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Abstract 
The increasing complexity of modern systems on chip requires the employment of sys-

tem-level simulations to enable the co-development of hardware and software, in order 

to meet time-to-market windows. SystemC is a C++ library that facilitates electronic 

system-level design (ESL) to address this issue. The difficulty of debugging such sys-

tems remains present. Using system-level simulations, in the form of virtual platforms, 

makes it possible to monitor and trace the execution of a system to a level that otherwise 

requires the designed hardware to be present. This types of monitoring and tracing can 

serve as complementary to hardware-based tracing, where the hardware needs to contain 

subsystems incorporated specifically for tracing and debugging purposes.  

The purpose of this thesis was to instrument the Accellera reference SystemC simulation 

kernel to provide simulation traces, with application to Ericsson’s SystemC-based vir-

tual platforms. Along with the instrumented kernel, a set of tools for analyzing and vis-

ualizing the trace data was developed. The instrumented kernel was used to run simula-

tions of a virtual platform containing thousands of SystemC processes across hundreds 

of SystemC modules. Traces from these simulations were analyzed using the set of tools 

on a series of case studies, to illustrate the possibilities for exploring virtual platforms. 

The case studies were selected with the purpose of illustrating increased understanding 

of platform complexity, run-time profiling, and collection of data for debugging and 

trouble-shooting support. 
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1. Introduction 
The design complexity of large scale hardware such as SoCs (system on chip) is increas-

ing. There are requirements on functionality and performance, and there are constraints 

from a time-to-market perspective. In addition, the amount and complexity of the soft-

ware running on an SoC is increasing. This, in combination with requirements on the 

resulting product, such as a Radio Base Station, or a complete network, puts high de-

mands on a coordinated development of hardware and software. 

It is usual for hardware design to take extensive periods of time, depending on design 

complexity, and whether the design is full-custom or uses a standard cell library. After 

rigorous searching for errors in the design, it is sent to a silicon foundry for manufactur-

ing. This was the case also in the early days of ASIC design, where no simulation of the 

ASIC was used when developing the software that should run on the developed ASIC. 

Software development could only start once the hardware was delivered, otherwise there 

was a risk of incompatibility between software and hardware. In the worst case, design 

errors that rendered the entire chip useless could be discovered, further delaying soft-

ware development.  

The advent of HDLs and simulators allowed design abstractions to be raised from gate-

level to register-transfer-level (RTL). Advances in verification methodology enabled 

hardware to be verified in a more complete and rigorous manner. This significantly re-

duced the risk of manufacturing faulty hardware. While an improvement for design and 

verification, the impact for accelerating software development was still minor, as run-

ning large amounts of software on RTL simulations was infeasible. Since hardware and 

software still had to be tested separately, a high risk of errors when combining the two 

into the final product remained.  

To further optimize the development of hardware and software systems, transaction-

level modeling (TLM) can be used. This allows abstraction to be raised to a functional 

and bit-accurate level, and simulation speed can be increased significantly. In this way, 

complete systems can be modeled and simulated with sufficient accuracy for software 

development and functional verification. In addition, these system models can be used 

for software development before the target hardware is available. This technology al-

lows for a feedback loop between the two domains (HW/SW), potentially optimizing 

each other, allowing design adjustments of hardware, and software, in a coordinated 

manner. 

1.1 Virtual Platforms 
At Ericsson, SystemC [1] and TLM [2] are used to model digital hardware used in radio 

base stations. The models are integrated into a simulator, referred to as a virtual platform. 

The virtual platform is used to bridge hardware and software development teams.  
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The virtual platform executes concurrent target software, running on several processors 

and interacting with a variety of hardware blocks. In addition, there is often interaction 

with the outside world, using test tools for logging and input stimuli handling, and with 

debuggers for setting breakpoints and watchpoints.  

The virtual platform contains models for hardware components, implemented as Sys-

temC modules, with SystemC processes representing the simulated behavior of the dif-

ferent hardware components, and with TLM sockets connecting the different models.  

The virtual platform models the functional behavior of the underlying hardware. It also 

models timing, by annotating functional transactions. This approach is referred to as a 

loosely timed modeling style [2]. The goal is to achieve a timing accuracy that is good 

enough for timing-dependent software, such as time triggered interrupts, software tim-

ers, and other time-dependent functionality in an operating system, e.g. time-out func-

tionality in a message passing mechanism or suspending a thread for a certain amount 

of time. 

The virtual platform is developed by a distributed team, with sub-teams located at dif-

ferent sites. The overall platform, with its different variants representing different ASICs 

and boards, contains several hundred SystemC modules and several thousand SystemC 

processes.  

1.2 Model Observability and Profiling 
When working with the virtual platform, e.g. when solving a bug report indicating a 

fault in software or in the modelled hardware, or in both, software debuggers as well as 

debuggers attached to the virtual platform itself are used. In addition, different types of 

tracing, such as tracing of messages sent between hardware modules, can be used. This 

type of tracing gives increased observability, and can be used as a complement to a tra-

ditional, breakpoint oriented, debugging strategy. 

It is possible, when using a commercial SystemC implementation, to use dedicated tools 

for debugging and tracing, provided by the vendor [3] [4]. These tools are not available 

when using the open source reference SystemC implementation from Accellera [5]. 

It is the purpose of this thesis to investigate how model observability can be increased 

by modifying the reference SystemC implementation from Accellera to provide tracing 

and recording capabilities. The modifications are done with the goal of complementing 

the debugging strategies currently used at Ericsson.  

1.3 Contributions 
An instrumented SystemC kernel that provides simulation traces has been developed. 

The implemented traces include SystemC process creation, suspension, and resumption, 

calls to the different SystemC wait functions, and SystemC event notifications.  
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Along the tracing capabilities, appropriate tools for analyzing and visualizing trace data 

are provided. Some tools are used to measure the difference between two traces. Others 

are used to visually represent simulation behavior. Behavior in this case can constitute 

how SystemC threads suspend, thus providing a means for investigating effects related 

to timing, e.g. measuring how often SystemC threads execute. Such measurements can 

serve as input data when determining the best trade-off between frequency of SystemC-

kernel synchronizations and simulation speed.  

Another behavioral aspect of a platform is how threads interact with each other during 

simulation. By tracing the event-driven interactions between threads, it is possible to 

obtain information that can be used in debugging scenarios, where for example the order 

of events is of importance, or when determining if all notifications of events are caught, 

or if some notifications are lost, due to simulator bugs.  

General process activity can be used to generate a heatmap of platform usage, which can 

be used to determine test coverage, showing how test cases stimulate different parts of 

a virtual platform.  

1.4 Outline 
In chapter 2 related works are introduced and reviewed. Chapter 3 describes the compo-

nent parts and the available ways for modelling timing in SystemC. Chapter 4 introduces 

the notion of virtual platforms, how they are used at Ericsson, and how they can be 

traced. 

The following chapters describe the work done during this thesis. Chapters 5 and 6 pre-

sent the integration of tracing capability into the SystemC kernel and how traces ob-

tained from running simulations using this kernel can be analyzed and visualized. The 

report ends with some case studies and conclusions presented in chapters 7 and 8 respec-

tively. 
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2. Related Work 
In [6] the authors stress the importance of visualization to aid the exploration of complex 

designs. Considering the lack of built-in functionality for aiding design exploration in 

SystemC, the authors propose an implementation for automatic design visualization for 

SystemC models. 

They achieve this by extending and modifying the SystemC library so that the full hier-

archy of a design is extracted before running a simulation. The data is extracted using 

functions for hierarchy traversal already present in the SystemC library. As such, the 

kernel modifications are minimal. Finally, the authors use a commercial tool to visualize 

the data, which is obtained from models for a bus arbiter and a RISC processor. 

In [7] Hartmann et al. propose the implementation of tracing SystemC models to extract 

platform activity attributed to active software. Their solution introduces extra-functional 

quantities to support power consumption and performance estimation. These quantities 

include state quantities for describing the state of a system at a given time (e.g. ambient 

temperature), and process quantities for describing state changes that have a duration 

(e.g. number of bytes in a transaction). 

The other aspect of their implementation is the usage of so-called timed value streams. 

The timed values represent state and process quantities. The timed value streams can be 

consumed by different stream processors for on-line filtering of data, i.e. preprocessing 

trace data before saving it for offline processing. The authors conclude that using this 

framework enables the creation of different stream processors to generate data in differ-

ent formats, depending on the use case. As an example, the authors suggest saving data 

as value chain dump files which can then be visualized by many established commercial 

tools. 

In [8], Rogin et al. present an alternative approach to aiding design exploration. Instead 

of modifying parts of the SystemC library or providing tools for writing models such 

that they can be traced, the authors implement a SystemC-aware debugger. 

To achieve this, the authors used the freely available and open source debugger GDB as 

a baseline. This way, the authors take advantage of the support for function level debug-

ging already present in GDB, on top of which they built system level debugging capa-

bilities. In the context of SystemC, such capabilities include setting high-level break-

points, e.g. on a specific event notification, or retrieval of simulation information, e.g. 

signal paths. 

In [9], Lagraa et.al present a methodology to detect memory contention in concurrent 

software using a simulated multi-processor platform. The authors begin by narrowing 

the scope of the interested traces to load and store instructions These traces are obtained 

from running video decoding software on a virtual, SystemC-based, multi-processor 
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platform containing different number of MIPS32 processors that were instrumented for 

tracing memory accesses. 

The traces are processed using a moving window algorithm (introduced in the same pa-

per) to identify high latency contention windows. The authors identify the functions re-

sponsible for the high latencies by looking at function frequencies inside the contention 

windows. Finally, the authors use the LCM [10] frequent itemset mining algorithm to 

determine if there is any relation between the frequently occurring functions.  

In [11] the authors describe the implementation of a tool for capturing and visualizing 

SystemC simulation traces. It is pointed out that the use of common profilers such as 

Valgrind [12] is possible but impractical as it will obscure SystemC-specific features. 

The authors then show that a variety of visualizations in the form of graphs and tables 

can be produced from simple data, such as when processes yielded control to the kernel 

and for how long. These visualizations can provide an overview of simulations as well 

as aid fault discovery in the simulated models. The paper [11] does not provide details 

on how the SystemC kernel was instrumented.  
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3. SystemC & TLM 
SystemC is a system-level design library written in C++. The library comes with its own 

run-time environment, commonly referred to as the SystemC kernel. The SystemC ker-

nel is responsible for scheduling SystemC processes, in an event-driven way, while mov-

ing the simulated time forward, as dictated by the processes and their interactions.  

SystemC can be used to model a variety of use cases, however, it is most useful in what 

is called electronic system-level design (ESL). Here, SystemC enables development of 

hardware and software in parallel through models which can be reasonably accurate and 

fast. A typical goal is to strive for a more cost-optimized partitioning of hardware and 

software functions and a reduction of faults in the final product.  

3.1 The SystemC Module 
Common HDLs such as VHDL and Verilog aid hardware design by offering mecha-

nisms for arranging different components of a system into a hierarchy. The top-most 

module, analogous to a real-life packaged chip, simply “holds” the interconnected sys-

tem components, e.g. the CPU, RAM, ROM, and I/O of a microcontroller. The modules 

lower in the hierarchy can then hold sub-modules of their own, e.g. the ALU inside the 

CPU. 

SystemC modules can be used to represent individual blocks or a collection of blocks. 

A module’s counterpart is the VHDL entity and Verilog module. A SystemC module is 

simply a class that extends the sc_module class provided by the SystemC library. 

Listing 1 and Listing 2 below show two syntax styles for writing SystemC modules. For 

more information about SystemC modules see e.g. Section 5.2 in [1] and Sections 4.2 

and 4.3 in [13]. 

class module_name : public sc_module 
{ 
public: 
    SC_CTOR(module_name); 
}; 

Listing 1 Module definition using standard C++ syntax 

SC_MODULE(module_name) 
{ 
  SC_CTOR(module_name) 
  { 
    // process registration here 
  } 
}; 

Listing 2 Module definition using built-in SystemC macro 
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3.2 SystemC Processes 
Modules can have member functions as any C++ class. Module member functions can 

be used as traditional C++ functions, with parameters and return values, and desired (or 

non-desired) side effects. Module member functions can also be used as SystemC pro-

cesses.  

A function intended for usage as a SystemC process should have no return type and take 

no arguments. It must also be registered with the SystemC kernel using an appropriate 

macro. 

A process function can be registered as a SystemC thread, or as a SystemC method. 

Registration is done using the SC_THREAD macro for SystemC threads, or using the 

SC_METHOD macro for SystemC methods, as seen in Listing 3. The registration can 

be done within the module constructor using the SC_CTOR macro. Registration of a 

function as a thread or a method determines how it will be scheduled by the kernel and 

limits what the function can do. 

SC_MODULE(module_name) 
{ 
  SC_CTOR(module_name) 
  { 
    SC_THREAD(a_thread); 
    SC_METHOD(a_method); 
  } 
  void a_thread(); 
  void a_method(); 
  void just_a_function(); 
}; 

Listing 3 Registration of SystemC threads and methods 

A SystemC method has a sensitivity list and is invoked by the kernel each time there is 

a change in the list. In this way, methods are like the VHDL process and Verilog  

always@. Once invoked, methods will run to completion and cannot be interrupted as 

they do not support context switching. Executing code that either directly or indirectly 

attempts to suspend a method will result in the simulation hanging or crashing. 

Listing 4 shows the implementation of a NAND2 module, simulating a two-input NAND 

gate, using a SystemC method. The module contains a single function for implementing 

the NAND operation which is registered as a method, sensitive to the inputs A and B. 
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SC_MODULE(nand2) 

{ 

  sc_in<bool> A, B; 

  sc_out<bool> F; 

 
  SC_CTOR(nand2) 

  { 

    SC_METHOD(do_nand2_method); 

    sensitive << A << B; 

  } 

 
  void do_nand2_method() 

  { 

    F.write( !(A.read() && B.read()) ); 

    // F = !(A && B); //also possible 

  } 

}; 

Listing 4 A NAND2 module implemented with a SystemC Method 

A SystemC thread is also similar to the VHDL process and Verilog always@ as it can 

have a sensitivity list. However, threads can be suspended as they execute. A thread is 

suspended by calling the SystemC function wait. Moreover, if a thread returns during 

simulation it will not run again. When a thread runs it continues without interruption 

until it suspends itself by calling wait (or returns). This is referred to as cooperative 

scheduling, and it means that a thread cannot be pre-empted, in contrast to threads in an 

operating system, such as Linux, or threads in a real-time operating system (RTOS), 

where preemptive scheduling is often used.  

Listing 5 shows a simple stimulus generator for the NAND2 module. The stimulus gen-

erator thread will write values to ports A and B, then stop the simulation at the next 

positive clock edge.  
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SC_MODULE(stim) 
{ 
  sc_out<bool> A, B; 
  sc_in<bool> Clk; 
   
  SC_CTOR(stim) 
  { 
    SC_THREAD(stim_gen); 
    sensitive << Clk.pos(); 
  } 
 
  void stim_gen() 
  { 
    A.write(false); 
    B.write(false); 
    wait(); 
    sc_stop(); 
  } 
}; 

Listing 5 A stimulus generator module implemented with a thread 

The main considerations when choosing between threads and processes are performance 

and difficulty of implementation. Because methods cannot be suspended they do not 

include the context switching overhead. However, as designs get bigger, communication 

between methods is harder to implement than it is for threads. Most models use a com-

bination of methods and threads, employing methods when simulation performance of 

threads is not sufficient. 

For more information about SystemC processes see Sections 5.2.10 and 5.2.11 in [1] 

and Sections 4.4 and 4.5 in [13] 

3.3 SystemC Events 
SystemC uses the notion of events to enable inter-process coordination. Events have no 

duration or value, so processes must wait for an event before it occurs, otherwise the 

event will go unnoticed. 

To cause an event, processes should call the notify member function of the sc_event 

class. The notification can either be immediate or timed, and it affects how processes 

waiting for that event are scheduled. This subject is covered more in depth in section 

3.6. 

Processes can either be sensitive to a predetermined set of events, in which case they 

will be triggered every time the events are notified. This is referred to as static sensitiv-

ity. Alternatively, and seen more often in threads than in methods, processes can dynam-

ically become sensitive to events. This enables them to be sensitive to an event outside 

their static sensitivity list. It is also useful to note that when a thread waits for a timeout 

it is implicitly listening to a kernel event that will be notified when the timeout is 

reached. 
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Listing 6 shows how events are used to coordinate a handshake protocol between two 

threads The notifier_thread notifies rec_event and waits for a notification on 

ack_event, upon which it ends the simulation. Meanwhile, the waiter_thread waits for 

notificiations on rec_event, notifying ack_event when they happen. For more infor-

mation about SystemC events see Section 5.10 in [1] and Section 6.5 in [13]. 

class WaiterNotifier : public sc_module { 
public: 
  sc_event rec_event; 
  sc_event ack_event; 
 
  SC_HAS_PROCESS(WaiterNotifier); 
  WaiterNotifier(sc_module_name nm) : 
    sc_module(nm), 
    rec_event("req_event"), 
    ack_event("ack_event") 
  { 
    SC_THREAD(notifier_thread); 
    SC_THREAD(waiter_thread); 
  } 
 
  void notifier_thread() { 
    // if picked first, allow the other thread to enter the waiting state 
    wait(SC_ZERO_TIME); 
    rec_event.notify(); 
    wait(ack_event); 
    sc_stop(); 
  } 
 
  void waiter_thread() { 
    while (true) { 
      wait(rec_event); 
      ack_event.notify(); 
    } 
  } 
}; 

Listing 6 Thread coordination using events 
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3.4 SystemC Channels & Ports 
SystemC modules communicate with each other using channels and ports. Channels and 

ports simplify communication between modules by hiding implementation details of the 

communication protocols, and only providing a set of operations for that port-channel 

combination. 

The common point of the port-channel combination is the interfaces. These are abstract 

C++ classes that extend the sc_interface class. A channel implements interface clas-

ses so that ports for that channel can be used. In other words, channels implement com-

munication interfaces while ports expose these interfaces to modules. A port is an in-

stance of the sc_port<some_in_if> class, where some_in_if is the input interface of 

the channel. Figure 1 illustrates this relationship between ports and a channel. 

 

Figure 1 modules connected via ports and a channel 

There are two types of channels: primitive and hierarchical. Primitive channels don’t 

have a simulation process or hierarchy, making them fast. Hierarchical channels can 

have internal structure, i.e. a channel can have internal modules that implement commu-

nication protocols.  

Listing 7 and Listing 8 show a simple write interface and its implementation as a FIFO 

primitive channel. For simplicity, the read interface and its implementation are left out 

in this example. Listing 9 shows how a module uses write_if in a port declaration. This 

enables the module to use the communication mechanisms provided by the write inter-

face without knowing its implementation details. For more information about SystemC 

channels see Sections 5.2.23 and 5.15 in [1] and Sections 8 and 13 in [13]. 

class write_if : virtual public sc_interface 
{ 
public: 
  virtual void write(char) = 0; 
  virtual void reset() = 0; 
}; 

Listing 7 A write interface  
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class fifo : public sc_channel, public write_if, public read_if 
{ 
public: 
  fifo(sc_module_name name) 
  :sc_channel(name), 
  ,num_elements(0) 
  ,first(0) {} 
 
  void write(char c) { 
    if (num_elements == max) 
      wait(read_event); 
 
    data[(first + num_elements) % max] = c; 
    ++ num_elements; 
    write_event.notify(); 
  } 
 
  void reset() { num_elements = first = 0; } 
 
private: 
  enum e { max = 10 }; 
  char data[max]; 
  int num_elements, first; 
  sc_event write_event, read_event; 
}; 

Listing 8 A FIFO implementation for write_if 

 

class producer : public sc_module 
{ 
public: 
  sc_port<write_if> out; 
 
  SC_HAS_PROCESS(producer); 
  producer(sc_module_name name) : sc_module(name) 
  { 
    SC_THREAD(main); 
  } 
 
  void main() 
  { 
    const char *str = "Hello World "; 
    while (*str) 
      out->write(*str++); 
  } 
}; 

Listing 9 A producer module using a write_if port 
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3.5 TLM 2.0 
TLM stands for transactional level modeling, which replaces events/pin wiggles with 

function calls to accelerate simulation. The main characteristic of TLM is that it provides 

a functional representation of communication, with a focus on memory-mapped buses. 

TLM can be used to model systems in a bit-accurate and register-accurate manner, with 

clock cycles and detailed bus protocol behaviors being abstracted away. TLM models 

are fast enough for running operating systems and other software, and should generally 

be available before RTL models, but accurate enough to be used post-RTL, for example 

when running software regression tests on a TLM-based virtual platform.  

TLM 2.0 is an implementation of TLM, based on SystemC. TLM 2.0 provides a few 

interfaces that define APIs for blocking and non-blocking interfaces. This allows for 

simplified development and integration of high-level system components. 

For more information about TLM 2.0 see [2] and Chapter 16 in [13]. 

3.6 The SystemC Simulation Method 
The previous sections introduced the main SystemC constructs for building and inter-

connecting structures. These constructs are a part of the public API of a SystemC imple-

mentation. Along the public API, a SystemC implementation must also provide a private 

kernel. Together these parts are used to run a SystemC application. 

Executing a SystemC application consists of running an elaboration phase followed by 

a simulation phase. During elaboration, the module hierarchy is created. This is done by 

executing the public API code used by the application with assistance from the kernel. 

The following simulation phase involves executing the scheduler, the part of the kernel 

responsible for executing SystemC processes present in the application. 

The standard defines the following steps for running a SystemC application: 

• Elaboration—Construction of the module hierarchy 

• Elaboration—Callbacks to function before_end_of_elaboration 

• Elaboration—Callbacks to function end_of_elaboration 

• Simulation—Callbacks to function start_of_simulation 

• Simulation—Initialization phase 

• Simulation—Evaluation, update, delta notification, and timed notification 

phases (repeated) 

• Simulation—Callbacks to function end_of_simulation 

• Simulation—Destruction of the module hierarchy  
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3.6.1 Elaboration phase 

The elaboration phase is where the module hierarchy is constructed and stored as data 

structures that support the simulation semantics defined by the standard. The phase lasts 

during the call to sc_main and until the first call to sc_start. The sc_main function 

is the only entry point into a SystemC application and is called by the kernel. The first 

call to the sc_start function starts the scheduler, thus marking the end of the elabora-

tion phase and start of the simulation phase, covered in the next section. 

The first stage of the elaboration phase instantiates all occurrences of the sc_module, 

sc_port, sc_export, and sc_prim_channel classes. These instantiations may only 

occur during the elaboration phase. Further, instances of the classes sc_module and 

sc_prim_channel may only be created within a module or within the sc_main func-

tion. 

During the second stage unspawned processes are created by invoking one of the process 

macros. It is possible to bypass the macros although the procedure is quite convoluted 

and thus error prone. 

The third elaboration stage is port and export binding. Here port instances are bound to 

channel instances, or other port or export instances. Export instances are bound to either 

channel or other export instances. Port and export binding may only occur during the 

elaboration phase. 

The final stage in the elaboration phase is setting the time resolution by calling the 

sc_set_time_resolution function. 

3.6.2 Simulation phase 

The simulation phase starts with the first call to sc_start, which starts the scheduler. 

The scheduler is event driven, i.e. process execution depends on events. Events are rep-

resented by objects of the class sc_event. Events can be notified, by calls to function 

notify of the class sc_event. 

The scheduling algorithm relies on four sets: 

• The set of runnable processes (RP-set) 

• The set of update requests (UP-set) 

• The set of delta notifications and time-outs (D-set) 

• The set of timed notifications and time-outs (T-set) 

RP-set is first populated during the elaboration phase and contains at most one instance 

of each process. UP-set is populated through calls to member function  

request_update or async_request_update of class sc_prim_channel. D-set and 

T-set are populated through calls to member function notify of class sc_event with 

zero-valued and non-zero-valued time arguments, respectively. Time-outs result from 
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calls to wait and next_trigger member functions of sc_module. The set to which 

the time-out is added depends on whether it resulted from a call with zero-valued or non-

zero-valued time argument. The kernel updates these sets through five sub-phases, de-

scribed as follows.  

Initialization 

The initialization sub-phase runs only once per simulation. It starts by running an update 

phase once without continuing to the delta notification phase. After the initial update 

phase, all process instances in the module hierarchy are added to RP-set, except for those 

that were indicated not to be initialized. Finally, the delta notification phase runs fol-

lowed by the evaluation phase. The figure below illustrates the initialization sub-phase. 

It is necessary to run the initial update phase and a delta notification phase because there 

may have been update requests during the elaboration phase. This can be the case when 

it is desired to set initial values for primitive channels. 

 

Evaluation 

This phase is responsible for executing SystemC processes. Each process instance in 

RP-set, in no particular order, is allowed to run without interruption until the process 

either suspends itself or returns. This kind of scheduling is known as co-operative mul-

titasking. In this case, the designer of the SystemC application is responsible for making 

sure that each process eventually yields control back to the kernel.  
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While a process runs it can cause other processes to become runnable by spawning one 

dynamically, issuing an immediate notification to which there are currently sensitive 

processes, calling request_update or request_update on a primitive channel, or 

directly calling a process control function of another process. In all but the request_up-

date cases, the affected processes are moved to RP-set and will be run in the current 

evaluation phase. 

This sub-phase continues until there are no more processes in RP-set, at which point the 

simulation continues to the update sub-phase. The figure below illustrates the evaluation 

sub-phase. 
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Update 

In this sub-phase, all pending calls to the update function of primitive channels are exe-

cuted at most once. If the phase was not entered from the initialization phase, the simu-

lation continues to the delta notification phase, otherwise it returns to the initialization 

sub-phase. The image below illustrates this sub-phase. 

 

Delta notification 

If there were calls to notify or wait during the last evaluation or update sub-phases, 

all processes sensitive to the events or time-outs are added to the RP-set and the notifi-

cations and timeouts are removed from the D-set. If at the end of this sub-phase RP-set 

is empty, the simulation continues to the timed notification sub-phase. Otherwise, the 

evaluation sub-phase is repeated. 

Timed notification 

This sub-phase is similar to the delta-notifications phase in that it finds processes sensi-

tive to notifications or time-outs and moves them to RP-set. The difference is that sim-

ulation time is advanced to the earliest timed notification. If processes were added to 

RP-set, the simulation continues with the evaluation phase, otherwise the sub-phase is 

repeated, advancing time again. If there are no timed notifications or timeouts the sim-

ulation ends. 
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3.7 Modelling of Timing in SystemC & TLM 
SystemC and TLM allow modelling at different levels of time granularity. This allows 

models to be created with the level of detail required at the current design stage or by 

their use case. The TLM-2.0 standard defines the following coding styles appropriate 

for each design stage. 

3.7.1 Loosely-timed Coding Style 

The loosely-timed style uses the blocking transport interface which has two timing 

points marking only the start and end of a transaction. Its most important feature is that 

it allows temporal decoupling, where SystemC processes can run ahead of simulated 

time by a certain amount of time, referred to as the global quantum in the standard [2].  

By tuning the quantum, it is possible to trade off simulation speed (higher quantum 

means less thread synchronization and thus lower kernel overhead) against simulation 

accuracy (lower quantum means more thread synchronization and thus higher kernel 

overhead). In the ideal case, threads should call wait only when the global quantum is 

reached. This coding style supports the modelling of timers and interrupts, and as such 

is suitable for developing virtual platforms on which to run operating systems and ap-

plications. 

3.7.2 Approximately-timed Coding Style 

The approximately-timed style uses the non-blocking transport interface and each trans-

action can have multiple timing points. The TLM-2.0 base protocol has four points, 

marking the beginning and end of the request and response. 

This style cannot use temporal decoupling and is best used for hardware architecture 

analysis. 

3.7.3 Cycle-accurate Coding Style 

Cycle accurate models provide an accurate description of the state of the model for each 

clock cycle. As such they are useful for performance verification. They could also be 

useful as reference models for RTL designs, e.g. for processors.  

Cycle-accurate modeling can be done in SystemC, however, it is not directly supported 

within TLM-2.0. 

3.7.4 RTL Models 

RTL modelling provides the most accurate results from the described modelling styles. 

It achieves this by providing both the state of the model at each clock cycle as well as 

the state of individual signals involved in computation and communication. However, 

this accuracy comes with a significant performance overhead, making RTL models un-

suitable for software verification. Although SystemC can be used also for RTL model-

ling, VHDL and Verilog are usually used for this purpose given the availability of syn-

thesis tools. 
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4. Virtual Platforms 
A virtual platform is a simulation of certain hardware. For this purpose, models of the 

target hardware are needed. When developing the virtual platform, the goal is to make 

it behaviorally identical to the target hardware. Represented in the figure below is this 

requirement, as well as the fact that the same software binaries should run on both the 

platform and the actual hardware. 

 

A virtual platform can be implemented using SystemC and TLM. to allow bit-accurate 

simulations of target platforms, which is important if the virtual platform is to be used 

for hardware and software co-development with any guarantee of reliability. While Sys-

temC can be used to model simple hardware at the RTL level, it is often used for ESL 

design, allowing the modelling and fast simulation of full SoCs. These models can then 

be used to run software intended for the target platform. 

4.1 Ericsson System Virtualization Platform(SVP) 
Ericsson uses SystemC and TLM to model hardware used in radio base stations. SVP is 

a virtual platform, used at Ericsson for testing software developed for the Ericsson Many 

Core Architecture (EMCA). 

EMCA is a real time multi-processor system, on which an operating system that man-

ages task scheduling and resource allocation is running. The same operating system can 

run on EMCA platforms simulated with SVP. In turn, baseband processing software and 

other software systems can run on SVP, using the operating system, executing on the 

simulated processors within SVP. 

Most of the processor models in SVP are instruction-accurate with some models having 

a cycle-accurate variant too. The instruction-accurate models are used for most software 

development tasks as they are sufficiently accurate. 

        

                         

                  

                   

        

                         

                   



20 
 

SVP’s main goal is to facilitate software development and integration, without being 

dependent on actual hardware. Therefore, the loosely-timed coding style is used to de-

velop the platform, as it provides good simulation performance and maintains the same 

behavior as the actual hardware. 

4.2 Tracing from a Virtual Platform 
Dynamic analysis tools are used to inspect programs during run-time. As such, they can 

perform a variety of functions like detecting access to restricted memory, memory leaks, 

cache inspection, call graph generation etc. 

This thesis draws inspiration from these tools to provide an instrumented SystemC ker-

nel. This modified kernel profiles how SystemC threads and methods execute within a 

given simulation. This data can then be used to draw conclusions about the system 

model. 

4.2.1 Non-SystemC-aware Methods 

Valgrind  [12] offers a set of popular dynamic analysis tools. Originally, it was a memory 

debugging tool for Linux, but has since its creation evolved into a general framework 

for building dynamic analysis tools. It comes with a plethora of tools for different kinds 

of profiling, most notably Memcheck for memory profiling, Cachegrind for cache pro-

filing, and Callgrind for generating call graphs. 

While very versatile, Valgrind is not very useful for this thesis. Since SystemC models 

are themselves C++ programs, profiling them with Valgrind is possible but the result 

traces would be cluttered with operations not directly related to the simulated models. 

4.2.2 SystemC-aware Tracing 

As mentioned previously, there are a variety of dynamic analysis tools, most of which 

focus on a specific piece of software or specific languages. It is possible to use Valgrind 

but a more efficient approach is to directly modify the SystemC kernel. This approach 

gives direct access to the parts of interest within SystemC, such as threads and methods, 

and generating traces can be as simple as running a simulation with different trace pa-

rameters. We refer to such profiling as SystemC-aware, as it explicitly takes into account 

the properties of the SystemC implementation, for example when tracing thread execu-

tions or event notifications. 

 A consideration before implementing SystemC-aware tracing is considering whether 

there are already tools that accomplish the desired end-goal. The tool set offered by 

Cadence [4] for example, can generate wave-form and TLM transaction views, and it 

also supports software and hardware model co-debugging. These features are useful 

when developing virtual platforms, however, they are too specific for this work, where 
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the interest lies in analyzing general platform usage. Considering this, the approach cho-

sen for this thesis was to modify the freely available SystemC implementation from Ac-

cellera [5]. 
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5. A SystemC Kernel Instrumented for Tracing 
As stated by the SystemC standard, the kernel can be extended to provide additional 

functionality not included in the standard scope. The result of this thesis accomplished 

exactly this, resulting in a modified SystemC kernel that supports detailed and selective 

simulation tracing. 

We generate data for certain events in the kernel. We refer to these as simulation events 

(not to be confused with the events used in SystemC, i.e. the variables of the sc_event 

class). To trace a simulation event the SystemC code implementing that event must be 

determined first. This is mainly done by inspecting the Accellera reference kernel code 

directly in conjunction with the IEEE language reference manual. 

5.1 Process Creation, Suspension, and Resumption 
Some generally useful simulation events to trace are process creation, suspension, and 

resumption. The information from these events forms the baseline for implementing ob-

servability into the SystemC kernel. One function was introduced to trace general pro-

cess activity with the signature seen below. The first argument to the function is a pro-

cess pointer so data about the process can be accessed, the second argument indicates 

the event type so that the trace is formed correctly. 

static void trace_process_event(sc_process_b*, const EVENT_TYPE) 

Process creation tracing is useful since processes in general correspond to hardware 

functionality. Therefore, missing processes could indicate a faulty model (the model has 

not been implemented correctly, or not initialized correctly). As mentioned in section 

3.6.1, processes are created in the second stage of the elaboration phase using predefined 

macros. These macros perform the necessary setup before calling the process creation 

functions. The signatures for these functions are shown below and their instrumentation 

is shown in Listing 10 and Listing 11 

sc_simcontext::create_thread_process(const char*, bool, SC_ENTRY_FUNC, 
    sc_process_host*, const sc_spawn_options*) 

sc_simcontext::create_method_process(const char*, bool, SC_ENTRY_FUNC, 
    sc_process_host*, const sc_spawn_options*)  
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sc_process_handle sc_simcontext::create_thread_process(  
  const char* name_p, bool free_host, 
  SC_ENTRY_FUNC method_p,          
  sc_process_host* host_p, const sc_spawn_options* opt_p ) 
{ 
  sc_thread_handle handle =  
      new sc_thread_process(name_p, free_host, method_p, host_p, opt_p); 
  tracing::TraceLib::trace_process_event(handle, 
                         tracing::TraceLib::CREATE_T); 
  ... 
} 

Listing 10 Thread creation tracing 

sc_process_handle sc_simcontext::create_method_process(  
    const char* name_p, bool free_host, 
    SC_ENTRY_FUNC method_p, 
    sc_process_host* host_p, const sc_spawn_options* opt_p ) 
{ 
  sc_method_handle handle =  
      new sc_method_process(name_p, free_host, method_p, host_p, opt_p); 
  tracing::TraceLib::trace_process_event(handle, 
                         tracing::TraceLib::CREATE_M); 
  ... 
} 

Listing 11 Method creation tracing 

Once processes are created their execution is handled by the simulation phase, as de-

scribed in section 3.6.2. Process suspension and resumption provide a coarse-grained 

view of how processes execute. This information can reveal processes that never exe-

cuted (created but never resumed), or were never resumed once suspended (suspended 

but never resumed). Both scenarios might indicate faulty models or faults in software. 

Alternatively, the information can be used to acquire an overview of module utilization 

for a given simulation configuration. 

Since methods and threads have different behavior, their suspension and resumption is 

handled differently. In the case of threads, whose execution can be interrupted, there is 

an explicit function which is called when the thread suspends. In the case of methods, 

that run uninterrupted, the simulation function directly handles their suspension. These 

functions have the signatures seen below and their instrumentations are shown in Listing 

12 and Listing 13. 

sc_thread_process::suspend_me() 

sc_simcontext::crunch( bool once ) 
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inline void sc_thread_process::suspend_me() 
{ 
  ... 
  if( m_cor_p != cor_p ) 
  { 
    tracing::TraceLib::trace_process_event(this,  
                           tracing::TraceLib::SUSPEND_T); 
    DEBUG_MSG( DEBUG_NAME , this, "suspending thread"); 
    simc_p->cor_pkg()->yield( cor_p ); 
        tracing::TraceLib::trace_process_event(this, 
                               tracing::TraceLib::RESUME_T); 
    DEBUG_MSG( DEBUG_NAME , this, "resuming thread"); 
  } 
  ... 
} 

Listing 12 Thread suspension and resumption tracing 

inline void sc_simcontext::crunch( bool once ) 
{ 
  ... 
  sc_method_handle method_h = pop_runnable_method(); 
  while( method_h != 0 ) { 
    tracing::TraceLib::trace_process_event(method_h, 
                           tracing::TraceLib::RESUME_M); 
    empty_eval_phase = false; 
    if ( !method_h->run_process() ) 
    { 
      goto out; 
    } 
  tracing::TraceLib::trace_process_event(method_h, 
                         tracing::TraceLib::SUSPEND_M); 
  ... 
} 

Listing 13 Method suspension and resumption tracing 

The output format for general process event traces is shown in the table below. From 

left to write, the columns indicate the exact event that was traced (i.e. creation, suspen-

sion, or resumption), the simulation time at which the event was traced, the name of the 

involved process, and the wall time in seconds and nanoseconds. In the second row the 

trace example indicates that at simulation time 0 s, i.e. simulation start, a thread called 

th0 was created. 

  

event sc_time_stamp name tv_sec tv_nsec 

create_thread 0 s th0 1 1000000000 
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5.2 Calls to wait 
As described in section 3.2, threads can suspend themselves by calling the wait function. 

Each call to wait will immediately suspend a thread, making wait tracing equivalent to 

thread suspension tracing. However, there are different signatures of the wait function, 

each of which will suspend the calling thread in a different manner. This additional in-

formation shows the exact reason for a thread suspending, making it useful to trace calls 

to wait.  

Below are all the signatures for the wait function. Generally, they can be divided in two 

groups: untimed and timed. The first three signatures are for untimed suspensions. 

Threads that called wait this way will stay suspended until the event or event list they 

are waiting for is notified. Note that there are two types of event lists. A thread waiting 

for an event_or_list will trigger when any event in the list is notified, while threads 

waiting for an event_and_list will only trigger when all the events in the list are noti-

fied. The following four signatures are for timed suspensions. Threads suspended in this 

way will wait for event notifications only for the specified amount of time before resum-

ing. There is also the special case of calling the single time argument wait function with 

a zero-time value, which suspends threads for a delta notification phase. Finally, there 

is the last signature, which is used to suspend threads until changes in their sensitivity 

lists occur. 

In the case of untimed waits, the calling thread will suspend itself until one or more 

events are notified. In the case of timed waits, the suspended thread will wait for event 

notifications only for the specified amount of time before resuming. There is also the 

case of the empty wait call, which suspends the thread until there are changes in its 

sensitivity list. Another special case is calling wait with a zero-time value for t, this 

suspends the thread for the current delta cycle so that other threads get a chance to run. 

wait(const sc_event&) 
wait(const sc_event_or_list&) 
wait(const sc_event_and_list&) 
wait(const sc_time&) 
wait(const sc_time&, const sc_event&) 
wait(const sc_time&, const sc_event_or_list&) 
wait(const sc_time&, const sc_event_and_list&) 
wait() 
 

The signatures for the wait tracing functions are seen below. Each function takes a 

pointer to the thread that called wait along with either the event or event list that the 

thread is waiting for. In the case of timed suspensions, the timeout is also passed. 

Listing 14 shows how single event wait tracing is integrated into the kernel, the other 

functions are integrated similarly in their respective wait functions. 

trace_wait(sc_process_b*, const sc_event&) 
trace_wait(sc_process_b*, const sc_event_list&) 
trace_wait(sc_process_b*, const sc_time&) 
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trace_wait(sc_process_b*, const sc_time&, const sc_event&) 
trace_wait(sc_process_b*, const sc_time&, const sc_event_list&) 
trace_wait(sc_process_b*) 
 
inline void sc_thread_process::wait( const sc_event& e ) 
{ 
  if( m_unwinding ) 
    SC_REPORT_ERROR( SC_ID_WAIT_DURING_UNWINDING_, name() ); 
  tracing::TraceLib::trace_wait(this, e); 
} 

Listing 14 Single event wait tracing 

The output format for the wait tracing is presented in the table below. The columns from 

left to right indicate the type of simulation event, the name of the event for which the 

thread waited, the simulation time at which the trace was taken, the name of the waiting 

thread, and the wall time in seconds and nanoseconds. In this example wait was called 

for event e0 at simulation time 0s by thread th0. 

5.3 Calls to notify 
Calls to notify are used to schedule processes, that are sensitive to the notified event, for 

execution. Notifications can either be immediate or timed. In the case of an immediate 

notification, sensitive processes will be scheduled for execution in the same delta cycle. 

Timed notifications will schedule processes after simulation time has advanced to the 

given time. The signatures for these functions are shown below. 

sc_event::notify() 
sc_event::notify(const sc_time&) 

 

When a process waits for an event, it registers itself as sensitive to that event. This means 

that it will be scheduled for execution, also referred to as triggered, when the event is 

notified. This mechanism can be used to synchronize processes, by letting a process wait 

for an event until a specified condition is fulfilled, which is then signaled by a notifica-

tion on the event. The process is then scheduled for execution. If the process does not 

call wait before notify is called, it will not be sensitive to the event when the notify call 

is done, and it will therefore not be triggered.  

 

When tracing a notification, it is possible to obtain the list of triggered processes. In the 

case of an empty trigger list, this indicates that no processes were sensitive to the event, 

which might not be the intended behavior. 

The sc_event::notify functions are part of the SystemC API, and they are typically 

used by developers of SystemC programs. It can be seen, in the SystemC kernel source 

code, that the functions are wrappers, containing calls to other, SystemC internal, func-

tions.  

event for sc_time_stamp name tv_sec tv_nsec 

wait e0 0 s th0 1 1000000000 
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In the case of immediate notifications, tracing can be done within the  

sc_event::notify functions, since all useful information, such as the identity of the 

notifying process, the notification time, and what processes were triggered by the noti-

fication, is available in the simulation context.  

In the case of timed notifications, the function only stores the fact that a given event is 

to be notified once simulation time has advanced to the desired point in a subsequent 

timed notification sub-phase. Because of this, the simulation context does not, at the 

moment of calling notify, contain the processes that are triggered by the notification. 

Therefore, tracing of timed notifications is done inside the SystemC internal 

sc_event::trigger function, which actually schedules the processes that are sensitive 

to the event. However, this approach loses the information on the identity of the notify-

ing process, and when the notification was issued. This information can be kept, how-

ever, by adding two more data members to the sc_event class. 

To keep the implementation consistent, immediate notifications are also traced within 

the sc_event::trigger function. The signature for the tracing function is seen below, 

and its integration into the SystemC kernel is shown in Listing 15. The argument is a 

pointer to the event object for accessing the trace data mentioned above. 

trace_notify(sc_event*) 

void sc_event::trigger() 
{ 
  int       last_i; // index of last element in vector now accessing. 
  int       size;   // size of vector now accessing. 
  tracing::TraceLib::trace_notify(this); 
  ... 
} 

Listing 15 Notify tracing 

The output format for notify traces is presented in the table below. The columns from 

left to right indicate the type of the simulation event, the name of the event that was 

notified, the name of threads that were triggered by the notification, the time at which 

the event was notified, the simulation time at which the trace was taken, the name of the 

notifying process, the wall time of the simulation in seconds and nanoseconds. In this 

example event e0 was notified by th0 at simulation time 0s and the trace was taken at 

the same time, indicating an immediate notification. The last two columns simply show 

the wall time of the simulation. 

By tracing when events suspend by calling wait, and resume because of notifications on 

events, it is possible to construct cause and effect relationships between simulation 

events and process executions. In other words, the information exposes the causes for 

event on triggered call_t sc_time_stamp Name tv_sec tv_nsec 

notify e0 th0 0 s 0 s th1 1 1000000000 
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simulation behavior. The issue here is that models can be quite large, and therefore gen-

erate a large amount of traces. This renders visual inspection of traces unfeasible and a 

post processing of trace data is required. 

5.4 Storage of Traces 

All traces are written in plain text over standard output and saved to files. While not the 

most efficient approach, its simplicity allows focusing on instrumentation implementa-

tion details. After a simulation run, its output log is stripped of non-trace data, and the 

resulting file is processed using Python scripts which in turn generate four files. Three 

of the files are in binary format and are used to store all the traces for thread suspension, 

all thread-specific traces, and a sorted aggregate of all trace data. The aggregated data is 

also stored in a text file for visual inspection. 
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6. Trace Use Cases 
Trace files by themselves do not provide much insight into program execution. To make 

any sort of useful conclusions, traces must first undergo some form of data processing. 

This processing could be something as simple as counting occurrences of a specific in-

struction/event, all the way to complex statistical analysis ranging over multiple trace 

files. 

The most accessible thing to extract from the trace data is general statistics such as which 

processes ran during simulation and how often, how many times events were notified 

and what processes they triggered, and threads that called wait and on what. 

This information along with other data is organized by the processing tools in a table as 

seen in Table 1. 

Rank  Thread 

Name 

Runtime 

[ms[ 

N_sus A@0 d_ns avg Min Max Std 

1  thread_0 4278.341  19437  47.75 0 447.14 97.45 

2  thread_1 2431.791  17749  52.05 0 78430 596.85 

3  thread_2 321.682  19259  47.99 0 121169.4 1444.72 

4  thread_3 273.624  17167  53.82 0 122216.6 1243.98 

5  thread_4 5.596 107  8735.93 0 472305.7 57626.63 

6  thread_5 5.442 108  8636.15 4 777069.7 75160.88 

7  thread_6 2.857 103  9056.9 4 777273 76973.87 

8  thread_7 1.567 65  13158.83 4 837542.9 103864 

9  thread_8 1.499 66  12887.18 0 837542.9 103082 

10  thread_9 1.481 66  12956.39 0 842041.4 103635.6 
Table 1 Runtime statistics for threads 

6.1 SystemC Performance Analysis 
The data presented in Table 1 can be used to obtain a view of simulation performance. 

The column “Runtime” shows the wall time for which each thread ran, in the column 

“d_ns avg” is the average simulated time between executions of a particular thread. Col-

umns “Min” and “Max” show the minimum and maximum simulated time between ex-

ecutions, and the “Std” column shows the standard deviation for the simulated time be-

tween executions. The usefulness of this data is presented in section 7.1, where it is used 

to determine the effective quantum of a simulation. 

6.2 SystemC Coverage 
Also from Table 1, the number of times threads are suspended can be seen from column 

“N_sus”, and whether threads only ran at the beginning of the simulation from column 

“A@0”. The information in the latter column can be used to identify the threads that are 

not used at all during a simulation, while the information in the former can be used to 

create a heatmap of thread usage by particular tests. This use case is demonstrated in 

section 7.3. 
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Another table is constructed from event notification tracing, as seen in Table 2. From 

this data notify-trigger causality graphs can be generated, i.e. graphs that show for each 

simulation time which threads ran and what events caused them. In general, this can be 

used to confirm that processes were executed in the intended order. Alternatively, the 

metric can be used on different SVP versions to find mismatches in process ordering. A 

mismatch is likely to cause sensitive software to fail. 

 

Notifier Sim. Time Delay Wall Time[s] Wall Time[ns] Triggered 

thread_0 383679142ps 26 266131 95666418 thread_1 

831068285ps 26 266132 4.42E+08 thread_1 

831265428ps 26 266132 4.47E+08 thread_1 

831588285ps 26 266132 4.49E+08 thread_1 

831945428ps 26 266132 4.5E+08 thread_1 

832346857ps 26 266132 4.54E+08 thread_1 

832664ns 26 266132 4.56E+08 thread_1 

833021142ps 26 266132 4.57E+08 thread_1 

833378285ps 26 266132 4.59E+08 thread_1 

924573142ps 20 266133 5.79E+08 thread_1 

Table 2 Event notification statistic 

6.3 Metrics targeting software sensitivity 
We also collect data that allows inferring software sensitivity. This is done by running 

two simulations using different SVP versions. The trace logs can be compared with re-

spect to simulation time and the processes that were resumed at each time. For this, we 

aggregate this data into a file that can be used with the UNIX diff tool. From here, it is 

possible to find the number of differences in timing, i.e. determine the number of times 

processes were scheduled at different simulation times. This metric is however, obscure, 

as the change in timing occurs when updating the model or changing the quantum. 

Therefore, looking at the number of differences alone is not very informative. It might 

be worth gathering this data for different SVP versions running the test suites and per-

form statistical analysis on the results to determine the acceptable number of differences 

when it comes to timing. 

Another approach to using the “diff friendly” files is to look at the changes in process 

scheduling, i.e. the occurrences of tasks being scheduled in different groups. 

Ideally, a tool that is capable of looking from both perspective (timing/scheduling) to 

provide a result would be developed.  

The end goal of these metrics is to enable investigations into software sensitivity. The 

goal is to find metrics, and a set of test cases, so that given a change in SVP, it shall be 
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possible to evaluate if this change results in high or low software sensitivity, i.e. if this 

change is likely to break software tests that are sensitive to changes in SVP.  

6.4 Processing and Visualization of Traces 
A convenient way to relay coverage and performance is through data visualization. The 

system now supports generation of 4 kinds of plots. 

• sc_activities - shows the activity of threads during a simulation 

• sc_activities_bundled - a condensed view based on a regex indicating which 

processes that are of interest 

• sc_time_ns_diffs - shows when threads called wait 

• causality_chain  - shows the notify-trigger graph at a given simulation time. If 

the time instant is not found in the trace the value closest to the provided one is 

taken. 

The scripts allow the use of regular expressions as filters to what should be plotted. This 

is useful for debugging as it allows isolation of features, such as a particular thread. 

The sc_activites plots may reveal threads that are overly active. This could prove useful 

for identifying simulation bottlenecks, potentially improving simulation performance. 
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7. Case Studies 

7.1 Outliers in effective quantum 
This case study illustrates the use of general SystemC coverage to identify outliers in in 

the simulation quantum. The purpose of the case study is to investigate how often the 

quantum was utilized, i.e. how often the SystemC threads executed without suspending 

before the quantum boundary. The resulting average time of execution before synchro-

nization, is referred to as effective quantum. 

As a starting point, a software test is run on SVP. This produces a trace log from which 

data on when threads suspended and resumed is extracted. The results are then plotted 

against the global quantum as seen in Figure X below. The red dots indicate how much 

of the global quantum was used by threads before suspending. In this example, the vir-

tual platform is allowed to run for 357ns ahead of simulation time. Therefore, dots that 

fall under or above this time are suspicious. At first, only regions which are significantly 

far from the quantum are investigated. In this way, we focus on detecting outliers in the 

effective quantum. Of course, it is up to the developer to decide what is significant.

 

Figure 2 Effective quantum plot  
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Outliers may be indicative of bottlenecks or anomalies in a simulation. In Figure X, two 

regions of significant outliers can be seen, marked with circles. The first one is between 

the simulation start at 0ns and 200000ns. Most threads that were active in this period 

yielded control to the kernel roughly every 25ns. This over-synchronization slows down 

the simulation and is worth investigating. Thus, the test program is run again to generate 

a new log. This time the tracing library is set to only trace calls to wait and only in the 

period of interest. Furthermore, a backtrace, showing the C++ call chain leading up to 

the call to wait, is generated for each wait call. The new log is processed, a thread that 

suspended frequently is picked, and the backtrace in which it occurred is investigated. 

Doing this revealed that the frequent wait calls were due to semaphore initializations in 

one of the hardware models in SVP. 

The second point of interest is roughly between 800000ns and 1000000ns. Here it seems 

that some threads are suspended after the specified quantum. This under-synchroniza-

tion shows that the simulation has run ahead for longer simulated time than expected 

(before calling wait), and could indicate an unintended behavior. The cause for this be-

havior could be identified using the same approach as described in the previous para-

graph, using backtraces for localization of the points in the source code where the calls 

to wait were eventually done. 

7.2 Notify-Trigger Causality Graphs 
Causality graph generation is a tool that can be used to detect flaws in the order of sim-

ulation execution. These flaws appear for example when a virtual platform is extended 

with new processes which are supposed to be sensitive to certain events. In this case, if 

the order of event notifications is not well understood or known, the newly added pro-

cesses could miss the notifications entirely. 

The code listing below presents a simple example of this case, involving only two 

threads. The notifier_thread function notifies the missed_e event. However, if this 

thread runs before the waiter_thread, the notification will go unnoticed. Processing 

the trace log for running this application produces the graph seen in Figure 3. The figure 

shows that while there was a notification on missed_e it did not trigger any process. To 

fix this issue, a zero-time wait is added to the notifier (commented in the listing below). 

Processing the log of the fixed application produce the graph in Figure 4. It can be seen 

here that notifying missed_e actually triggered the waiter_thread. The other event 

seen in the figure is notified by the scheduler from the delta notifications simulation sub-

phase to indicate the notifier_thread functions that a delta cycle has passed. 

This tool becomes more useful as the simulated models get larger. Figure 5 shows the 

causality graph obtained from the trace of a test run on SVP. In this simulation, multiple 

event notifications did not trigger any processes, as can be seen from the distinct arrows 

pointing into an empty box. The figure only shows a small part of the entire causality 

graph. This is done for illustration purposes. It remains a part of future investigations to 
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find out how larger amounts of data, obtained when creating larger causality graphs, 

shall be analyzed and visualized. In Figure 5, event and process names have been 

changed to obfuscate confidential information. 

#include "systemc.h" 
 
class WaiterNotifier : public sc_module { 
public: 
  sc_event missed_e; 
 
  SC_HAS_PROCESS(WaiterNotifier); 
  WaiterNotifier(sc_module_name nm)  
    : sc_module(nm) 
    , missed_e("missed_event") 
  { 
    SC_THREAD(notifier_thread); 
    SC_THREAD(waiter_thread); 
  } 
 
  void notifier_thread() { 
    // allow waiter_thread to wait 
    // wait(SC_ZERO_TIME); 
    missed_e.notify(); 
  } 
 
  void waiter_thread() { 
    wait(missed_e); 
  } 
}; 
 
int sc_main(int argc, char** argv) { 
  WaiterNotifier dut("WaiterNotifier0"); 
  sc_start(); 
  return 0; 
} 

Listing 16 Missed notification example 

 

Figure 3 Causality graph of an event that didn't trigger any processes 

 

Figure 4 Causality graph showing intended execution 

 aiterNotifier0.missed_event 0.0ns

 aiterNotifier0.    kernel_event    __free_event 0ns  aiterNotifier0.notifier_thread

 aiterNotifier0.missed_event 0.0ns  aiterNotifier0.waiter_thread
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Figure 5 Multiple missed event notifications 
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7.3 Model Coverage 
Another tool for using simulation traces is to graphically illustrate model usage by a 

particular test, or set of tests. As an example, Figure 6 shows a heat map for the 10 most 

active processes during 15 different tests that were run on SVP. The data for the figure 

is obtained by processing the logs of multiple tests and extracting the number of suspen-

sions for each process. The numbers are then scaled logarithmically to account for large 

differences in process usage between tests, and normalized to the interval [0,1]. In Figure 

6, the cooler the color of a box, the less the corresponding process was activated by a 

test. For example, it can be seen that test_7 frequently used process_9 but rarely used 

process 8. Further, it can be seen that process_8 is rarely used by any of the tests, as such 

this might be an incentive to write a test that makes more use of this process. 

The overview, as illustrated in Figure 6, can be useful to identify how different tests 

execute different parts of the simulator. This information gives a direct measure of code 

coverage with a SystemC perspective, where it can be determined which threads that 

were executed, for each test case. A secondary usage of the information could be as a 

base for developing new test cases, with the goal of executing threads that have a poor 

coverage. It could also be used when determining which tests to run, for a given change 

of the platform. As an example, if code changes have been done in a certain set of 

threads, it could suffice (at least as a first test scenario) to run only the test cases that 

execute the threads where changes have been done. If these tests pass, the test set can be 

extended, so that also secondary effects of the code changes are tested. As a limiting 

case, if the coverage data shows that a certain thread is not executed for any of the test 

cases, this indicates dead code. A decision should then be taken, either to remove the 

code, or to add test cases that execute it.  
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Figure 6 Process usage by different tests 
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8. Conclusion 
The two contributions of this thesis are an instrumented SystemC kernel and a suite of 

tools for offline processing and visualization of simulation traces. These tools can be 

used to observe various aspects of virtual platforms to aid design exploration, fault dis-

covery, and performance analysis. Some of these aspects were covered in chapter 6 and 

can be forwarded to developers to aid platform development.  

One of the most interesting aspects remains the way in which tuning the simulation 

quantum affects its execution. While some tools have already been introduced and used 

to identify outliers for performance analysis, there is still the issue of determining how 

exactly software tests depend on changes in the quantum. As a starting point, tools for 

measuring the difference in processes execution and timing have been introduced. How-

ever, the results obtained from the tools are difficult to interpret, and as such an empirical 

approach with statistical analysis, like the one proposed in [14] for example, seem to be 

the logical next step. In other words, determining the safe range of change in timing can 

be determined by running a set of tests on different versions of a virtual platform and 

determining the safe range based on the timing from tests that failed and passed. 

Another next step in the development of observability is to trace TLM-2.0 transport 

mechanisms such as the b_transport functions. The support for this higher abstraction 

level would remove noise from a simulation trace, allowing developers to concentrate 

purely on investigating the communication between modules of a virtual platform, em-

ploying lower level traces as points of interest are determined. 

There are also more immediate next steps to take. One of them is expanding current 

tracing capability to include the delta cycles of an operation. While delta cycles are not 

particularly useful for determining faults, they could be used to compare two executions 

of different platform versions. Another feature would be storing the contents of the sim-

ulation sets introduced in section 3.6.2 in the event of a simulation crash. This would 

allow to quickly determine the last executing process, which is where debugging would 

start. 

Finally, there is the issue of optimizing the storage of trace data. In the current state 

traces are in the 10s of megabytes, so storing traces from multiple tests and versions of 

a virtual platform can get unfeasible. One approach is to employ data compression tech-

niques such as described in [15]. Alternatively, a graph database could be employed to 

store trace data. This approach would require a redesign of the visualization and pro-

cessing tools. However, it would enable the usage of semantic queries, potentially sim-

plifying the model exploration process. 
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