Mining a Developer’'s Workflow
from IDE Usage

Constantina loannou

oy

o

o

Kongens Lyngby 2018
MSc-2018

Technical University of Denmark

DTU Compute

Matematiktorvet, building 303B, DK-2800 Kongens Lyngby, Denmark
Phone +45 4525 3031, Fax +45 4588 1399
compute@compute.dtu.dk

www.compute.dtu.dk MSc-2018

Abstract

Software developers interact with the [Integrated Development Environment]
by issuing commands that execute various programming tools from source
code formatters to build tools. The aim of this thesis is to collect data on how
developers interact with the [DE] while developing software, and to mine devel-
opers” workflow from [TDE] usage using process mining techniques. To pursue
this goal research was conducted to investigate available [DE]and tools. A com-
parison was made based on this research and a promising tool was selected. The
tool was capable of capturing developers’ interactions within [DE| However, it
had some limitations which needed to be overcome to change the perception on
usage data and to determine the requirements for improvement.

The first requirement was the enablement of the collection of developers’ in-
teractions within an [IDE| regarding influenced files and the enablement of the
collection of developers’ interactions through their source code. A further re-
quirement was to activate process mining. The desired improvements for the
tool to meet these requirements were designed and implemented. Finally, the
developed software was evaluated throughout a test case scenario which was
given to developers. The methodology to refine the retrieved experimental data
required was illustrated. The results of the methodology revealed an accurate
depiction of developers’ interactions and the analysis proved that mining devel-
opers’ workflow through their interactions within is possible.

Abstract

Preface

This thesis was carried out at the department of DTU Compute, at the Technical
University of Denmark, in fulfillment of the requirements for acquiring an M.Sc.
in Computer Science and Engineering.

The goal of this project was to collect data on how developers interact with
an [IDE] while developing software and to mine developers’ workflows from TDE]|
usage using process mining techniques.

This report describes the project itself and discusses concepts involved. It anal-
yses in detail the software which was selected for expansion and features that
were developed during this project. In the end it presents the results of mining
developers’ interactions according to their [[DE] usage.

Preface

Acknowledgements

My deepest thanks go to my advisor, Barbara Weber. Throughout these months,
Barbara gave me the freedom for exploring an unknown field, challenged my
findings, and o [ered valuable advice whenever needed. Barbara taught me the
importance of software methodologies and helped me to evolve my experience
with agile environments: by narrowing down ideas and being selective over the
most feasible ones.

I also thank my co-supervisor Andrea Burattin for his time and feedback. An-
drea shared his knowledge regarding process mining and his questions and sug-
gestions have enabled me to pursue this work from a wider perspective.

Furthermore, | would like to express my gratitude to my family and friends who
showed patience and were supportive during moments of frustrations.

A great thank you to everyone who believed in me! This thesis is dedicated to
my best friend Alexis Charalambous who had a unique developing workflow.

\Y

Contents

[Abstract] i
[Prefacel iii
JAcknowledgements| \%
[1_Introduction| 1
L1 Contributionsl 2
L2 Structure of thesis| 2

2 Background and Theory| 5
2.1 Integrated Development Environment| 6
211 Overviewof IDET. 6

212 Interactions within 1DEl 7

2 Eclipse IDE] e 9
2.2.1 Ovwverviewof Eclipse] 9

[2.2.2 Plug-in Development in Echipse| 11

2.2.3 Plugin Availability and Analysis| 12

2.3 The focal plug-in - Rabbit Eclipse| 18
2.3.1 Overview of Rabbit Eclipse] 18

[2.3.2 Architecture of Rabbit Eclipsel 20

2.4 Process Miningand Disco| 25
2.4.1 Overview of Process Mining| 26

242 Overviewof Discol 27

3 Problem Definition 31

viii CONTENTS

4 Design and Implementation| 35
4.1 Design tor Process Mining| 36
[4.1.1 Tnclude Timing interactions 36

[4.1.2 Include Dewveloper'sid| 37

[4.1.3 Include Command categories| 38

4.2 Design tor Locating command - resource interaction| 38
4.3 Design tor Analyzing Java element interactions| 43
4.3.1 Detecting Java element interaction - Design 1f 43

4.3.2 Detecting Java element interaction - Design 2 44

|4.3.3 Comparison of Design 1 and Design 2| 47

[5_ Process Mining Analysis | 49
BT Disco Requirements Setup] 50
-2 Mining Approach| 51
5.3 Resultsfrom Discal o o 54
[5.3.1 Result 1 - Most Commonly used Commands|. 54

[0.3.2 Result 2 - Developers worktlow] 56

.3. esult 3 - Compare Developers worktlow between two classes| 57
[5.3.4 Result 4 - Compare Developers workflow In a specific class| 60

5.4 Summary] 61
6 Conclusion 63
|A_Appendix 1: Rabbit Eclipse | 67
A1l Commandsl 67
B Appendix 2| 81
B.1 EXxperiment 81
B2 DIisCORESUITS o o o 89

Bibliographyi 101

Chapter 1

Introduction

Programming is not a way of implementing a solution, but it is a way of think-
ing. This intricate procedure requires a great amount of human memory and
cognition; thus, developers make use ¢f IDEs which are environments responsi-
ble to ease software developing work ow. But, would it be possible to develop
huge software only by using a compiler and a code editor? If so, how would
development work ow be impacted if [DE]did not exist and how long it would
take to develop software?

Developers' work ow without an [DE becomes extremely slow and developers'
e ciency is notably decreased. Other remarkable advantages of usin§ IDEs are
listed in [Verl?] and [Tral7].

Nevertheless, it seems that the process of software development has stagnated.
This is since IDEs usually tend to overload developers by providing a consid-
erable number of tools which result in a chaotic state as studies have shown
[MMRL16], [PR12]. Based on these, several researchers ([KMCA06], [FKAO5],
[MML15], [ZH13]), focused on understanding how developers operate to com-
plete their jobs: how they structure their tasks, how they apply their strategies
and how they use their tools. Their ndings allowed modern IDE to begin
recognizing the complexity and the memory requirements for developers. How-
ever, despite these ndings none of these tools can as yet take the developer's
cognition into account [PR12].

2 Introduction

In addition, developers' interactions have frequently been used by researchers
to examine developers' behaviour, including [MKFO06] which highlights the most
commonly used tools and [ML13a] which activated understanding of develop-
ers' work ow. More speci cally, researchers in [ML13a], developed DFlow for
recording development interactions within Pharo IDE.

Based on the afore-mentioned literature, it may be concluded that there was con-
siderable potential in exploring developers' work ow within an IDE throughout
their interactions and way of thinking. Consequently, it was decided to further
investigate how the extraction of these interactions in a widely used IDE could
be executed.

1.1 Contributions

The following contributions to the body of knowledge that concern process min-
ing of developers' work ow through IDE usage are:

a proposal for dierent perception on usage data to relate developers'
interactions with in uenced resources

a design model and implementation of a tool capable of detecting and
recording developers' interaction within a widely known IDE in regards to
in uenced resources.

1.2 Structure of thesis

To begin with, Chapter 2 provides a more specic background on the prob-
lem and its origin. It goes through previous related studies within the area of
IDEs and the connection between a developer and an IDE. Next, knowledge
for available IDEs and plug-ins is captured unravelling their capabilities and
limitations. Selection between the most promising plug-ins is performed and
the selected plugin is deeper analyzed. In the end, a background regarding the
principles of process mining is provided.

Further, in Chapter 3 the goals are clearly stated and questions are raised re-
garding the current perception on usage data logs. An innovative perception
of process mining usage data is suggested. Improvements required to meet the
perception proposed on the chosen tool are described.

1.2 Structure of thesis 3

Later on, the design decisions which were made to ful ll requirements stated

are de ned and illustrated in Chapter 4. The design decisions can be sorted
in: design decisions for allowing process mining, for giving a new perception
on developers' interaction within an IDE and also for giving a perception on

developers' source code interactions.

Thereafter, in Chapter 5, an experiment is materialized to record a data set
with event logs derived from the improved version of the tool. These event logs
are being re ned to be able to be imported in process mining tool. Afterwards,
the results accomplished are demonstrate and discussed in detail.

Finally in chapter 6, the thesis is concluded and an extensive look at future
work is taken.

Introduction

Chapter 2

Background and Theory

Since an IDE is very personal and is accustomed to developers' preferences, gath-
ering information regarding interactions within an IDE is promising to reveal
developers' work ow.

Before proceeding any further, it is absolutely required to build a solid back-
ground behind concepts used throughout the thesis related to IDE.

This chapter begins with section 2.1, which gives an introduction to how IDE
evolved through time i including the reasons proving IDE's signi cance. In
addition this section describes the possible interactions of a developer within an
IDE.

Among the various IDE mentioned in section 2.1, Eclipse was selected for further
investigation in section 2.2. The capabilities of Eclipse and its advantages are
elucidated. Further, the nature of Eclipse plug-in development is enhanced
including an oveview on Eclipse available plug-ins

After conducting a research on plug-ins,Rabbit Eclipse high potential was no-

table and the decision to give a great amount of focus on that speci ¢ plug-in
was taken. In section 2.3 the architecture of the plug-in is presented to provide
a mutual understanding.

6 Background and Theory

Finally, a research is contained, in section 2.4, in regards to process mining
technigues and what was required in order for it to be enabled.

2.1 Integrated Development Environment

An IDE is a software application which aims to improve developers' productivity
by facilitating application development. It consolidates the Basic tools (f.x.
source code editor, a compiler, debugger, etc) that developers need in order to
write and test software. To further understand capabilities and to gain insights
regarding IDEs availability, an investigation was carried out and is described
throughout this section.

Section 2.1.1 primarily consists of a brief historical description on how IDEs
evolved through time, and their major advantages. Next, section 2.1.2 analyzes
the possible interactions within IDE.

2.1.1 Overview of IDE

When the development via a console or a terminal became possible, ideas re-
garding IDE arose. The rst steps towards IDE is traced back to Dartmouth
Basic which was the rst language to be created with an IDE in 1964 [oDC18].
Dartmouth Basic IDE was command based, and without a graphical user inter-
face. However, it integrated editing, le management, compilation, debugging
and execution which are the necessary components to de ne an IDE.

According to [Verl7] Turbo Pascal, which was released in 1983 which integrated
an editor and a compiler for Pascal. Later on Microsoft's Visual Basic (VB),
launched in 1991 and made the process learning programming relatively easy
and was used for teaching purposes. Further, followed Delphi in 1995,[Wik17]
which could run on 16-bit Windows and it could provide Object Pascal.

Throughout the years several IDE where developed (Codelite, Codeblocks, di-
alogblocks, Netbeans, Komodo, Xamarin) [pWT14]. Nowadays, the most known
and highly used nowadays are Visual Studio released in 1997 [Mic18] and Eclipse
released in 2006 [Foul8a]. Today, Top IDE index [Carl6], which is a ranking
created by analysing how often IDEs are searched on Google, supports that the
three most used tools employed to develop source code are Eclipse released in
2004, Visual Studio released in 1997, Android Studio released in 2013 [Foul8a]
[Mic18] [2.518] .

2.1 Integrated Development Environment 7

Although IDEs are striking through the top three, it is noticeable that a signi -
cant amount of developers prefer to use highly con gurable text editors such as
Vim and Sublime Text.

The di erent types of code, speci c languages, cloud based, mobile application,
Apple or Microsoft development, led IDEs to expand in a variety of directions.
Consequently not all IDEs o er the same capabilities and the same collection
of tools. Therefore one must be selective when choosing an IDE, in accordance
to its development task and requirements.

Over the years, IDE have o ered remarkable advantages to developers as men-
tioned in [Verl7] and [Tral7]. Some of these advantages for example are:

Reduction of the setup up time required to con gure multiple development
tools,

Increment of development speed and e ciency by providing instant feed-
back for syntax errors or code insights,

Improvement of program management by organizing resources, providing
a virtual representation of the project, and automatically adding appro-
priate imports.

Increased the quality of programs by o ering the ability for debugging,
testing and source control.

Overall these advantages of using an IDE have endorsed the productivity of
a developer and increased the number of possible interactions within an IDE
signi cantly. However the usefulness of interactions which are further described
in Section 2.1.2, IDEs lack e ective support to browse between complex rela-
tionships of source code elements. This implies that developers spend 30% their
time navigating through a chaotic environment, thus, their productivity is being
reduced as supported by [MMRL16] [RNDOQ9] and [KMCAO06]

2.1.2 Interactions within IDE

IDEs are highly used by developers these days to produce and maintain software.
Developers use IDE to read, navigate, understand and write code. In more detalil
the developer interacts with IDE through low level events: mouse clicks and

keyboard shortcuts but also high level events which are facilitated by context

menus existing within IDE as mentioned in [KMCAO06] and [ZH13]. A high

8 Background and Theory

level event is a series of low level events and it allows the developer to re-factor,
debug, navigate, test, and so forth without having to execute manually these
steps. These interactions are referred asisage data in [SMHF* 15] and they
are an essential element of this thesis. Figure 2.1 represents the exchange of
usage data (high and low level events) produced by developer's interactions and
corresponding logs are reported back from IDE.

Figure 2.1: Flow of usage data between developer and IDE.

An example to emphasize on what high and low level events mean as well as to
show the convenience IDE o er is the followingThe renaming of a class within a
large project IDE provides contextual menus enabling fast and e cient changes.
Otherwise a series of low level events such as editing several les, compiling and
error seeking, executing and testing the correctness after the change will have
to be done manually.

According to [ML13b] and [Gul2] gathering all the IDE usage data provides
an additional perception on developers' work ow. Analyzing and tracing the
work ow of a developer throughout usage data is a challenging matter which at-
tracted many researchers before, for example DFlow [USI14] [SMHFL5] [KMCAOQB6].

To understand and investigate further developers' work ow through their inter-
actions within an IDE the selection of an appropriate IDE was required and is
further described in Section 2.2.

2.2 Eclipse IDE 9

2.2 Eclipse IDE

Eclipse is undoubtedly one of the most powerful currently available IDE and this
is why it was selected as the IDE for this thesis. Eclipse o ers various sub-project
development environments, i.e., IDE and Plugin Developer Environment (PDE)
and along with its structured framework it allows extensions and optimization
for tools to be easily applied.

The rst part section 2.2.1 presents the Eclipse IDE with a brief introduction
of its capabilities including the major reasons for selecting this IDE. A basic
vocabulary was provided in regards to Eclipse IDE artifacts. Adding, the next
Section 2.2.2 gives an introduction to the highly adaptable Eclipse IDE and
the various approaches for developing plug-in tools. Attention is then given
on statistical existing plug-ins so as to select a base plug-in which allows the
captivity of developer's interactions. Such plug-ins are analyzed thoroughly and
presented in Section 2.2.3.

2.2.1 Overview of Eclipse

Eclipse IDE is a powerful Ul framework used by a respectively vast amount of
developers: to primarily develop Java applications or even to develop in other
programming languages, and to also develop documents and packages for other
software.

The standard SDK Eclipse distribution contains a base workspace with cer-
tain operations for Java development tooling plug-ins and layout. Thereafter
additional plug-ins can be included or created to allow the extension of the
workspace. As a result Eclipse can become a multi-function framework to be
used for: Embedded programming, C++ programming, javaBeans, Java appli-
cation, websites, or even develop additional Eclipse plug-ins and more [Wik18].

Even though Eclipse framework started as a replacement for visual age for Java
from IBM [Wik18], it became an open platform for integrating tools, editors,
views and plug-ins. Its source code is freely available and anyone can contribute
by building their own new plug-ins or by engaging in discussions regarding
integrated tools.

The most signi cant reasons for selecting the Eclipse IDE to analyze developers'
work ow are :

It is the top ranked used IDE by developers [Bur09] and [Carl6]

10 Background and Theory

It is a home for tools, where you can build and integrate your own [Bur09]

It is highly adjustable and enables the developers to construct its workspace
according to their preferences [Bur09]

It is an open source framework where features and plug-ins are available
online so are the execution and source code les [Bur09]

It is an open source Community [Foul8a], collection of technical profes-
sionals with a common interest in both using and contributing in the
evolution of the platform

Having these reasons in mind the framework of Eclipse was chosen as the IDE
for this thesis. Figure 2.2 illustrates Eclipse workspace and its surroundings,
to o er understanding for the various artifacts and also to de ne a common
vocabulary. Eclipse framework is consisted of a workbench window, which has
integrated basic elements such as views, text editors, menus and active perspec-
tives. [Foul8a]

Figure 2.2: A standard Eclipse workspace setup for a Java developer

A view is a window that enables the developer to observe and examine les
or projects, like Package Explorer, Outline and Console. In general, Eclipse
is in general lled up with context menus the main menu is at the top of
the screen while views and explorers usually provide their own context menus.
Context menus enable the developer to customize the appearance of relevant
information or to provide supplementary capabilities.

A text editor is a smart editor which recognizes the programming language,
markups the syntax and allows the developer to easily modify and save les.
Editors share characteristics with views, but unlike views, editors do not have
context menus.

2.2 Eclipse IDE 11

A perspective has its own a set of elements views and editors and menus along
with an adaptable personalized layout for speci c tasks such as debugging a
program.

To summarize these are the main artifacts usually provided by Eclipse initial
workspace setup for a java developer. These vocabulary terms are a starting
point to understand concepts of IDE as well as concepts supporting plug-in de-
velopment PDE. The real power of Eclipse lies within its capability of developing
plug-ins for itself and is presented in the following Section 2.2.2.

2.2.2 Plug-in Development in Eclipse

Eclipse o ers the capability of developing or evolving additional tools for itself.
The PDE is based on the Open Services Gateway initiative (OSGi) technology,
and the software components are usually packaged and distributed as OSGi
bundles. OSGi bundles are very similar to standard JAR packages. An OSGi
bundle must contain a manifest le with the mandatory meta-data.* This meta-
data includes a name, version, activator, dependencies, APl and more.

Due to this technology, a good architecture is established for Eclipse. This is
why developers are easily able to extend their Eclipse IDE by creating new
additional operations or even improve the capabilities of already implemented

plug-ins. Based on this, a thumping range of plug-in tools are available in Eclipse
Marketplace client. These plug-ins can be classi ed in three categories according
to what they o er to a developer: assistance, customization/management and

statistics.

Assistance plug-ins can o er assistance to a developer while implementing a
software system, like in the instance of JRebel [Zerl8] which allows developer's
to reload code changes instantly or, the instance of Bytecode Outline [Los17]
which shows disassembled byte code of current java editor and allows developer's
to have an inside look in the stack.

Moreover, there are customization and management plug-ins for example: Code-
Bubbles [Reil8] which is a front end of Eclipse designed to simplify programming
by generating working sets and grouping together related source fragments, or
Darkest Dark [Gen18] which simply enhance and changes the user interface color
to black.

Lastly, we have statistical plug-ins which provide statistics by gathering informa-

Lhttps://en.wikipedia.org/wiki/OSGi

12 Background and Theory

tion from Eclipse IDE and by using graphical representations. A representative
example is Metrics which calculates various statistics for your code [Flo16], or
Usage data collector which captures data to help understanding how developers
are using eclipse [Foul8b].

Although, as described above, Eclipse provides a variety of plug-ins to support
developers, usually this results in a chaotic environment. In an attempt to
reduce frustration created by the variety of plug-ins o ered and in an e ort

to improve a developer's productivity, researchers in [GMR17] are aspiring to
understand the developers' work ow by using statistical plug-ins and thereafter
developing Recommendation System in Software Engineers (RSSE)s. Following
ideas and concepts presented in [GMR17] the next Section 2.2.3 analyzes what
available plug-ins can contribute.

2.2.3 Plugin Availability and Analysis

Throughout research [GMR17] the need of developing context models that can
go beyond interaction events and common project artifacts is highlighted. A
model consisting of thirteen contextual factors is suggested in [GMR17]. Con-
textual factors are variables with precise domains of possible values that are
used to identify the context. The model characterizes developer situations from
several perspectives, hamely who, what, when and where. Using this model of

Figure 2.3: Context Model [GMR17]

contextual factors (see in Figure 2.3), as a main criteria along with taking into
account the maintainability and adaptability of the plug-in, an evaluation for
the capabilities of plug-ins can be derived.

Concerning the plug-ins mentioned before, they are mostly directed in gath-
ering statistics and observing the usage of artifacts by recording activity and

2.2 Eclipse IDE 13

interactions of a developer while developing a software system.

After conducting a research on available plug-in tools, through GitHub and
the Eclipse Market, the most similar which could be used as a basis and/or be
combined here are listed below and an evaluation with regards to the set criteria
is done.

Fluorite

" Rabbit
Metrics
Mylyn

Time Keeper
ITrace

Usage Data Collector

Fluorite is a plug-in developed in the School of Computer Science at Carnegie
Mellon university [YM11]. Its purpose is low level event logging for Eclipse
when using the code editor. In other words, events such as: character type, text
cursor movement, selected text modi cation, as well as, all the other available
Eclipse commands that can be called for an editor.

In Figure 2.4 an example representing the data from Fluorite depicted from
[YM11] is shown. By using the logged data, Fluorite can provide full reproduc-
tion of each source code le that has been used during a programming session.
Fluorite could potentially be used to extract developers' source coding activity
since it enables the detection and measurement of time for various usage patterns
or events of interest like "typo correction”. Among their ndings, the authors
provided empirical evidence that editing source code is di erent from editing
textual documents. The authors also studied the distribution of keystrokes
reporting that backspace and arrows are the most frequent keys pressed by
developers.

However, this plug-in seemed promising for investigating sequences of low level
events and detecting coding strategies for code editor, it was not selected for
further exploitation. The main reason for not selecting this tool was its disabil-
ity of recording interactions of the developer with an IDE since this tool only
focused in capturing code editor interactions. A less important reason causing
the rejection of this plug-in was the massive amounts of low level events which
were generated and the unobtainable source code.

14 Background and Theory

Figure 2.4: Fluorite: Example of data log collected

Usage Data collector is a framework for collecting information regarding
usage data of Eclipse IDE.

It was originally build by the Eclipse Foundation, as a way to measure how
the community was using the IDE. Information for views usage, editor usage,
changes of perspectives and actions invoked are recorded by monitors which
also use a time-stamp. In Figure 2.5 an example of a data log entry is shown
[SMHF* 15]. Moreover this plug-in also collects basic information about the
run-time environment (OS, system architecture, window system, locale, etc).
This information are uploaded periodically to servers hosted by The Eclipse
Foundation with the purpose to be processed in a later stage [Foul8b]. This
project was shut down eventually due to resource constraints since hundreds of
thousands of Eclipse users uploaded data, the executable code for this plug-in
remains available as well as the collected data is available upon request.

Figure 2.5: Usage data collector: Example of data log collected [SMHF15]

This plug-in tool records relevant information required for this thesis and for
this reason is valid and useful candidate by achieving a signi cant amount of
contextual factors 2.3. The source code was not obtainable and therefore the
usage of this plug-in as a basis for this research was rejected. According to
[SMHF* 15] another inconvenience of this tool, is the fact that sometimes in-
complete data are captured. This is because not all key bindings, menu or main
toolbar bindings are addressed.

Metrics [Flo16] is a plug-in that calculates around 20 metrics for your code dur-
ing build cycles, warns the developer of range violations for each metric, plus,
it provides an XML le that contains the information. What is more, it pro-
vides representation of these metrics in tables inside the Eclipse IDE and also
generates dependency graphs. The mentioned calculated metrics for instance

2.2 Eclipse IDE 15

are McCabe's cyclomatic complexity, number of elements (classes, children,
interfaces,statements, elds), depth of inheritance,etc. These metrics provide
information related to experience and to programming style of a developer as
referenced and further explained in [LWO5].

This plug-in source code can be found online in [Git18] and in the Figure 2.6 a
representation of the mentioned calculated metrics is illustrated.

Figure 2.6: Metrics: Example of data collected [LWHO05]

Metrics is analysing static code and although it can o er a perception of the
experience of the developer and the complexity of the current implemented
software system, it is not able to capture developers' current activity, therefore
it was not selected.

Mylyn is a subsystem in Eclipse used for task management.[Com18] The orig-
inal name of this project is Mylar, and was used in studies such as [MKFOg].
Mylyn o ers a task-focused interface shown in gure 2.7 (f.x. xing bugs, new
features, problem reports) to reduce irrelevant information to a task and makes
multitasking easier. Mylyn monitors programming activity to create a "task
context" in relation to workspace and automatically links all relevant artifacts

to the task-at-hand. Mylyn allows developers' tasks to be organized and moni-
tors its activity. It provides awareness for the progress of tasks, and increases the
productivity by reducing unnecessary navigation, searching and scrolling. Fur-
ther Mylyn allows the creation of graph elements and relationships of program
artifacts.

As an addition to Mylyn plug-in, was TimeKeeper which is responsible to

track time, and report how long a developer worked on a certain task, and

open a workweek view. Together these two plug-ins form a strong organiza-
tion and management of working environment. The source code for Mylyn and
Timekeeper plug-ins are available online and located at [Gitll] and [Gitl17] re-
spectively.

16 Background and Theory

Figure 2.7: Mylyn: Example of provided interface

Even though Mylyn integrated with TimeKeeper tool and they seemed promis-
ing, the main disadvantage of using this project was that important information

of developers' interaction with IDE were not captured. These information are for
example: switching between views or switching between perspective. Therefore
this tool was not selected.

iTrace is a tool integrated with an eye tracker to determine the type of element
one is looking at. iTrace was released as open source project in June 7th 2015.
[Unil5] While the user is reading a source code le, the tools is recording the
eye movement and xations and is able to identify the source code element for
example if the user is looking at a method, or an if statement, etc. iTrace allows
horizontal and vertical scrolling and is able to retrieve information only when
the code is static and no interactions with the IDE through keyboard or mouse
are happening. After a recording session of iTrace a data log with the xations
on the current java editor is provided in an XML form (see gure 2.8).

iTrace capability to identify source code elements by using eye movement is
remarkable and the source code is available online [Gitl5a]. However, since
developers' current activity is required to be captured to understand developers'
work ow, tracking only when user is reading results is a great limitation.

Rabbit Eclipse is a statistics tracking tool which provides developers with
information regarding their interactions within Eclipse IDE by recording low

2.2 Eclipse IDE 17

Figure 2.8: iTrace: Example of logged data [SWW 15]

and high level events. The information is then displayed to developers by using a
graphical representation and also data logs. (see gure 2.9 and 2.10). Therefore,
tracking current activity of a developer within the IDE is possible.[Cod11]

Figure 2.9: Rabbit Eclipse Ul

Rabbit eclipse carries similar ideas to Usage data collector mentioned before.
Even though that its development was terminated, the source code was available
on git-hub [Git15b].

Rabbit proved to be a good candidate for this thesis by achieving also a sig-
ni cant amount of contextual factors 2.3. The source code was obtainable and

	Abstract
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Structure of thesis

	2 Background and Theory
	2.1 Integrated Development Environment
	2.1.1 Overview of IDE
	2.1.2 Interactions within IDE

	2.2 Eclipse IDE
	2.2.1 Overview of Eclipse
	2.2.2 Plug-in Development in Eclipse
	2.2.3 Plugin Availability and Analysis

	2.3 The focal plug-in - Rabbit Eclipse
	2.3.1 Overview of Rabbit Eclipse
	2.3.2 Architecture of Rabbit Eclipse

	2.4 Process Mining and Disco
	2.4.1 Overview of Process Mining
	2.4.2 Overview of Disco

	3 Problem Definition
	4 Design and Implementation
	4.1 Design for Process Mining
	4.1.1 Include Timing interactions
	4.1.2 Include Developer's id
	4.1.3 Include Command categories

	4.2 Design for Locating command - resource interaction
	4.3 Design for Analyzing Java element interactions
	4.3.1 Detecting Java element interaction - Design 1
	4.3.2 Detecting Java element interaction - Design 2
	4.3.3 Comparison of Design 1 and Design 2

	5 Process Mining Analysis
	5.1 Disco Requirements Setup
	5.2 Mining Approach
	5.3 Results from Disco
	5.3.1 Result 1 - Most Commonly used Commands
	5.3.2 Result 2 - Developers workflow
	5.3.3 Result 3 - Compare Developers workflow between two classes
	5.3.4 Result 4 - Compare Developers workflow in a specific class

	5.4 Summary

	6 Conclusion
	A Appendix 1: Rabbit Eclipse
	A.1 Commands

	B Appendix 2
	B.1 Experiment
	B.2 Disco Results

	Bibliography

