the Sort method is de�ned as an
activity. This makes the entire section a single activity in the process mining
diagram.

3.5 Analysing The Data 33

Figure 3.10: Source code to Event log mapping

When creating these events a few decisions were made in regards to implementa-
tion. When two or more consecutive �xations are on the same event, assuming
the transition is less than a second they are collapsed into one event. This may
happen due to spikes in data or moving from one point within the area to an-
other. This allows for longer events, while still allowing catching cases where
the user is looking away from the screen and then returns to the same area.

These solutions has been implemented as a python library, iTraceAnalyser Ap-
pendix D which handles collecting data from the db, converting it to �xations
as well as creating event logs and bar plots of the �xation data.

34 Method

Chapter 4

Evaluation

4.1 Setup

When the data was collected a few goals were set with respect to the extent of the
report. It would not make sense to use example data as this does not provide any
real insight into what kind of results could be seen using the proposed analysis
process. As such one goal was to gather data from outside sources. At the same
time it was decided not to formalize the testing entirely and the test task was
kept small and relatively simple with only one �le. The testing environment
was kept informal and was done using students around campus at the Technical
University of Denmark.

The physical setup consists of a laptop with a Tobii 4C tracker placed in the
section between screen and keyboard using adhesives to keep the tracker in place
facing towards the user. The users was also given a pen and some paper, in case
they needed to note down the list to be sorted.

To enhance the quality of the tracking each session began with the user looking
at a test �le with a letter they were asked to focus on. Using the crosshair
in iTrace it was possible to determine how close it was to the letter. Small
deviations could be solved using the drift tool in iTrace and larger deviations
ran the calibration.

36 Evaluation

The test itself was done using an implementation of Insertion sort available from
and authored by Robert Sedgewick and Kevin Wayne [RS17]. Minor changes
was done to this �le in order to make the test more extensive and can be seen in
Appendix G. First the name was changed to avoid the user immediately seeing
which sort is being used. The name was however not removed from the comment
�elds. Additionally the sorting loop was made to begin the iterations from i=1
as opposed to the original i=0 as the �rst iteration would otherwise do nothing.

The Insertion sort �le consists of several methods. The ones to consider are
Sort with one argument is the sort method the user is asked to work on, this
sort takes only one argument.
Sort with multiple arguments is the sorts which take di�erent arguments.
The user is not supposed to look at these. It is however a large section covering
70 lines which means that several short �xations within this area is expected.
Less is a method comparing two values. Less is called in the Sort method.
Exch is a method switching around the position of two values. Exchange is
called in the Sort method
isSorted is a method used in asserting that the list is sorted for a given interval.
isSorted is called in the Sort method.Show is a method printing the list.
Main is the main method calling Sort with one argument.

The test subjects were then asked to �rst �gure out which method was called as
the implementation consists of several sorts with di�erent amounts of arguments.
The sort is called by the main method using one argument containing the list
[4,2,1,3]. This question was used to ensure they all worked on the same method.
They were also asked what the array would look like after the �rst iteration of
the outer loop. As the algorithm is insertion sort the �rst iteration will compare
the �rst two indexes and swap if the �rst element is lower than the second
element. The sorting algorithm is written as seen in 4.1 and shows two other
functions, less and exch. These exists in other sections of the code.

4.2 Analysis 37

Figure 4.1: Insertion sort

public static void sort(Comparable[] a) {
int n = a.length;
for (int i = 1; i < n; i++) {

for (int j = i; j > 0 && less(a[j], a[j-1]); j--) {
exch(a, j, j-1);

}
assert isSorted(a, 0, i);

}
assert isSorted(a);

}

These questions were asked to �ve testers where four of them completed the
task.

4.2 Analysis

This analysis section goes over the data collected using the methods described
in the previous chapter and performs an analysis of what is seen at the results
in order to provide an example of the kind of analysis which can be done using
the system.

Results and analysis will be seen of the following parts of the system.

ˆ Fixations, accuracy and choice of dispersion threshold. From Section 3.4

ˆ Fixation data analysis with python plots. From Section 3.5.1

ˆ Process Mined data of event logs. Both line by line analysis and User
De�ned area of interest analysis. From Section 3.5.2

4.2.1 Fixations

In the setup in Section 4.1 it was described how gaze data from �ve students
were gathered during a small test. With the collected gazes it can be of interest

38 Evaluation

to determine how well the gazes are translated to �xations. This also allows for
checking the output depending on a few di�erent dispersion threshold settings.
In Figure 4.2 a comparison of the raw gazes and the �xations achieved can
be seen with a dispersion threshold of 15 pixels which appears to be a decent
value for the gazes collected as it covers the expected areas without creating
�xations in the saccade areas. The gaze data used is not related to the test
setup mentioned in Section 4.1 as the coordinates do not take into account
scrolling and a smaller data section help provide a more clear image of the gaze
to �xation transformation.

Figure 4.2: Gazes to �xations

From the images seen in Figure 4.2 it is clear that a lot of gaze data is produced
when looking around the screen. As such the �xation identi�cation algorithm
e�ectively removes a lot of the noisy data and present a clearer image of which
areas were actually being focused at. For this example the size of the dots
depend on the duration of the �xation.

Besides the transformation it can also be seen how the choice of dispersion
threshold changes the results drastically. According to a study published by the
National Center for Biotechnology Information they found that
Quote: "there are considerable di�erences in the characteristics of �xations not
only between these tasks, but also between individuals."[RvdL].
They point out that the eye movements di�er depending on the type of task and
from person to person. As seen on Figure 4.3 the �xations vary greatly based
on the dispersion threshold and it should provide an idea of how the analysis
may change depending on the choice.

Here the dispersion threshold of 15 pixels were chosen as it covers the same
�xational areas as the the others without creating additional �xations such as
the 25 and 30 threshold.

4.2 Analysis 39

Figure 4.3: Gazes to �xations

As previously stated the cut o� point for threshold between gazes is not trivially
found for all cases of the tracking and need to be considered for the individual
setup. As such a look is taken at the behaviour of the �xation algorithm for
data gathered with the setup used throughout the experiments. The results of
these thresholds can be seen in Figure 4.3. From these it can be seen that the
gazes which are not clustered together, the saccaddes, are removed for all the
tested values. It is also seen that with thresholds between 15 and 30 the areas
remain the same while the number of �xations identi�ed di�ers. This gives
the impression that values between these would o�er decent results for further
analysis. It is however not immediately clear which value is the most accurate
without a more rigorous analysis.

40 Evaluation

4.2.2 Bar Plots Fixation Data Analysis

4.2.2.1 Bar Plots Fixation Line Analysis

In this section we will look at the data for a single session. The user was a
masters student at the Computer Science and Engineering study line at DTU
and were put to the task de�ned in Section 4.1. The goal here is to see if the
data can be used to get an impression of how the user worked. In particular it
is interesting to see if the user was able to determine the critical parts in the
source code for answering the questions.

To assist in reading the plots the methods and their lines are:

ˆ The correct Sort method line 54 to 69.

ˆ Other sort methods line 70 to 140.

ˆ Less method line 141 to 160.

ˆ Exchange method line 161 to 168.

ˆ isSorted method line 169 to 192.

ˆ Show method line 194 to 201.

ˆ Main method line 202 to 214.

With these lines in mind the �rst step in seeing how the user worked could be
to look at the total duration spent on each line. This can be seen in Figure 4.4
with added boxes to better see which lines belong to which methods.

4.2 Analysis 41

Figure 4.4: Total duration, lines

One thing to notice here is that this type of visualization is limited by the number
of the bars shown. It is clear that if the �le had been larger or if the user had
�xated on each line it would quickly become unreadable. An alternative is then
to use a histogram rather than a bar plot. This would provide readability at
the cost of precision. Information speci�c to each line would be lost using a
histogram.

For the speci�c case however it appears line 56 to 62 has been focused at a
lot. These lines are part of the Sort method we expected the user to focus
on. Additionally line 141 to 173 stands out with a small peak compared to the
surrounding lines. These lines are within the Less and exchange method. Finally
there is another peak at line 206 to 210, which represents the main method, this
peak is signi�cantly more noticeable than the less and exchange peak.

From this it can be seen that over all the user was primarily interested in the
Sort method, the Less and to some extend the exchange method and noticibly
interested in the Main method with a very large peak around the sort method.

In order to get an idea of the �ow of the process it is worth looking at how many
�xations were on each line. This can be seen in Figure 4.5

42 Evaluation

Figure 4.5: Fixation Count, lines

From the �xation counts the �rst thing to notice is that it shows almost the
same picture as the total duration bars. It evens out the areas in between the
peaks but otherwise the same is shown. The peaks are still around the Sort
as the largest peak. The Less and exchange method as a peak area and the
main method having three lines that are visited a lot. This makes sense as the
Sort method is the method performing the logical operations and are as such
expected to be the most complex method. The main method must be viewed
in order to know which method is called and the values being sorted. Less and
exchange are both called from the Sort method, and speci�cally Less may be
interesting as its operations could be going both ways, in the sense of which
argument is less than which argument.

In order to get an idea of how long all the �xations were on average at a place
we can compare to the average �xation duration in Figure 4.6 to the number of
�xations.

4.2 Analysis 43

Figure 4.6: Average Fixation Duration, lines

Looking at the average duration diagram it does not appear to present much
information about the process. It does however show that, not accounting for
the rare cases with large averages such as line 120, the �xations were mostly
between 100 and 300 ms. with one line going up to 400 ms. These numbers
are within the expected range for �xations. The values show little impact from
areas which were more complex than others. This is likely due to the complex
areas having a large number of �xations which dilutes the maximum values.

Next a look will be taken at the maximum �xation duration of each line in order
to see if the complexity of areas meant the user had longer �xations on these
areas. The maximum duration for each line can be seen in Figure 4.7

44 Evaluation

Figure 4.7: Maximum Fixation Duration, lines

Here it can be seen that line 60 and 58 have the longest �xations. Where 60 are
the outer for-statement and 58 is the Sort method declaration. There are also
some slightly longer �xations at the main method.

The �xation of over two seconds at line 58 appear too long in comparison to
the remaining �xations. However looking at the number of �xations and the
average �xation duration, the value at 58 appear to be out of the ordinary and
is not a typical occurrence as the average duration is not larger than other lines.

These values shows that the Sort method must have had a degree of complexity
as the user dwelled long within a short area. The length is however much longer
than expected of �xations and may be due to small saccades that was not caught
by the threshold we used. On the rest of the data we see that the main method
has a peak as well.

4.2.3 Bar Plots Type Analysis

From the bar plots in Figure 4.8 it can be seen that despite method declarations
being the most viewed types in total time and number of �xations, the for

4.2 Analysis 45

statement type has the longest �xations on average. This gives the impression
that the hardest to read parts of the code was happening within for statements
despite method statements being more common.

Figure 4.8: Bar plots For Source Code Entity Types

4.2.3.1 Bar Plots Analysis Conclusion

By simply looking at these data plots it seems likely that the user understood
the task and was able to �nd the most important sections in the source code
which would assist in answering the questions. The analysis shows that the user
worked primarily on the Sort method, the Main method and to a lesser extend
the Less method, while there was no discernible peaks during the other sorts.
It shows that the Sort method was the most challenging of the three, with the
For statement being the line looked at the longest in one �xation. The analysis
does however not provide any insight into the order of the �xations apart from
the �xation count which presents how many times the area was re-visited in the
sense of how many �xations were at the area.

46 Evaluation

4.2.4 Process Mining

Before looking at the process mined data for the �ve users we will take a look
at what the expected process looks like.

While it is very unlikely that the users will follow a speci�c process of reading
the source code, it can be expected in order for them to answer the questions, to
follow the process described in Figure 4.9 at some sub path of reading process.
This does not take into account anything visited while looking for the speci�c
methods, or any re-reading in case the user becomes unsure.

Figure 4.9: Insertion Sort reading sub process

To create the event logs the script in �gure 4.10 was used along with the �xations
created in Figure 3.7. The full script used to create plots and event logs can be

4.2 Analysis 47

found in Appendix H

Figure 4.10: iTrace analysis script

IA.process_mining_data([iTrace1,iTrace2,iTrace3
,iTrace4,iTrace5],"test_sort_lines.csv", ' lines ')
IA.process_mining_data([iTrace1,iTrace2,iTrace3,iTrace4
,iTrace5],"test_sort_userdef.csv"
, ' user_defined ' ,"insertion.csv")

For all the �gures in the analysis it is worth noting that all the Disco diagrams
shown section has had their activities and paths lowered, meaning that the least
visited areas and transition paths are removed. This is to avoid having upwards
of 200 nodes with an equal amount of paths going to them.

4.2.4.1 Disco Lines Analysis

In this part of the analysis a look will be taken at the event logs where each line
is considered an activity. As mentioned in 3.5.2. The lines have the SCE types
which exists on the line written as well as the line number. This is intended
to assist in readability to make the reader less dependent of having the source
code on the side. An overview of what methods are on which lines can be seen
in Section 4.2.2.1

Looking at Figure 4.11 it can be seen that similar information as we saw in
the bar plots can be gathered here. However Figure 4.11 represents all four
users who �nished the task, and consecutive �xations on the same line has been
aggregated. Looking at the diagram for the total duration spent on each activity
combined for all the users, it can be seen that lines 58 to 61 are the most visited
lines. This matches what we saw in the Bar plot analysis in Section 4.2.2. It is
also expected that the Main method, line 202 to 214, and the Less method, line
141 to 160, had signi�cant time spent on them.

It can be seen that line 209,206 and 208 each made it through the exclusion
made by Disco. While they have signi�cantly less time spent on them, as also
seen in the bar plot analysis, they still appear signi�cant.

On the left side in Figure 4.11 we see the lines 143,146,147 and 152 next to
each other. These are the important part of the Less method which contains

48 Evaluation

the method declaration and the return statement.

It is also seen that the less statement is typically read in concession and is
thereby consecutive in the diagram. Whereas the Sort and main method are
split up in di�erent sections of the diagram as the Sort method is visited more
often from various sections of the code.

4.2 Analysis 49

Figure 4.11: Line wise, total duration

50 Evaluation

Figure 4.12 shows how long the longest views within the lines were. This �gure
shows that line 58 and 60 have the longest views. This is the same result as
seen in the Bar plot analysis, however here it is for all four users, providing even
more assurance that these lines take longer to understand than other lines in
the source code.

	Summary (English)
	Summary (Danish)
	Preface
	
	Contents
	1 Introduction
	2 Theory
	2.1 Eye tracking
	2.1.1 Introduction
	2.1.2 Fixations

	2.2 iTrace
	2.2.1 Introduction
	2.2.2 Structure
	2.2.3 Additional features
	2.2.4 Related Work

	2.3 Process mining
	2.3.1 Business process models
	2.3.2 The three stages of process mining
	2.3.3 Disco

	3 Method
	3.1 The process
	3.2 Producing gaze data
	3.2.1 Java native interface

	3.3 Exporting gaze data
	3.3.1 Solvers
	3.3.2 Database

	3.4 Converting gazes to fixations
	3.5 Analysing The Data
	3.5.1 Performing Static Source Code Entity Analysis
	3.5.2 Performing Process Mining Analysis

	4 Evaluation
	4.1 Setup
	4.2 Analysis
	4.2.1 Fixations
	4.2.2 Bar Plots Fixation Data Analysis
	4.2.3 Bar Plots Type Analysis
	4.2.4 Process Mining

	5 Discussion
	5.1 Data Preparation
	5.1.1 Data Collection
	5.1.2 Fixations

	5.2 Fixation Data Analysis
	5.3 Process Mining
	5.4 Future Work

	6 Conclusion
	A Glossary
	B Components installation
	B.1 JNI
	B.2 Database

	C JNI, New SDK
	D iTraceAnalyser.py
	E iTrace.sql
	F SQLGazeExportSolver.java
	G MagicSort.java
	H iTraceAnalyserScript.py
	Bibliography

