
Technical University of Denmark

DTU Compute
Master’s thesis

A mediator for model analysis services

Author:
Jesper Bak Hansen

Supervisors:
Andrea Burattin
Ekkart Kindler

Monday 7th January, 2019

Technical University of Denmark
DTU Compute
Richard Petersens Plads
Building 324
DK-2800 Kgs. Lyngby
Tel 4525 3031
CVR 30 06 09 46
EAN 5798000428515
compute@compute.dtu.dk

Student: Jesper Bak Hansen (s112998@student.dtu.dk)
Danish title: En mægler til modelanalyse-tjenester
English title: A mediator for model analysis services
ECTS credits: 30
Start date: 08-10-2018 (19-03-2018)
End date: 07-01-2019 (19-08-2018)

Supervisor: Andrea Burattin (andbur@dtu.dk)
Co-supervisor: Ekkart Kindler (ekki@dtu.dk)

Abstract

The project is about the development of a system that makes it possible to
extend a Business Process Management (BPM) platform (Oryx) with new
functionalities using a mediator for model analysis services. The idea is that
existing tools with model analysis capabilities can be reused if a service in-
terface is added to the respective tool and described in a service description.
The service interface is communicated to the platform by via the mediator
if the service is registered with the mediator. The mediator structures the
services independently of each other, each of which has associated an arbit-
rary amount of operations. Each operation has a description of how it is
requested.

The final system is named ”Gazelle Ecosystem” and consists of four overall
components: BPM platform, mediator, service and a client, which is plugged
into the platform.

iii

iv ABSTRACT

Resume

Projektet omhandler udviklingen af et system, der gør det muligt at udvide
en Business Process Management (BPM) platform (Oryx) med nye funk-
tionaliteter ved hjælp af en mægler til modelanalyse-tjenester. Ideen er, at
eksisterende redskaber med funktionaliteter til modelanalyse kan genbruges
hvis der tilføjes en tjeneste-grænseflade til det respektive redskab og det
beskrives. Tjenestens grænseflade videreformidles til platformen via mæ-
gleren, såfremt tjenesten er registreret ved mægleren. Mægleren strukturerer
tjenesterne uafhængigt af hinanden, der hver især har tilknyttet en vilkårlig
mængde operationer. Hver operation har tilknyttet en beskrivelse af hvordan
den anmodes.

Det endelige system er døbt “Gazelle Ecosystem” og består af fire overor-
dnede komponenter: BPM platform, mediator, tjeneste og en klient, der
plugges ind i platformen.

v

vi RESUME

Acknowledgements

I want to thank Andrea and Ekkart for their openness to arrange this project
at very short notice, their welcoming attitude, their guidance and not least
their persistence.

vii

viii ACKNOWLEDGEMENTS

Contents

Abstract iii

Resume v

Acknowledgements vii

Contents ix

Acronyms xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem description . 3
1.3 Outline . 3

2 Related work 5
2.1 Service registry . 5
2.2 Interface Description Language (IDL) 5

2.2.1 RESTful API Description Languages 6
2.2.2 Comparison based on code generation 6

2.3 Online BPM Platforms . 6
2.3.1 Search criteria . 7
2.3.2 Existing online BPM platforms 7
2.3.3 Microservice based tool support 8

3 Handbook 9
3.1 Product overview . 9
3.2 Example . 11
3.3 Functionalities . 11

3.3.1 Create a model in Oryx 12
3.3.2 Generate a log with PLG in Oryx using Gazelle 16

ix

x CONTENTS

3.3.3 Register a service in the mediator 20
3.3.4 Register an operation in the mediator 21

3.4 Installation . 29
3.4.1 Installing prerequisites 29
3.4.2 Oryx . 30
3.4.3 Mediator . 32

3.5 Summary . 33

4 Requirements Specification 35
4.1 Domain analysis . 35
4.2 Functional requirements . 37

4.2.1 Use case diagram . 38
4.2.2 Use cases . 39
4.2.3 Detailed use cases . 40

4.3 Non-functional requirements 44
4.3.1 Platform . 44
4.3.2 Heterogeneity . 45

5 Architecture of the Gazelle Ecosystem 47
5.1 Structure . 47
5.2 Interaction . 48

5.2.1 Interaction in use case: Perform analysis 48
5.2.2 Interaction in use case: Register service 49

5.3 Components . 51
5.3.1 BPM platform . 51
5.3.2 Web service . 53
5.3.3 Mediator . 54
5.3.4 Gazelle client . 56

6 Impl. of the Gazelle Ecosystem 59
6.1 Included repositories . 59
6.2 Model-driven development . 60

6.2.1 Describe class design in an Interface Description Lan-
guage (IDL) . 61

6.2.2 Generate software based on IDL description 62
6.2.3 Implement behaviour of generated software 63

6.3 Components . 63
6.3.1 BPM Platform . 64
6.3.2 Web service . 66
6.3.3 Mediator . 66
6.3.4 Gazelle client . 68

CONTENTS xi

7 Evaluation 69
7.1 Objectives . 69
7.2 Extending functionality . 70
7.3 Remaining considerations . 70

8 Conclusion 71

Appendix A Glossary 73

Bibliography 75

xii CONTENTS

Acronyms

aka also known as

Apromore Advanced Process Analytics Platform

BPM Business Process Management

BPMN Business Process Model and Notation

CLI Command-Line Interface

CMMN Case Management Model and Notation

CORS Cross-Origin Resource Sharing

CRUD Create, Read, Update and Delete

DMN Decision Model and Notation

DTU Technical University of Denmark

GE Gazelle Ecosystem

HTTP HyperText Transfer Protocol

IaaS Infrastructure as a Service

IDL Interface Description Language

JAX-RS Java API for RESTful Web Services

JRE Java Runtime Environment

LoLA Low Level Petri net Analyzer

OAS OpenAPI Specification

PLG Processes and Logs Generator

RESTful representational state transfer

xiii

xiv ACRONYMS

SaaS Software as a Service

SOA Service-Oriented Architecture

TU/e Eindhoven University of Technology

UDDI Universal Description, Discovery, and Integration

Chapter 1

Introduction

Model-based analysis is one of the key concerns of Business Process Man-
agement (BPM) [20]. Model-based analysis is used in the (re)design phase
of the BPM life cycle. Tools are developed with the purpose of supporting
model-based analysis. Examples of model-based analysis tools are Low Level
Petri net Analyzer (LoLA) [22] and Processes and Logs Generator (PLG) [5].
LoLA can analyse business processes, in the form of Petri nets, for various
properties. These properties are for example deadlocks and soundness of a
workflow net (a workflow net is a type of Petri net) [21]. PLG can analyse
business process models by being able to generate random business processes
and executing business process models [5]. BPM platforms exist which sup-
port the (re)design phase, including model-based analysis. Example of BPM
platforms are Advanced Process Analytics Platform (Apromore) [15] and
Oryx [7]. Apromore and Oryx both consist of a model repository, a model
editor and a plug-in feature. Model-based analysis tools are “plugged in”
the respective platform with the plug-in feature. The main problem is to
integrate model-based analysis tools, such as LoLA and PLG, into BPM
platforms as cost-efficiently as possible. Is the prescribed plug-in feature
sufficient? Based on the main problem, an objective of the thesis is pro-
posed. The objective of the thesis is the extension of an existing framework
for business process modelling, which allows:

O1 Being extended quickly and easily by existing external tools.

O2 Collaboration on models between multiple actors across multiple com-
puting platforms.

O3 Analysis of models, e.g. verification, simulation and transformation.

1

2 CHAPTER 1. INTRODUCTION

Objective O1 refers to the time and skill it takes to extend the framework with
additional functionality, both of which should be as low as possible. Objective
O2 refers to sharing models between actors (users or systems). Objective O3
specifies that it should be possible to perform analysis of models as part of
(or extension of) the framework.

The contribution of this thesis is Gazelle Ecosystem (GE). GE makes it
possible to dynamically extend the functionality of a BPM platform. Each
model-based analysis tool is expected to be available as a service and de-
scribed in a service contract. The service contract is registered to the me-
diator. A mediator service and a mediator client are implemented based
on the service contract. The mediator client is integrated into an existing
BPM platform using its plug-in feature. The mediator client retrieves the
service contract from the mediator service. The mediator client utilises the
discovered service.

1.1 Motivation

Multiple tools have been developed in order to design and analyse business
process models. The functionality includes editing, generation, verification,
transformation and simulation of models. For example, the Humboldt Uni-
versity of Berlin, the University of Rostock and the Eindhoven University of
Technology (TU/e) have released 25 open-source tools [3]. The University of
Innsbruck has released PLG2 [5]: a tool to generate business process mod-
els and logs. Technical University of Denmark (DTU) has released ePNK
[16]: a generic PNML tool and extensible for new Petri net types. In order
to assist BPM, digital platforms are developed which are either closed- or
open-source and either online or offline. Apromore [15] and Oryx [13] are
two examples of online open-source BPM platforms. They are online in the
sense that the platform is accessible via the network from a server, at least
partially (the client) and accessible via a web browser. A problem, which
can be observed for both Apromore and Oryx, is the way the platforms are
extended. Extending the functionality of these platforms requires developing
a plugin which is dedicated to the respective platform. When the plugin has
been developed, e.g. by a programmer, it must be installed and maintained,
e.g. by an administrator. Meanwhile, tools are developed to perform analysis
of business processes, which are independent of these BPM platforms.

1.2. PROBLEM DESCRIPTION 3

1.2 Problem description

This project is in the field of Business Process Management, using Software
Engineering as the approach. Web services use different interface description
languages (IDL) to describe their application programming interface (API).
The problem is for the client to conform to the respective API’s in order
to consume them. This project investigates the possibility of mediating the
contract between the client and the services if the services share a common
domain. In this case the domain of business process model analysis.

1.3 Outline

The remaining part of the report begins with related work on the subject
(Chapter 2). the following chapter is a handbook which provides the reader
with an overview of how to use the system prior to explaining the details
(Chapter 3). The handbook is also used as input to the following chapter on
requirements (Chapter 4). The system architecture and implementation are
described in Chapter 5 and 6, respectively. Chapter 7 is an evaluation of to
which degree the thesis objectives have been met. Finally, in Chapter 8, a
conclusion is drawn of the thesis.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

2.1 Service registry

The following products have been discovered which are similar to the func-
tionality of the mediator:

• Universal Description, Discovery, and Integration (UDDI) [6]

• System for dynamically invoking remote network services using service
descriptions stored in a service registry [19]

2.2 Interface Description Language (IDL)

There are multiple IDL’s1 available. In this project is focused on the IDL’s
which support model-driven development.

1https://en.wikipedia.org/wiki/Interface_description_language

5

https://en.wikipedia.org/wiki/Interface_description_language

6 CHAPTER 2. RELATED WORK

2.2.1 RESTful API Description Languages

Attribute API Blueprint OpenAPI RAML2

Sponsor Apiary (Oracle) Open API Initiative (The Linux
Foundation)

MuleSoft

License MIT Apache 2.0 Apache 2.0
Latest release format-1A9 / 8-Jun-2015 3.0.1 / 7-Dec-2017 1.0.1 / 29-Jul-2016
Next release unknown 3.0.2 (Patch) Patch
Format Markdown JSON/YAML YAML
Watch / Star / Fork 195 / 6,569 / 1,846 663 / 9,843 / 3,179 158 / 3,061 / 640
Stack Overflow tags 229 since 19-Sep-2013 257 since 12-Apr-2016 256 since 15-Jan-2014
Tools https://apiblueprint.org/tools.html https://apis.guru/awesome-

openapi3/, http://openapi.tools/
https://raml.org/projects

2.2.2 Comparison based on code generation

Requirement (open-source, active) API Blueprint 1A9 OAS 3.0 RAML 1.0 Note
IDE 2� 2� 2�
Code generation for JAX-RS 2 2� 2� PLG2
Code generation for Java client 2 2� 2� Oryx servlet
Code generation for JavaScript client 2 2� 2� Oryx client
Documentation generation 2� 2� 2�

2.3 Online Business Process Management
Platform

BPM platforms usually consists of several business process tools: editor, re-
pository, and engine. The editor Create, Read, Update and Delete (CRUD)’s
business process diagrams, while the repository provides persistence of the
diagram and its underlying model. The underlying model of the diagram
can be executed by the engine, which execution is either fully or partially
automated. The business process model which is imported/exported to/from
the business process tools, can be analysed for different properties (...). The
analysis is either done by using the exported business process model in an
external tool, or by using the editor or repository as a gateway for the ana-
lysis. The BPM platforms are either distributed as closed- or open-source
projects, where the closed-source projects are available as Software as a Ser-
vice (SaaS) and the open-source BPM platforms are targeted on-premises or
Infrastructure as a Service (IaaS). The idea is to investigate existing BPM
platforms and use one of them as a starting point.

2.3. ONLINE BPM PLATFORMS 7

2.3.1 Search criteria

In order to set a proper baseline for the project, a search is done for existing
BPM platforms. The search criteria consist of the following keywords:

• business process management

• framework

• platform

• online

• web

• design

• analysis

• extensible

• open source

The keywords are based on the objective (O1, O2, O3) and related terms,
i.e. it should be a framework or platform which is extensible, online for the
sake of collaboration, and web-based to accommodate multiple platforms.

In the yielded search results, the focus is on BPM platforms which offer
design and analysis aspects, as well as extensibility. Google Scholar and
Google Search are used as search engines. On Google Scholar, the relevancy
of the search result is based on reading its abstract. On Google Search, it is
based on the description of the product or service.

Searching for “open source bpm platform” on Google Scholar yields Oryx–an
open modeling platform for the BPM community [8] as the first result. Search-
ing for the same on Google Search yields a relevant result of Camunda BPM:
Workflow and Decision Automation Platform [12], in the top three.

2.3.2 Existing online BPM platforms

Various online BPM platforms exist based on either open- or closed-source
software. Apromore and Oryx are two examples of such platforms based on
open-source software. Apromore is an active project since 2010, while Oryx
was active during 2006-2012.

8 CHAPTER 2. RELATED WORK

Camunda Services GmbH offers an open-source web editor package at https:
//bpmn.io, with support for Business Process Model and Notation (BPMN),
Decision Model and Notation (DMN) and Case Management Model and
Notation (CMMN), as well as closed-source web editor at https://cawemo.
com, with support for BPMN, available as a SaaS-platform with storage,
discussion and sharing properties. In addition, Camunda offers a business
process engine, respectively an open-source community edition and a closed-
source enterprise edition, with more features.

2.3.3 Microservice based tool support

An architecture has been developed for “microservice based tool support
for business process modelling” [1]. The architecture consists solely of mi-
croservices according to four clusters of service types: presentation, manager,
analysis and editors. The independent services communicate over an API
gateway.

https://bpmn.io
https://bpmn.io
https://cawemo.com
https://cawemo.com

Chapter 3

Handbook

The handbook is a practical approach to what this project is about. The
project is basically about extending the functionality of a BPM platform by
mediating a contract between the platform and model analysis services via
a mediator. The platform should be able to utilise the respective service
once the contract has been successfully mediated. This chapter is about
providing the user with an overview of the product (Sec. 3.1) in terms of its
components and user roles and guide these roles on how to work with the
product in terms of its functionalities (Sec. 3.3) based on an example (Sec
3.2). The product can also be installed locally which will be explained in
Section 3.4. After reading this chapter the reader can expect to have learned
what the product consists of, his/her possible role when using the product
and how to interact with the product.

3.1 Product overview

This section provides an overview of the product. The product is a BPM
platform in combination with independent services. The product consists of
independent components (or parts) which interchange messages. The mes-
sages are triggered by user interactions. Figure 3.1 illustrates an overview of
the product.

9

10 CHAPTER 3. HANDBOOK

Contribution

Mediator Service

End-user

Developer

Admin

Gazelle Client

Oryx

Figure 3.1: Overview of the product.

There are four components and three user roles in the product. The com-
ponents are: Oryx, Gazelle Client, Mediator and Service. Oryx is a BPM
platform accessible on the Web and consists of a repository for persisting
models and an editor for editing models. Gazelle client is a web applica-
tion which is embedded into Oryx as a plugin. Gazelle client is responsible
for interacting with the mediator and the service. The mediator is a web
service which is responsible for the service description of the service. The
service describes his service to the mediator. Gazelle client must be able to
understand the interface of the mediator and learns about the interface of
the service via the mediator. Three user roles interact with the components:
End-user, Admin and Developer. The end-user interacts directly with Oryx
and indirectly with all the other components. The admin interacts only with

3.2. EXAMPLE 11

the mediator. The developer interacts with his own service and interacts
with the mediator in order to add a description of the service.

3.2 Example

The following example business process is used as input to the tutorials in
Section 3.3. The example is illustrated in Figure 3.2.

Figure 3.2: Example of a business process model for handling a received
email in regards to spam.

Explanation of the business process model: When an email is received, the
first task is to check it for spam, perhaps by using a spam filter. If the check
determines that the email is indeed spam, it will move the email to the spam
folder and stop the process. Otherwise, it will move the email to the inbox
folder and stop the process.

3.3 Functionalities

In this section the functionalities of the product will be described by the use
of tutorials.

12 CHAPTER 3. HANDBOOK

3.3.1 Create a model in Oryx

Intended user role: End-user

This tutorial will guide you through how to create a model in Oryx. The
model will be a business process model specified in BPMN 2.0. The guide
assumes that you knows how to construct a valid model in BPMN 2.0 spe-
cification. Create a business process model in Oryx:

1. Open the Oryx repository in your web browser: http://localhost:
9090/backend/poem/repository as shown in Figure 3.3.

Figure 3.3: Oryx repository: Web page.

2. Select Create New Model as shown in Figure 3.4 to open a list of model
types to choose between.

http://localhost:9090/backend/poem/repository
http://localhost:9090/backend/poem/repository

3.3. FUNCTIONALITIES 13

Figure 3.4: Oryx repository: Create New Model.

3. Select BPMN 2.0 Processes in the list to open an editor instance where
shapes from the BPMN 2.0 specification are available as shown in Fig-
ure 3.5.

Figure 3.5: Oryx editor: Web page.

4. Select a shape in the Shape Repository in the left menu of the editor
instance in Figure 3.5.

14 CHAPTER 3. HANDBOOK

5. Drag and drop the shape into the diagram view in the center as shown
in Figure 3.6 and 3.7 for a Task element.

Figure 3.6: Oryx editor: Dragging Task element.

Figure 3.7: Oryx editor: Dropped Task element.

6. Double-click on the Task element to change its name as shown in Figure
3.8.

3.3. FUNCTIONALITIES 15

Figure 3.8: Oryx editor: Edit task name.

7. Repeat step 4-6 until you have a desirable model.

Example of a desirable model As an example you can model the busi-
ness process model illustrated in Figure 3.9 which is explained in Section
3.2.

Figure 3.9: Business process model in BPMN 2.0 specification created in the
Oryx Editor: BPMN 2.0 Processes perspective.

16 CHAPTER 3. HANDBOOK

3.3.2 Generate a log with PLG in Oryx using Gazelle

Intended user role: End-user

Processes and Logs Generator (PLG) is an application for generating pro-
cesses and logs of processes in the BPM domain. PLG is made available as a
service, as part of this project, in a limited prototype version and has been
registered in the mediator. PLG is able to read the following interchange
formats: PLG, Signavio BPMN and Oryx BPMN. The latter is compatible
with Oryx.

This tutorial will show you to generate a log with PLG of model created in
Oryx using Gazelle and the mediator by following these steps:

1. Open Gazelle by left-clicking on the WS -icon1 as shown in Figure 3.10.

Figure 3.10: Oryx editor where Gazelle is opened.

The first thing Gazelle does when it is opened is to retrieve the available
services from the mediator. In this case Gazelle was able to retrieve two
services labelled PLG - Processes and Logs Generator and LoLA 2.0
as a service. Underneath each label is a description of the respective
service. In order to see which operations are available in a service you
need to select it.

1WS is an acronym for Web Service.

3.3. FUNCTIONALITIES 17

2. Select the service labelled PLG - Processes and Logs Generator by left-
clicking on the rectangle surrounding the label and description. The
resulting page is shown in Figure 3.11

Figure 3.11: List of operations for the service PLG - Processes and Logs
Generator.

Gazelle retrieves the operations of the selected service from the medi-
ator. The list of operations is structured the same way which the list of
services is structured. I.e. two operations are available for the selected
service: Generate process and Generate log.

3. Select the operation Generate log the same way you selected the service
in step 2. The resulting page is shown in Figure 3.12

18 CHAPTER 3. HANDBOOK

Figure 3.12: Request form for the operation Generate log.

Each field in Figure 3.12 is a parameter to the request of the opera-
tion of the PLG service. The values presented for Change activity name
prob. and Number of traces are the default values for these parameters.
The first parameter is the promille (1-1000) chance to change activity
and the second parameter is how many times the process should ex-
ecuted from start to finish (from Email received to Email handled).
The third parameter is the model, which is implicitly derived from the
Oryx editor instance.

4. Change the arguments to the parameters Change activity name prob.
and Number of traces as desired, e.g. as shown in Figure 3.13.

3.3. FUNCTIONALITIES 19

Figure 3.13: Changed arguments to parameters.

5. Select Submit and you will receive a result as shown in Figure 3.14.

Figure 3.14: Result from submit.

The response has (HTTP) status 201 which means the log (resource)
was created. In the Location header is a link of where to download the
generated log.

6. The generated log can now be retrieved by querying the following URL:
http://localhost:8181/logs/ecea70a3-4037-48b5-9d8c-c34e0db04255

http://localhost:8181/logs/ecea70a3-4037-48b5-9d8c-c34e0db04255

20 CHAPTER 3. HANDBOOK

3.3.3 Register a service in the mediator

Intended user role: Admin or Developer

In order to register a service in the mediator you need to find the Service
schema, describe an instance of the schema and submit it to the mediator.

1. Find the Service schema at http://localhost:9595/openapi.json#
/components/schemas/Service

1 {
2 " components ": {
3 " schemas ": {
4 " Service ": {
5 " example ": {
6 " description ": {
7 "text": "text"
8 },
9 " label ": {

10 "text": "text"
11 },
12 "name": "name"
13 },
14 " properties ": {
15 " description ": {
16 "$ref": "#/ components / schemas / Description "
17 },
18 " label ": {
19 "$ref": "#/ components / schemas / Label "
20 },
21 "name": {
22 "type": " string "
23 }
24 },
25 " required ": [
26 " description ",
27 " label ",
28 "name"
29],
30 "type": " object "
31 }
32 }
33 }
34 }

Listing 3.1: Service schema in JSON format.

In Listing 3.1 is listed the Service schema in JSON format.

2. Copy the example object:
1 {
2 " description ": {
3 "text": "text"
4 },
5 " label ": {
6 "text": "text"
7 },

http://localhost:9595/openapi.json#/components/schemas/Service
http://localhost:9595/openapi.json#/components/schemas/Service

3.3. FUNCTIONALITIES 21

8 "name": "name"
9 }

3. Modify description.text to a description of your service,
label.text to a label of your service and name to a unique
name of your service. The name is also used to identify the service
later on. An example where it is done for the PLG service is provided
in Listing 3.2.

1 {
2 " description ": {
3 "text": " Process Log Generator is a application capable to

generate random business processes , starting from some general ’
complexity paramenters ’. PLG is also able to ’execute ’ a given
process model in order to generate a process log."

4 },
5 " label ": {
6 "text": "PLG - Processes and Logs Generator "
7 },
8 "name": "plg"
9 }

Listing 3.2: Example of PLG described as a Service object.

4. Use the HTTP POST request method to create the resource at http:
//localhost:9595/services, e.g. with curl:

1 curl -X POST "http :// localhost :9595/ services " -H " accept : application
/json" -H "Content -Type: application /json" -d "{\" description \"
:{\"text\":\" Process Log Generator is a application capable to
generate random business processes , starting from some general ’
complexity paramenters ’. PLG is also able to ’execute ’ a given
process model in order to generate a process log .\"},\" label \":{\"
text\":\"PLG - Processes and Logs Generator \"},\"name\":\"plg\"}"

5. If the resource was successfully created you will receive the HTTP
status code 201 CREATED.

6. The resource is now available at http://localhost:9595/services/
plg.

3.3.4 Register an operation in the mediator

Intended user role: Admin or Developer

Now it is time to register an operation in the mediator to the service.

http://localhost:9595/services
http://localhost:9595/services
http://localhost:9595/services/plg
http://localhost:9595/services/plg

22 CHAPTER 3. HANDBOOK

1. Find the Operation schema at http://localhost:9595/openapi.
json#/components/schemas/Operation

1 {
2 " components ": {
3 " schemas ": {
4 " Operation ": {
5 " example ": {
6 " description ": {
7 "text": "text"
8 },
9 " group ": " group ",

10 " label ": {
11 "text": "text"
12 },
13 "name": "name",
14 " request ": {
15 " contentType ": " application /json",
16 " method ": "GET",
17 " responseType ": " IMPORT ",
18 "url": "url"
19 }
20 },
21 " properties ": {
22 " description ": {
23 "$ref": "#/ components / schemas / Description "
24 },
25 " group ": {
26 "type": " string "
27 },
28 " label ": {
29 "$ref": "#/ components / schemas / Label "
30 },
31 "name": {
32 "type": " string "
33 },
34 " request ": {
35 "$ref": "#/ components / schemas / Request "
36 }
37 },
38 " required ": [
39 " description ",
40 " label ",
41 "name",
42 " request "
43],
44 "type": " object "
45 }
46 }
47 }
48 }

Listing 3.3: Operation schema in JSON format.

2. Copy the example object:
1 {
2 " description ": {
3 "text": "text"
4 },
5 " group ": " group ",

http://localhost:9595/openapi.json#/components/schemas/Operation
http://localhost:9595/openapi.json#/components/schemas/Operation

3.3. FUNCTIONALITIES 23

6 " label ": {
7 "text": "text"
8 },
9 "name": "name",

10 " request ": {
11 " contentType ": " application /json",
12 " method ": "GET",
13 " responseType ": " IMPORT ",
14 "url": "url"
15 }
16 }

3. Modify the operation object according to your operation:

• description.text: to a description of your operation.

• label.text: to a label of your operation.

• name to a unique name of your operation. The name is also used
to identify the operation later on.

• group to a value that specifies the group which the operation
belongs to, e.g. “verification”.

An example where it is done for a PLG operation is provided in Listing
3. The object request is omitted in this step, but will be explained in
the next step.

1 {
2 "name": " generateLog ",
3 " group ": " verification ",
4 " description ": {
5 "text": " Generate log containing simulation of a process "
6 },
7 " label ": {
8 "text": " Generate log"
9 }

10 }

4. Modify the request object according to your operation2

• contentType: The media type to contain the parameters when
executing the request. Supported values:

– application/json

– application/xml
2Note there is currently a bug in the generation of examples that causes

requestConfigurations and parameters to not be a part of the example.

24 CHAPTER 3. HANDBOOK

– application/x-www-form-urlencoded

• method The HTTP request method to use when executing the
request. Supported values:

– GET

– POST

• responseType: The abstract response to be derived in the BPM
platform. Supported values:

– IMPORT (the response can be imported)

– OPEN (the response can be opened)

– LOG (the response is a log)

• url: The URL to the resource path of the operation.

• requestConfigurations: A list of parameters that should always
be part of the request.

• parameters: A list of parameters that the user has to supply to
the request. Supported types:

– STRING: A value that must be of string characters.

– INTEGER: A value that must be an integer.

– MODEL: A value that must be a model.

An example where it is done for a PLG operation is provided in Listing
3.4.

1 " request ": {
2 " contentType ": " application /json",
3 " method ": "POST",
4 " responseType ": "LOG",
5 "url": "http :// localhost :8181/ logs",
6 " requestConfigurations ": [],
7 " parameters ": []
8 }

Listing 3.4: Example of request object without parameters. Note
requestConfigurations and parameters have been added manually.

The schemas that should be supplied to requestConfigurations
and parameters are RequestConfiguration, StringParameter,
IntegerParameter and ModelParameter. These schemas all inherit
fields from the Parameter schema in Listing 3.5.

3.3. FUNCTIONALITIES 25

1 {
2 " components ": {
3 " schemas ": {
4 " Parameter ": {
5 " properties ": {
6 "key": {
7 "type": " string "
8 },
9 " label ": {

10 "$ref": "#/ components / schemas / Label "
11 },
12 " query ": {
13 "type": " boolean "
14 },
15 " required ": {
16 "type": " boolean "
17 },
18 "type": {
19 "enum": [
20 " STRING ",
21 " INTEGER ",
22 " MODEL "
23],
24 "type": " string "
25 }
26 },
27 " required ": [
28 "key",
29 " required ",
30 "type"
31],
32 "type": " object "
33 }
34 }
35 }
36 }

Listing 3.5: Parameter schema.

5. Add an instance of the RequestConfiguration schema in Listing 5, if
there are any.

1 {
2 " components ": {
3 " schemas ": {
4 " RequestConfiguration ": {
5 " allOf ": [
6 {
7 "$ref": "#/ components / schemas / Parameter "
8 }
9],

10 " properties ": {
11 " value ": {
12 "type": " string "
13 }
14 },
15 " required ": [
16 " value "
17],
18 "type": " object "

26 CHAPTER 3. HANDBOOK

19 }
20 }
21 }
22 }

6. The parameters must be specified in one of the three following ways:

(a) StringParameter in Listing 3.6.
1 {
2 " components ": {
3 " schemas ": {
4 " StringParameter ": {
5 " allOf ": [
6 {
7 "$ref": "#/ components / schemas / Parameter "
8 }
9],

10 " properties ": {
11 " default ": {
12 "type": " string "
13 },
14 " maxLength ": {
15 " format ": " int32 ",
16 "type": " integer "
17 },
18 " minLength ": {
19 " format ": " int32 ",
20 "type": " integer "
21 }
22 },
23 "type": " object "
24 }
25 }
26 }
27 }

Listing 3.6: StringParameter schema

(b) IntegerParameter in Listing 3.7.
1 {
2 " components ": {
3 " schemas ": {
4 " IntegerParameter ": {
5 " allOf ": [
6 {
7 "$ref": "#/ components / schemas / Parameter "
8 }
9],

10 " properties ": {
11 " default ": {
12 " format ": " int32 ",
13 "type": " integer "
14 },
15 " format ": {
16 "enum": [

3.3. FUNCTIONALITIES 27

17 " int32 ",
18 " int64 "
19],
20 "type": " string "
21 },
22 " maximum ": {
23 " format ": " int32 ",
24 "type": " integer "
25 },
26 " minimum ": {
27 " format ": " int32 ",
28 "type": " integer "
29 }
30 },
31 " required ": [
32 " format "
33],
34 "type": " object "
35 }
36 }
37 }
38 }

Listing 3.7: IntegerParameter schema

(c) ModelParameter in Listing 3.8.
1 {
2 " components ": {
3 " schemas ": {
4 " ModelParameter ": {
5 " allOf ": [
6 {
7 "$ref": "#/ components / schemas / Parameter "
8 }
9],

10 " properties ": {
11 " encoding ": {
12 "$ref": "#/ components / schemas / ModelEncoding "
13 },
14 " formats ": {
15 "$ref": "#/ components / schemas / ModelFormats "
16 }
17 },
18 " required ": [
19 " encoding ",
20 " formats "
21],
22 "type": " object "
23 }
24 }
25 }
26 }

Listing 3.8: ModelParameter schema

7. An example of a final Operation object is presented in Listing 7.
1 {
2 "name": " generateLog ",

28 CHAPTER 3. HANDBOOK

3 " group ": " verification ",
4 " description ": {
5 "text": " Generate log containing simulation of a process "
6 },
7 " label ": {
8 "text": " Generate log"
9 },

10 " request ": {
11 " method ": "POST",
12 "url": "http :// localhost :8181/ logs",
13 " contentType ": " application /json",
14 " responseType ": " application /json",
15 " requestConfigurations ": [
16
17],
18 " parameters ": [
19 {
20 "type": " INTEGER ",
21 "key": " changeActivityNameProb ",
22 " query ": false ,
23 " label ": {
24 "text": " Change activity name prob."
25 },
26 " required ": true ,
27 " format ": " int32 ",
28 " default ": 1,
29 " minimum ": 1
30 },
31 {
32 "type": " INTEGER ",
33 "key": " noTraces ",
34 " query ": false ,
35 " label ": {
36 "text": " Number of traces "
37 },
38 " required ": "true",
39 " format ": " int32 ",
40 " default ": 1,
41 " minimum ": 1
42 },
43 {
44 "type": " MODEL ",
45 "key": " model ",
46 " query ": false ,
47 " label ": {
48 "text": "BPMN 2.0 model "
49 },
50 " required ": true ,
51 " model ": {
52 " formats ": [
53 {
54 "name": "http :// www.omg.org/spec/BPMN /20100524/ MODEL ",
55 " types ": [
56 {
57 "name": "http :// www.omg.org/spec/BPMN /20100524/ DI"
58 }
59]
60 },
61 {
62 "name": "http :// schema .omg.org/spec/BPMN /2.0",
63 " types ": [
64 {

3.4. INSTALLATION 29

65 "name": "http :// bpmndi .org"
66 }
67]
68 }
69],
70 " encoding ": {
71 "name": " ESCAPED "
72 }
73 }
74 }
75]
76 }
77 }

3.4 Installation

Installation of the product is based on a Linux Debian desktop environment.
The installation should be possible in Windows and Mac OS X with few
changes to the used commands.

3.4.1 Installing prerequisites

The installation instructions may have prerequisites. More details on these
prerequisites are available in this section.

3.4.1.1 Docker Community Edition

Docker Community Edition (CE)3 is open-source containerization software
developed by Docker Inc. Docker CE consists of an engine and a client,
respectively called Docker Engine4 and Docker Client5. Installation instruc-
tions for Windows, Mac OS X and Linux environments can be found here:
https://docs.docker.com/install/.

3https://github.com/docker/docker-ce
4https://github.com/docker/engine
5https://github.com/docker/cli

https://docs.docker.com/install/
https://github.com/docker/docker-ce
https://github.com/docker/engine
https://github.com/docker/cli

30 CHAPTER 3. HANDBOOK

3.4.1.2 Docker Compose

Docker Compose6 is a tool for composing multiple Docker containers. E.g.
you may want to split the web application and database into two separate
containers and then describe how these containers communicate by using
Docker Compose. Installation instructions for Windows, Mac OS X and
Linux can be found here: https://docs.docker.com/compose/install/.

3.4.1.3 Git

Git is a revision control system. Installation instructions for Windows, Mac
OS X and Linux can be found here: https://git-scm.com/downloads.

3.4.1.4 Apache Ant

Apache Ant is a build tool to structure the steps necessary to build and deploy
an application. Installation for Windows, Mac OS X and Linux (and others)
can be found here: https://ant.apache.org/manual/install.html.

3.4.2 Oryx

This section describes how to install Oryx, a BPM platform.

Prerequisites You need to make sure you have the following prerequisites
installed:

• Docker Community Edition (CE) (Sec. 3.4.1.1)

– Docker Engine release: 1.13.1+

• Docker Compose (Sec. 3.4.1.2)

• Git (Sec. 3.4.1.3)

• Apache Ant (Sec. 3.4.1.4)

6https://github.com/docker/compose

https://docs.docker.com/compose/install/
https://git-scm.com/downloads
https://ant.apache.org/manual/install.html
https://github.com/docker/compose

3.4. INSTALLATION 31

Installation instructions

1. Download the repository:
1 $ git clone https :// github .com/DTU -SPE/oryx -editor - extension .git

2. Enter the directory of the repository:
1 $ cd oryx -editor - extension

3. Deploy composition of containers:
1 $ docker - compose up -d

The composition is based on the description in docker-compose.yml
in the root of your current project folder. Explanation of command
options (official explanation in italics):

• up: Option to docker-compose. Create and start containers.

• -d: Option to up. Detached mode: Run containers in the back-
ground (...).

• Default options: Run the following commands to check the default
options:

1 $ docker - compose --help
2 $ docker - compose up --help

4. Inspect the logs of the deployed composition to see is running as in-
spected:

1 $ docker - compose logs

Look for the following log entries to verify that the web server and
database are running (startup time may vary from 1094 ms):

1 ...
2 web_1 | INFO: Server startup in 1094 ms
3 ...
4 db_1 | LOG: database system is ready to accept connections
5 ...

5. Create schema in the database container:
1 $ ant create - schema

The schema is used by Oryx to obtain persistence.

6. Deploy Oryx to the web container:
1 $ ant deploy -all - docker

32 CHAPTER 3. HANDBOOK

7. You should now be able to access the following applications in your
web browser:

• Oryx Repository: http://localhost:9090/backend/poem/
repository

• Oryx Editor: http://localhost:9090/oryx/editor

3.4.3 Mediator

The mediator is installed in Debian Linux x64, but can be installed in any
environment supported by the prerequisites.

Prerequisites You need to make sure you have the following prerequisites
installed:

• Docker Community Edition (CE) (Sec. 3.4.1.1)

– Docker Engine release: 1.13.1+

• Docker Compose (Sec. 3.4.1.2)

• Git (Sec. 3.4.1.3)

Installation instructions

1. Download the repository7

1 $ git clone git@gitlab .gbar.dtu.dk: s112998 /msc - thesis / mediator .git

2. Enter the directory of the repository:
1 $ cd mediator

3. Change the branch in the repository:
1 $ git checkout implement

4. Deploy composition of container:
1 $ docker - compose up -d

Check Item 3 in Section 3.4.2 for an explanation of this command.

5. The web service should now be accessible here:
7This repository is currently private.

http://localhost:9090/backend/poem/repository
http://localhost:9090/backend/poem/repository
http://localhost:9090/oryx/editor

3.5. SUMMARY 33

• Server: http://localhost:9595

• Documentation: http://localhost:9595/ui/

3.5 Summary

In this chapter we learned what the product consists of in terms of compon-
ents and user roles and how the user roles interact with the product. In the
end, we learned how to install the product.

http://localhost:9595
http://localhost:9595/ui/

34 CHAPTER 3. HANDBOOK

Chapter 4

Requirements Specification

The requirements specification describes the system to be developed in this
project. The requirements are elicited based on the handbook, analysis of
the problem domain, agile development and ongoing discussion with my su-
pervisors. The chapter consists of an analysis of the domain, functional
requirements and non-functional requirements.

4.1 Domain analysis

The domain analysis is an analysis of the domain of the system for mediating
model analysis services. The system is based on the problem description in
Section 1.2.

The preceding idea behind the system was to establish an online, open &
extensible BPM platform for modelling business processes. Oryx [8] and
Apromore [15] are the known examples of such existing platforms. While
investigating these platforms, to gain domain knowledge, it becomes apparent
that in order to extend the functionality of these platforms, the following
tasks are required:

Task 1. Develop a plugin which implements or integrates tool in a specific pro-
gramming language and extension structure:

Task 1.1. Oryx: JavaScript & Java and Oryx XML, respectively.

Task 1.2. Apromore: Java and OSGi bundle, respectively.

Task 2. Deploy the plugin to the platform.

35

36 CHAPTER 4. REQUIREMENTS SPECIFICATION

Task 3. Rebuild the platform.

Meanwhile, functionality is available in different tools (software applications),
which are implemented in different programming languages and expose dif-
ferent interfaces. An example of a tool is Low Level Petri net Analyzer
(LoLA) [22], a tool for analysing Petri nets. LoLA is implemented in the
programming language C++ and exposes a Unix-based Command-Line In-
terface (CLI). In order to execute the tool, the source code must be compiled
to a binary in a suitable processor architecture, e.g. x86_64/amd64, arm,
arm64, etc. If you were to integrate LoLA into Oryx or Apromore, you could
consider one of the following strategies:

Strategy 1. Develop a CLI wrapper in the programming language supported by the
plugin and make sure that the binary can be executed on the processor
architecture where the platform is running.

Strategy 2. Develop a web service wrapper to LoLA and develop a web service
client in the programming language supported by the plugin.

The benefit from selecting the last-mentioned strategy is the possibility to
reuse the web service in other contexts. E.g. would it be possible for both
Oryx and Apromore to use the same service.

In order to separate services, each service is given an id. In order to separate
the operation of each service, that also has an id. To call the operation, a
request is necessary. The operation has parameters to which arguments can
be provided. In order for the end-user to understand meaning of the services
and operations, a tag is provided. This is illustrated in Figure 4.1.

4.2. FUNCTIONAL REQUIREMENTS 37

Tag

label
description

Parameter

key
type
isRequired

Request

method

Operation

id

Service

id

1 0..*

1

1

1

0..*

Figure 4.1: Domain model of the system.

4.2 Functional requirements

The functional requirements describes what the different users of the system
can expect of functionality. The functionalities will be described as use cases.
The sections begins with use case diagrams (Sec. 4.2.1) which depicts how the
users relate to the use cases and how the individual use cases are distributed
in the system. The use cases will be listed in the subsequent section (Sec.
4.2.2), including how they relate to other parts of the report. Finally, the

38 CHAPTER 4. REQUIREMENTS SPECIFICATION

use cases will be described in more detail (Sec 4.2.3).

4.2.1 Use case diagram

The use case diagram provide an overview of the use cases to be elaborated
on later. The diagram is divided in two parts, Figure 4.2 and 4.3, due to
document formatting reasons (height of diagram), but they belong to the
same Gazelle Ecosystem boundary.

Figure 4.2: Use case diagram for the Gazelle Ecosystem.

4.2. FUNCTIONAL REQUIREMENTS 39

Figure 4.3: Use case diagram for the Gazelle Ecosystem.

4.2.2 Use cases

The use cases are listed below with references to other parts of the report.
The format is:

Use case name User story

The use cases:

Create model As an end-user I can create a model, which can be designed.

40 CHAPTER 4. REQUIREMENTS SPECIFICATION

• Functionalities (Handbook) (Sec. 3.3): Create a model in Oryx
(Sec. 3.3.1)

• Detailed use cases (4.2.3): Table 4.1 (Sec. 4.2.3.1)

Design model As an end-user I can design a model, which can be analysed.

• Functionalities (Handbook) (Sec. 3.3): Create a model in Oryx
(Sec. 3.3.1)

• Detailed use cases (4.2.3): Table 4.2 (Sec. 4.2.3.2)

Perform analysis As an end-user I can perform analysis of a model, so
that I can improve the model.

• Functionalities (Handbook) (Sec. 3.3): Generate a log with PLG
in Oryx using Gazelle (Sec. 3.3.2)

• Detailed use cases (4.2.3): Table 4.3 (Sec. 4.2.3.3)

Register service As a developer I can register my service, so that it be-
comes available to the end user.

• Functionalities (Handbook) (Sec. 3.3): Register a service in the
mediator (Sec. 3.3.3)

• Detailed use cases (4.2.3): Table 4.4 (Sec. 4.2.3.4)

Register operation As a developer I can register my operation, so that
end-users can call my service.

• Functionalities (Sec. 3.3): Register an operation in the mediator
(Sec. 3.3.4)

• Detailed use cases (4.2.3): Table 4.5 (Sec. 4.2.3.5)

4.2.3 Detailed use cases

The use cases in Section 4.2.2 are described in detail in the follow subsections.

4.2.3.1 Create model

Table 4.1: Detailed use case: Create model.

Use Case Name Create model
Continued on next page

4.2. FUNCTIONAL REQUIREMENTS 41

Table 4.1 – continued from previous page
Actors End-user
Summary The end-user creates a model.
Preconditions The end-user opened the BPM platform.
Basic course of
events 1. The end-user selects to create a new model.

2. The end-user selects the type of model to be cre-
ated.

Alternative
paths

-

Postconditions The model is created in a new editor instance.

4.2.3.2 Design model

Table 4.2: Detailed use case: Design model.

Use Case Name Design model
Actors End-user
Summary The end-user designs a model.
Preconditions The end-user created a model in an editor instance.
Basic course of
events 1. The end-user CRUD a model element.

2. The end-user repeats the previous step until the
model is designed.

Alternative
paths

-

Postconditions The editor instance contains a designed model.

4.2.3.3 Perform analysis

Table 4.3: Detailed use case: Perform analysis.

Use Case Name Perform analysis
Summary The end-user performs analysis of a designed model.
Actors End-user

Continued on next page

42 CHAPTER 4. REQUIREMENTS SPECIFICATION

Table 4.3 – continued from previous page
Preconditions The end-user opened an editor instance which contains

a designed model.
Basic course of
events 1. The end-user opens the Gazelle client.

2. The client shows a list of services.
3. The end-user selects a service.
4. The client shows a list of operations.
5. The end-user selects an operation.
6. client shows a request form.
7. The end-user enters the parameter fields.
8. The end-user submits the request.
9. The client shows the response.

Alternative
paths 1. No services available:

(a) The end-user opens the Gazelle client.
(b) The client shows that no services are available

2. No operations available:
(a) The end-user opens the Gazelle client.
(b) The client shows a list of services.
(c) The end-user selects a service.
(d) The client shows that no operations are avail-

able.

Postconditions -

4.2.3.4 Register service

Table 4.4: Detailed use case: Register service.

Use Case Name Register service
Summary The developer registers his service.
Actors Developer, Admin
Preconditions -

Continued on next page

4.2. FUNCTIONAL REQUIREMENTS 43

Table 4.4 – continued from previous page
Basic course of
events 1. The developer describes the service by a predefined

format.
2. The developer submits the service description to

the mediator.
3. The mediator registers the service.

Alternative
paths 1. The service is described incorrectly:

(a) The developer describes the service incor-
rectly.

(b) The developer submits the incorrect service
description to the mediator.

(c) The mediator does not register the service.

Postconditions -

4.2.3.5 Register operation

Table 4.5: Detailed use case: Register operation.

Use Case Name Register operation
Summary -
Actors Developer, Admin
Preconditions -
Basic course of
events 1. The developer describes the operation by a pre-

defined format.
2. The developer submits the operation description

to the mediator.
3. The mediator registers the operation.

Continued on next page

44 CHAPTER 4. REQUIREMENTS SPECIFICATION

Table 4.5 – continued from previous page
Alternative
paths 1. The operation is described incorrectly:

(a) The developer describes the operation incor-
rectly.

(b) The developer submits the incorrect opera-
tion description to the mediator.

(c) The mediator does not register the operation.

Postconditions -

4.3 Non-functional requirements

The specification of non-functional requirements follows the guidelines of Key
words for use in RFCs to Indicate Requirement Levels cf. RFC 2119 [4]:

The key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RE-
COMMENDED", "MAY", and "OPTIONAL" in this document
are to be interpreted as described in RFC 2119.

In addition only UPPERCASE usage of the key words have the defined special
meanings cf. RFC 8174 [17].

I.e. the requirement levels are:

1. MUST also known as (aka) "REQUIRED" or "SHALL"

2. MUST NOT aka "SHALL NOT"

3. SHOULD aka "RECOMMENDED"

4. SHOULD NOT aka "NOT RECOMMENDED"

5. MAY aka "OPTIONAL"

4.3.1 Platform

Platform 1. It MUST be possible to deploy the system to one of these plat-
forms:

(a) Linux Distribution e.g. Ubuntu/Debian

4.3. NON-FUNCTIONAL REQUIREMENTS 45

(b) Mac OS (latest)

(c) Windows (latest)

Platform 2. End-users MUST have access to a Web Browser which supports
current web standards (W3C1)

4.3.2 Heterogeneity

Heterogeneity 1. Applications MUST use HyperText Transfer Protocol
(HTTP) 1.1 or above to communicate.

Heterogeneity 2. Web services MUST allow Cross-Origin Resource Sharing
(CORS).

1https://www.w3.org/standards/

https://www.w3.org/standards/

46 CHAPTER 4. REQUIREMENTS SPECIFICATION

Chapter 5

Architecture of the Gazelle
Ecosystem

The architecture of the Gazelle Ecosystem is described by its composite struc-
ture (Sec. 5.1), interaction between components (Sec. 5.2) and design of the
components (Sec. 5.3).

5.1 Structure

The overall structure of the Gazelle Ecosystem (GE) consists of four com-
ponents and three interfaces as illustrated in Figure 5.1.

47

48 CHAPTER 5. ARCHITECTURE OF THE GAZELLE ECOSYSTEM

BPM Platform
Gazelle client

Mediator

Web service
IWebService

IWebService

IBPMPlatformIBPMPlatform

IMediator

IMediator

Figure 5.1: Overall structure of the GE.

The BPM Platform component is where the user is able to create a model,
which is available for export through the provided interface IBPMPlatform.
The Web service is able to analyse the model through the provided interface
IWebService. The Mediator mediates IWebService through the provided in-
terface IMediator. The Gazelle client requires all the provided interfaces in
order for the user to perform model analysis in the client.

5.2 Interaction

This section describes the interaction between the components depicted as
sequence diagrams. The sequence diagrams are based on their respective use
case.

5.2.1 Interaction in use case: Perform analysis

Client, instantiated as c, refers to the class in Figure 5.12. Mediator, instan-
tiated as m, refers to the class in Figure 5.10. Platform, instantiated as p,
refers to the Oryx Core component in Figure 5.6. Service refers to the server
instance of a service, instantiated as s. The interaction is shown in Figure
5.2

5.2. INTERACTION 49

c : Client

open client

m : Mediator

request services
list of services

show list of services

select service
request operations
list of operations

show list of operations

select operation

show request form

submit request

p : Platform

model file
request model file

s : Service

request analysis
analysis

show analysis

Figure 5.2: Use case realisation of Perform analysis.

5.2.2 Interaction in use case: Register service

To register a service follows a standard approach of creating resources. The
service object is POST’ed and if the schema can be validated, the resource
is created. See Figure 5.3. The approach is similar to register an operation.

50 CHAPTER 5. ARCHITECTURE OF THE GAZELLE ECOSYSTEM

Figure 5.3: Use case realisation of Register service.

5.3. COMPONENTS 51

Figure 5.4: Remove service.

5.3 Components

The design of the individual components introduced in Figure 5.1 will now
be explained.

5.3.1 BPM platform

The BPM platform is a tool for the user to model and analyse business
process. The BPM platform component is illustrated in Figure 5.5.

52 CHAPTER 5. ARCHITECTURE OF THE GAZELLE ECOSYSTEM

BPM Platform
IBPMPlatform

Figure 5.5: BPM platform component.

In this project, an existing underlying architecture is reused. The architec-
ture is illustrated in Figure 5.6.

Figure 5.6: Architecture of Oryx as illustrated by its authors [8].

The architecture of Oryx shows that interfaces are available which can be
used as interface to the BPM platform: IBPMPlatform. In addition, the
architecture supports feature extensions in form of plugins.

5.3. COMPONENTS 53

5.3.2 Web service

The Web service is the component illustrated in Figure 5.7. An example of
of possible web service design is available in Section 5.3.2.1.

Web service
IWebService

Figure 5.7: Web service component.

5.3.2.1 PLG Web Service

The design of the PLG web service is based on the GUI of the PLG Java
application. The focus of the design is the creation of a business process
and the creation of a simulation log based on a process. The class design is
illustrated in Figure 5.8.

54 CHAPTER 5. ARCHITECTURE OF THE GAZELLE ECOSYSTEM

«Model»
LogResponse

-logId: string

«Model»
SimConfBody

-model: Document
-noTraces: integer
-changeActivityNameProb: integer
-traceMissingHeadProb: integer

«Model»
ProcessConfBody

-processName: string
-maximumDepth: integer
-maxAndBranches: integer
-maxXorBranches: integer
-sequenceWeight: integer
-singleActivityWeight: integer
-skipWeight: integer
-andWeight: integer
-xorWeight: integer
-loopWeight: integer
-dataObjectsProbability: integer

«Model»
ProcessResponse

-processId: string

«Controller»
Logs

+createLogs(SimConfBody): LogResponse
+getLogById(id: string): string

«Controller»
Processes

+createProcess(ProcessConfBody): ProcessResponse
+getProcessById(id: string): string

1

1

1

1

Figure 5.8: Class design of the PLG web service.

5.3.3 Mediator

The mediator is a concept for mediating a contract between two parties in
order to reach an agreement. In the context of this project, the first party is
the client, who wants to analyse models, and the second party is the service,
who offers model analysis services. The general problem is that the client
wants to consume services from a wide range of providers exposing differ-
ent interfaces. The client will have to find documentation of the respective
providers interface and adapt to it. The interface documentation may be
provided in a format which can be automatically adapted, e.g. by using an
IDL document.

5.3. COMPONENTS 55

Mediator
IMediator

Figure 5.9: Mediator component.

Mediator

«enumeration»
ResponseType

IMPORT
OPEN
LOG

E.g.:
- "ESCAPED"

E.g.:
- "http://www.pnml.org/version-2009/grammar/ptnet"
- "http://www.omg.org/spec/BPMN/20100524/DI"
- "http://bpmndi.org" (Oryx)

Description

text : string

Label

text : string

E.g.:
- "http://www.pnml.org/version-2009/grammar/pnml"
- "http://www.omg.org/spec/BPMN/20100524/MODEL"
- "http://schema.omg.org/spec/BPMN/2.0" (Oryx)

ModelType

name : string

ModelFormat

name : string

ModelEncoding

name : string

«enumeration»
HTTPRequestMethod::MethodType

GET
POST

«enumeration»
MediaType::ContentType

application/json
application/xml
application/x-www-form-urlencoded

ModelParameter

«enumeration»
IntegerFormatType

int32
int64

Service

name : string

RequestConfiguration

value : string

IntegerParameter

format : IntegerFormatType
default : integer [0..1]
minimum : integer [0..1]
maximum : integer [0..1]

StringParameter

default : string [0..1]
minLength : integer [0..1]
maxLength : integer [0..1]

Parameter

type : ParameterType
key : string
required : boolean
query : boolean [0..1]

Request

method : MethodType
url : string
contentType : ContentType
responseType : ResponseType

Operation

name : string
group : string [0..1]

0..*

«enumeration»
ParameterType

STRING
INTEGER
MODEL

0..*

1

1

1

1

1

11..*

0..*

0..*

1

0..*

Figure 5.10: Class design of the Mediator.

The mediator class design (Fig. 5.10) includes, on one hand, the objects
necessary for a service to register its operations. On the other hand, it

56 CHAPTER 5. ARCHITECTURE OF THE GAZELLE ECOSYSTEM

also includes objects necessary for the consumer to understand the provided
services and operations, by the composition relationship of Description and
Label. The Service has a Description and a Label as required (1) composition.
The label is a word or short sentence for the consumer to distinguish one
service from another. The description is a longer sentence which describes
the object in greater detail. The mediator distinguish between services by
their respective unique name. Each service 0..* (zero-to-many) of operations:
Operation. Similarly to the Service, the Operation also is also composed of
a Description and a Label as well as a group attribute. The group attribute
is used to classify the type of operation into a group. The Operation is also
composed of a Request object, which describes how to formulate a HTTP/1.1
request based on its specification [14].

5.3.4 Gazelle client

Gazelle client requires the provided interfaces of the other components,
namely: IMediator, IBPMPlatform and IWebService. In addition, Gazelle
client is expected to be embedded into the BPM platform as a plugin.
Gazelle client component is illustrated in Figure 5.11.

5.3. COMPONENTS 57

Gazelle client

IMediator

IBPMPlatform

IWebService

Figure 5.11: Gazelle client component.

The end-user interacts with the Gazelle client (cf. Fig. 4.2).

The class design of the Gazelle client is illustrated in Figure 5.12.

58 CHAPTER 5. ARCHITECTURE OF THE GAZELLE ECOSYSTEM

«interface»
IWebService

executeOperation(): result

«interface»
IMediator

+getServices(): services
+getOperations(): operations

«interface»
IBPMPlatform

+getModel(): model

ServicePage RequestPageOperationPage

Client

«use»

«use»

«use»«use»

1

1

1

1

1

1

Figure 5.12: Class design of the Gazelle client.

The design is based on “pages”, which the end-user navigates between: Ser-
vicePage, OperationPage and RequestPage. Each page is part of the Client.

Chapter 6

Implementation of the Gazelle
Ecosystem

This chapter explains the implementation of the Gazelle Ecosystem by de-
scribing how model-driven development was used (Sec. 6.2) and how each
component was implemented (Section 6.3).

6.1 Included repositories

The enclosed USB flash drive includes the repositories produced in this pro-
ject. It has three folders:

• ./detailed: Repositories with detailed meta description, e.g.

– Archive: gazelle-app-a269ca13dfd1e31a657e0f86c66e2d040a61ffc0-
a269ca13dfd1e31a657e0f86c66e2d040a61ffc0.zip

– Description of archive: gazelle-app-a269ca13dfd1e31a657e0f86c66e2d040a61ffc0-
a269ca13dfd1e31a657e0f86c66e2d040a61ffc0.zip.md

• ./msc-thesis: Repositories essential to the Gazelle Ecosystem

• ./references: Repositories used as (potential) references.

An overview of repositories essential to the Gazelle Ecosystem is available in
Table 6.1.

59

60 CHAPTER 6. IMPL. OF THE GAZELLE ECOSYSTEM

Repository (branch) Archive Description
gazelle-app (master) gazelle-app.zip Gazelle client applica-

tion (app)
lola-webservice (master) lola-webservice.zip LoLA 2.0 as a ser-

vice. Extended
version of https:
//github.com/bptlab/
lola-webservice

mediator (master) mediator-master.zip OpenAPI description
of mediator

mediator (generate) mediator-generate_python-flask.zip Generated server stub
in Flask framework
(Python, Connexion
2.0) based on de-
scription in mediator
(master)

mediator (implement mediator-implement_python-flask.zip Implemented be-
haviour based on
generated server stub
in mediator (generate)

oryx-editor-extension (master) oryx-editor-extension.zip Oryx platform brought
into a development
state (embeds gazelle-
app)

plg-ws (master) plg-ws-master.zip OpenAPI description
of plg

plg-ws (generate) plg-ws-generate_jaxrs-jersey.zip Generated server stub
in JAX-RS Jersey
API (Java) based on
OpenAPI description
in plg-ws (master)

plg-ws (implement) plg-ws-implement_jaxrs-jersey.zip Implemented be-
haviour based on
generated server stub
in plg-ws (generate)

Table 6.1: Overview of included repositories.

6.2 Model-driven development

Model-driven development is utilised in the implementation phase of the
Gazelle Ecosystem to limit time and energy towards recurring implement-
ation details. Ideally, by generating software based on a model, only the
behaviour of the software should be the remaining concern. The develop-
ment is done by describing the class design in an IDL (Sec. 6.2.1), generat-
ing the software based on the IDL description (6.2.2) and implementing the
behaviour of the generated software (Sec. 6.2.3).

https://github.com/bptlab/lola-webservice
https://github.com/bptlab/lola-webservice
https://github.com/bptlab/lola-webservice

6.2. MODEL-DRIVEN DEVELOPMENT 61

6.2.1 Describe class design in an Interface Description
Language (IDL)

The chosen IDL is a representational state transfer (RESTful) IDL called
OpenAPI Specification (OAS), formerly known as the Swagger Specification.
The reason for choosing OAS is the comprehensive toolchain supporting it.

The class design, which is modelled in UML Specification Version 2.0 [18], is
translated to OAS description in the following way:

• Relationships:

– Inheritance: the allOf property is used to specify in-
heritance cf. the description https://github.com/OAI/
OpenAPI-Specification/blob/master/versions/3.0.2.md#
composition-and-inheritance-polymorphism

– Polymorphism: subclasses inherit properties from a superclass by
using the allOf property. The specific subclass (type) is selected
by the use of a discriminator field.

– Association:

∗ One-to-one: reference to the object as a required property.

∗ One-to-(zero or one): reference to the object as a nonrequired
property.

∗ One-to-many: reference to an array, which references the ob-
ject, as a required property.

∗ One-to-(zero or many): reference to an array, which references
the object, as a nonrequired property.

• Properties:

– Nonrequired attribute: nonrequired property.

– Required attribute: required property

– Data type of attribute: match type and format defined by OAS.

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#composition-and-inheritance-polymorphism
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#composition-and-inheritance-polymorphism
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#composition-and-inheritance-polymorphism

62 CHAPTER 6. IMPL. OF THE GAZELLE ECOSYSTEM

6.2.2 Generate software based on IDL description

Multiple code generators based on OAS 3.0 are under active development12.
The most starred and watched (interpreted as a measure of acknowledgement
of the projects) code generators on GitHub are swagger-codegen3 and openapi-
generator4. Last-mentioned is a fork of the former. During the summer of
this year, the support for OAS 3.0 was greater for openapi-generator, but
since then swagger-codegen caught up. In this project the openapi-generator
is generally used. The software is generated by using the OAS description as
input and by specifying which language/framework should be generated as
output. An example is listed in Listing 6.1.

1 docker run --rm -v ${PWD }:/ local openapitools /openapi -generator -cli:v3 .3.4
generate \

2 -i / local /api.yaml \
3 -g python - flask \
4 -o / local /python - flask

Listing 6.1: Generating the server stub.

I.e. the input (-i) is the IDL description contained in api.yaml, the generator
name (-g) is specified as python-flask and the output directory (-o) is python-
flask. /local is a volume mapping to the current directory (${PWD}).

Figure 6.1 shows an excerpt of the generated server stub.

1https://openapi.tools/
2https://apis.guru/awesome-openapi3/category.html
3https://github.com/swagger-api/swagger-codegen
4https://github.com/OpenAPITools/openapi-generator

https://openapi.tools/
https://apis.guru/awesome-openapi3/category.html
https://github.com/swagger-api/swagger-codegen
https://github.com/OpenAPITools/openapi-generator

6.3. COMPONENTS 63

Figure 6.1: Excerpt of the generated server stub.

6.2.3 Implement behaviour of generated software

The behaviour is implemented in the respective generated controller function.
As an example, a generated controller function is listed in Listing 6.2.

1 def create_services (service =None): # noqa: E501
2 """ Create a service
3
4 # noqa: E501
5
6 : param service : Service payload
7 :type service : dict | bytes
8
9 : rtype : None

10 """
11 if connexion . request . is_json :
12 service = Service . from_dict (connexion . request . get_json ()) # noqa: E501
13 return ’do some magic !’

Listing 6.2: Generated create_services function in services_controller.py.

6.3 Components

The implementation of the components designed in Section 5.3 will now be
explained.

64 CHAPTER 6. IMPL. OF THE GAZELLE ECOSYSTEM

6.3.1 BPM Platform

The implementation of the platform is based on the Oryx Editor project5.
The actual source code is based on a project mirror6 which was last updated
on the 7th of October, 2012. The project generally consists of two Tomcat
web applications: editor and repository. The project is packaged with Apache
Ant [11]. The respective web application is structured of a front-end and
back-end, respectively implemented in HTML/CSS & JavaScript, and Java.

Containerization. Oryx is containerized in order to ease deployment and
continued development of the platform. Docker technology is used for con-
tainerization. The following technology is required by the Oryx platform:

• Server: Tomcat 6 with Java Runtime Environment (JRE) 6

• Database: PostgreSQL 8.4 with PL/Python extension

Server and database can run in separate containers since they communicate
over the network. The operating environment for a container is described in
a Dockerfile.

Extension. The editor can be extended by implementing a Plugin and
(optionally) a Servlet as illustrated in the class implementation in Figure
6.2.

5https://code.google.com/archive/p/oryx-editor/
6https://github.com/koppor/oryx-editor/tree/upstream-vcs

https://code.google.com/archive/p/oryx-editor/
https://github.com/koppor/oryx-editor/tree/upstream-vcs

6.3. COMPONENTS 65

Library

HttpServlet

Servlet

ORYX

org.oryxeditor.serverPlugins

Clazz

AbstractPlugin

Plugin
«use»

extends
«use»

extends

extends

Figure 6.2: Class implementation of a plugin in Oryx.

The servlet is supposed to be used by the plugin. The plugin to be added is
called Gazelle. Figure 6.3.

Gazelle Client

ORYX

Plugins

Clazz

AbstractPlugin

Gazelle

-container: Undefined

-CreateContainer(options): Ext.Window
-handleButtonPressed(button, isPressed): void
-handleHide(button): void
-handleInit(): void

appends
1 1

Figure 6.3: Class implementation of the Gazelle plugin in Oryx.

The Gazelle plugin is limited to handling a container which appends the
actual client Gazelle Client which contains the functionality. The reasoning

66 CHAPTER 6. IMPL. OF THE GAZELLE ECOSYSTEM

for this limitation is to increase the portability of the implementation and to
make use of current development technology.

The Gazelle plugin is registered by adding a plugin entry to the list of plugins
in the file editor/client/scripts/Plugins/plugins.xml as shown in Listing 6.3.

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <config >
3 <plugins >
4 <plugin source =" Gazelle .js" name="ORYX. Plugins . Gazelle ">
5 <requires namespace ="http :// b3mn.org/ stencilset / bpmn2 .0#" />
6 <requires namespace ="http :// b3mn.org/ stencilset / petrinet #" />
7 </plugin >
8 </plugins >
9 </config >

Listing 6.3: Registering a plugin in Oryx.

6.3.2 Web service

Low Level Petri net Analyzer (LoLA). The LoLA web service already
exists in an experimental state7. The project has been forked8 and contri-
butions are made to conform to the system design. The contributions are
adding support for CORS and defining the service in a Docker Compose file.

Processes and Logs Generator (PLG). The PLG application, which
the web service is based on, is implemented in Java. The PLG web service is
implemented in Java API for RESTful Web Services (JAX-RS). The imple-
mentation follows the model-driven development process described in Section
6.2. The code in generated with the command listed in Listing 6.4.

1 docker run --rm -v ${PWD }:/ local openapitools /openapi -generator -cli:v3 .3.4
generate \

2 -i / local /api.yaml \
3 -g jaxrs - jersey \
4 -o / local /jaxrs - jersey

Listing 6.4: Generating the server stub for PLG web service.

6.3.3 Mediator

The mediator is implemented by model-driven development as described in
Section 6.2. The server stub is generated as shown in Listing 6.5.

7https://github.com/bptlab/lola-webservice
8https://github.com/bakhansen/lola-webservice

https://github.com/bptlab/lola-webservice
https://github.com/bakhansen/lola-webservice

6.3. COMPONENTS 67

1 $ docker run --rm -v ${PWD }:/ local openapitools /openapi -generator -cli:v3 .3.4
generate \

2 -i / local /api.yaml \
3 -g python - flask \
4 -o / local /python - flask

Listing 6.5: Generating the server stub.

Version 3.3.4 of openapitools/openapi-generator-cli9 is used to generate the
server stub. The generated server stub is of the type python-flask which
is powered by the Connexion framework. The Connexion framework is a
“Swagger/OpenAPI First framework for Python on top of Flask with auto-
matic endpoint validation & OAuth2 support”10. The behaviour which has
to be implemented is described by the interaction diagrams. As an example
is shown how the interaction diagram in Fig. 5.3 is implemented. Listing 6.6
shows the generated code for the POST /services.

1 def create_services (service =None): # noqa: E501
2 """ Create a service
3
4 # noqa: E501
5
6 : param service : Service payload
7 :type service : dict | bytes
8
9 : rtype : None

10 """
11 if connexion . request . is_json :
12 service = Service . from_dict (connexion . request . get_json ()) # noqa: E501
13 return ’do some magic !’

Listing 6.6: Generated create_services function in services_controller.py.

The behaviour is implemented in Listing 6.7 based on the sequence diagram
in Figure 5.3.

1 def create_services (service =None): # noqa: E501
2 """ Create a service
3
4 # noqa: E501
5
6 : param service : Service payload
7 :type service : dict | bytes
8
9 : rtype : None

10 """
11 if connexion . request . is_json :
12 try:
13 data = connexion . request . get_json ()
14 file = open("/ mediator_data / services /" + data[’name ’] + ".json", "w")
15 file. write (json. dumps (data))

9https://hub.docker.com/r/openapitools/openapi-generator-cli/tags/
10https://github.com/zalando/connexion

https://hub.docker.com/r/openapitools/openapi-generator-cli/tags/
https://github.com/zalando/connexion

68 CHAPTER 6. IMPL. OF THE GAZELLE ECOSYSTEM

16 file. close ()
17 return None , 201
18 except Exception as e:
19 return Error (500 , e), 500
20 else:
21 return Error (415 , " Unsupported Media Type"), 415

Listing 6.7: Implemented behaviour of create_services function in
services_controller.py

In this implementation, file-stored persistence is used.

6.3.4 Gazelle client

The Gazelle client is implemented in JavaScript to make it possible to append
it to the plugin also implemented in JavaScript. React, “a JavaScript library
for building user interfaces” [10] is used. In React, the view is declared in
JSX, a “XML-like syntax extension for ECMAScript” [9]. JSX syntax is then
converted to JavaScript with Babel [2], a JavaScript compiler. An React app
has one root view and multiple child views. The views are structured by
React components, where each component has one root view. A component
has a state which is usually used to populate the view with data, to decide
which components should be rendered, and to pass data to child component
via props (properties). ECMAScript classes can also be imported to React
components. Much more documentation and best practices can be found in
the React Docs11.

11https://reactjs.org/docs/getting-started.html

https://reactjs.org/docs/getting-started.html

Chapter 7

Evaluation

7.1 Objectives

The objectives were the extension of an existing framework for business pro-
cess modelling, which allows:

• O1: Being extended quickly and easily by existing external tools.

• O2: Collaboration on models between multiple actors across multiple
computing platforms.

• O3: Analysis of models, e.g. verification, simulation and transforma-
tion.

O1 is achieved by applying a Service-Oriented Architecture (SOA), with focus
on microservices. The existing external tool must be (made) available as a
service. The service description is registered to a mediator. The existing
framework retrieves the service description from the mediator. Once the
service interface has been retrieved, the framework is able to request the
service to perform an operation.

O2 is achieved by being transport-, internet- and link-layer agnostic. On the
application layer, the service is expected to support HTTP/HTTPS. The
service can otherwise run on any computing platform.

O3 is achieved by making existing tools for model analysis available as ser-
vices.

69

70 CHAPTER 7. EVALUATION

7.2 Extending functionality

What it takes to extend functionality in the current system are the following
steps:

1. Implement a service.

• Potentially reusing functionality by implementing a service wrap-
per

• Hint: Use server stub generator

2. Allow Cross-Origin Resource Sharing (CORS) from the host of the
BPM platform to the service.

3. Describe the service to the mediator.

In comparison to:

1. Implement a plugin.

• The plugin can be a client to an implemented service.

• Integrating an existing tool depends on the computing platform
where it is deployed.

2. Ask for deployment of plugin

7.3 Remaining considerations

1. AVAILABILITY: The service description may be, or become, inaccur-
ate, leading to incorrect, misleading or unavailable functionality.

2. SCALABILITY: The mediator is a potential bottleneck. It is however
deployed in a container environment which can be scaled.

3. SECURITY: How should the mediator resources be protected? How to
trust the results of a performed analysis?

Chapter 8

Conclusion

The problem was to extend a BPM platform with additional functionality as
cost-efficiently as possible. The result is the Gazelle Ecosystem. The system
makes it possible to extend the platform by mediating service descriptions as
a service. The objectives have been achieved cf. 7.1. A functioning prototype
of the system has been implemented based on OpenAPI 3.0 (Swagger 3.0)
and Docker container technology and reusing existing tools (PLG and LoLA).
Oryx has been brought into a development-ready state.

71

72 CHAPTER 8. CONCLUSION

Appendix A

Glossary

Business process set of activities which are executed
based on different conditions in order
to achieve an objective

Business process model a representation of a business process
Service a collection of operations
Operation an operation performs a functionality

in the service
Request request of an operation
Microservice specialized service-oriented architec-

ture with focus on a minimal service
which is easy to scale

73

74 APPENDIX A. GLOSSARY

Bibliography

[1] Sascha Alpers et al. ‘Microservice based tool support for business pro-
cess modelling’. In: Enterprise Distributed Object Computing Workshop
(EDOCW), 2015 IEEE 19th International. IEEE. 2015, pp. 71–78.

[2] Babel. Babel - The compiler for next generation JavaScript. url:
https://babeljs.io/ (visited on 16/12/2018).

[3] Humboldt-Universität zu Berlin et al. service-technology.org - Solutions
that make services behave well. url: http://service-technology.
org/ (visited on 11/07/2018).

[4] Scott Bradner. RFC 2119. url: https://tools.ietf.org/html/
rfc2119 (visited on 02/05/2018).

[5] Andrea Burattin. PLG2 - Processes Randomization and Simulation.
url: http://plg.processmining.it/ (visited on 11/07/2018).

[6] Francisco Curbera et al. ‘Unraveling the Web services web: an intro-
duction to SOAP, WSDL, and UDDI’. In: IEEE Internet computing
6.2 (2002), pp. 86–93.

[7] Martin Czuchra et al. The Oryx Project. url: http://oryx-project.
org/Oryx (visited on 27/12/2018).

[8] Gero Decker, Hagen Overdick and Mathias Weske. ‘Oryx–an open mod-
eling platform for the BPM community’. In: International Conference
on Business Process Management. Springer. 2008, pp. 382–385.

[9] Facebook. JSX - XML-like syntax extension to ECMAScript. url:
https://facebook.github.io/jsx/ (visited on 18/07/2018).

[10] Facebook. React - A JavaScript library for building user interfaces.
url: https://reactjs.org/ (visited on 16/07/2018).

[11] The Apache Software Foundation. Apache Ant. url: https://ant.
apache.org/ (visited on 12/12/2018).

75

https://babeljs.io/
http://service-technology.org/
http://service-technology.org/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://plg.processmining.it/
http://oryx-project.org/Oryx
http://oryx-project.org/Oryx
https://facebook.github.io/jsx/
https://reactjs.org/
https://ant.apache.org/
https://ant.apache.org/

76 BIBLIOGRAPHY

[12] Camunda Services GmbH. Workflow and Decision Automation Plat-
form. url: https://camunda.com/ (visited on 12/07/2018).

[13] Business Process Technology Group at Hasso Plattner Institute. The
Oryx Project. url: http : / / oryx - project . org / Oryx (visited on
16/06/2018).

[14] Internet Engineering Task Force (IETF). Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. url: https://tools.ietf.
org/html/rfc7231 (visited on 15/10/2018).

[15] The Apromore Initiative. Apromore - Advanced Process Analytics Plat-
form. url: http://apromore.org/ (visited on 02/07/2018).

[16] Ekkart Kindler. The ePNK Home Page. url: http://www.imm.dtu.
dk/~ekki/projects/ePNK/index.shtml (visited on 11/07/2018).

[17] Barry Leiba. RFC 8174. url: https : / / tools . ietf . org / html /
rfc8174 (visited on 02/05/2018).

[18] OMG R© Object Management Group R©. About the Unified Modeling
Language Specification Version 2.0. url: https://www.omg.org/
spec/UML/2.0/ (visited on 16/12/2018).

[19] Alok Srivastava, Marco Carrer and Paul Lin. System for dynamically
invoking remote network services using service descriptions stored in a
service registry. US Patent App. 10/120,175. Aug. 2002.

[20] Wil MP Van Der Aalst. ‘Business process management: a comprehens-
ive survey’. In: ISRN Software Engineering 2013 (2013).

[21] Karsten Wolf and Niels Lohmann. ‘LoLA - A Low Level Petri Net
Analyser’. In: 2.0 (2016).

[22] Karsten Wolf and Niels Lohmann. LoLA: A Low Level Petri Net Ana-
lyzer. url: http : / / service - technology . org / lola/ (visited on
25/11/2018).

https://camunda.com/
http://oryx-project.org/Oryx
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
http://apromore.org/
http://www.imm.dtu.dk/~ekki/projects/ePNK/index.shtml
http://www.imm.dtu.dk/~ekki/projects/ePNK/index.shtml
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc8174
https://www.omg.org/spec/UML/2.0/
https://www.omg.org/spec/UML/2.0/
http://service-technology.org/lola/

	Abstract
	Resume
	Acknowledgements
	Contents
	Acronyms
	Introduction
	Motivation
	Problem description
	Outline

	Related work
	Service registry
	Interface Description Language (IDL)
	RESTful API Description Languages
	Comparison based on code generation

	Online BPM Platforms
	Search criteria
	Existing online BPM platforms
	Microservice based tool support

	Handbook
	Product overview
	Example
	Functionalities
	Create a model in Oryx
	Generate a log with PLG in Oryx using Gazelle
	Register a service in the mediator
	Register an operation in the mediator

	Installation
	Installing prerequisites
	Oryx
	Mediator

	Summary

	Requirements Specification
	Domain analysis
	Functional requirements
	Use case diagram
	Use cases
	Detailed use cases

	Non-functional requirements
	Platform
	Heterogeneity

	Architecture of the Gazelle Ecosystem
	Structure
	Interaction
	Interaction in use case: Perform analysis
	Interaction in use case: Register service

	Components
	BPM platform
	Web service
	Mediator
	Gazelle client

	Impl. of the Gazelle Ecosystem
	Included repositories
	Model-driven development
	Describe class design in an Interface Description Language (IDL)
	Generate software based on IDL description
	Implement behaviour of generated software

	Components
	BPM Platform
	Web service
	Mediator
	Gazelle client

	Evaluation
	Objectives
	Extending functionality
	Remaining considerations

	Conclusion
	Appendix Glossary
	Bibliography

