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Summary (English)

The goal of this thesis is to mine software repositories in order to learn more
about the software development process for a given project. By using techniques
from machine learning and data mining, the goal is to get a better understanding
of the underlying structures in a development process that leads to the intro-
duction of software bugs. The rationale is that changes lead to the introduction
of new bugs. To achieve this, a set of process metrics are used to describe the
development process. Combinations of these metrics are used to train a math-
ematical model with historic data. The trained model is then used to predict
the defect parts of a software system based on knowledge about the ongoing
development process.

The outcome of this thesis is, among others, a software library comprised of a
set of functions that is used to classify defective software. The library has been
realized with python and can be used across all GitHub-hosted repositories.
Moreover, this thesis has studied, how combinations of process metrics perform
in terms of prediction power across different repositories.
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Summary (Danish)

Målet for dette speciale er at trække data ud af en række software-repositories
for at lære mere om softwareudviklingsprocessen i et givent projekt. Ved hjælp
af teknikker indenfor maskinlæring og data mining er målet at forstå de struktu-
rer, der i en udviklingsprocess fører til fejl i software. Rationalet er, at tilføjelse
af ny kode og rettelser i den eksisterende kildekode introducerer nye fejl i et
softwaresystem. Til dette formål benyttes en række veldefinerede procesmetrik-
ker fra literaturen til at beskrive udviklingshistorikken. Kombinationer af disse
metrikker kan bruges til at træne en matematisk model med historisk data. Den-
ne model kan herefter bruges til at forudsige hvilke dele af et softwaresystem
der er fejlbehæftet baseret på viden om den igangværende udviklingsproces.

Arbejdet med dette speciale har ført til udvklingen af et programbibiliotek, der
samler en række funktioner til klassificering af fejlbehftætet software. Biblio-
teket er udviklet i python og kan anvendes på samtlige GitHub-repositories. I
specialet er der ydermere undersøgt, hvordan kombinationer af processmetrikker
kan bruges til forudsigelse af fejlbehæftet software på tværs af softwareprojekter
og repositories.
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Chapter 1

Introduction

Software engineering in an ever changing world is a challenging task. New
requirements arise and existing requirements change while new technologies
open doors for unprecedented opportunities. New features are constantly imple-
mented across software projects, and consequently, defects are introduced. Hu-
man beings make errors, and even the most experienced craftsmen in any field
make mistakes. In software engineering, this phenomenon typically manifests
itself in the introduction of software defects. These defects present themselves
either immediately to the developer at development time or remain hidden in
the source code waiting for a specific set of conditions to happen before they
will present themselves as business critical software bugs or inconveniences at
best. Despite significant effort in the past, it is often a costly affair to test the
correctness of software.

Since changes give rise to new bugs, what if we could make use of that knowledge
to actually predict bugs in source code. This could allow the management of a
software development team to make more informed decisions about the resource
allocation. The source code that has been predicted as bug prone would draw
more attention in the forms of testing and code reviewing.

By building on top of state-of-the-art theories and knowledge within the bug
prediction field, the work of this thesis has resulted in a realization of a two-
component software system that is able to predict bugs across open source repos-
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itories hosted on GitHub. In addition to the bug prediction capabilities, this
thesis has studied how combinations of specific metrics in the software devel-
opment process can be used as bug predictors. An experimental setup consist-
ing of: 10 different GitHub-hosted repositories, four different combinations of
process metrics, and the capabilities of the implemented software has been es-
tablished. The results indicate, that while there does not exist one best set of
process metrics across all projects, there is not a significant difference between
the performance of the combinations.

The thesis is structured as follows.

Chapter 2 - Problem statement

Establishes the problem definition and research questions that this thesis
will answer. Related work to the thesis is presented as well as the contri-
butions of this work. Lastly the methods and a description of the methods
and the experimental setup used to collect the results will follow.

Chapter 3 - Terms and concepts

Introduces the different theories and concepts that this thesis is built upon.

Chapter 4 - Design

Gives a detailed explanation of how the realization is designed.

Chapter 5 - Implementation

Presents the implementation of the tool and gives an in-depth analysis of
how the different key phases of the prediction are accounted for.

Chapter 6 - Results and evaluation

Presents the evaluation of the prediction performance. Results are shown
in tables across releases as well as across repositories and are compared
with similar existing approaches.

Chapter 7 - Perspective

Puts the thesis in perspective by discussing the road ahead of bug pre-
diction across repositories using process metrics as well as describe unan-
swered areas of the thesis.

Chapter 8 - Conclusion

Concludes by summarizing the problem, method and the key results.



Chapter 2

Problem statement

The overall goal of this project is to use the information available about the
development process to predict which parts of a system under development are
defective. By combining valuable information that exists in software repositories
with proven data mining and machine learning techniques, the aim is to assist
development teams when allocating resources to quality assurance. This allows
development teams to focus their work on these parts and, thereby, correct
more bugs before the software is deployed to production. Different metrics will
be extracted and used as variables in a classification process, and the results
will eventually be visualized in a clear and understandable manner.

In software engineering, quality1 is a much desired and essential concept. It is a
cornerstone in every software system, and the desire to achieve a high degree of
quality is indisputable since, the system is ultimately evaluated by this measure.
In software engineering, a common citation is that it costs significantly more to
correct a bug later in the software development life cycle compared to earlier
stages [3]. A software system, that is not able to “satisfy the stated or implied
needs”, is tantamount to low quality. The opposite also holds true, that is, a
system with a high degree of quality must not deviate from the requirements.

In order to ensure high-quality software, there has been a vast amount of re-
1ISO defines quality as “the totality of features and characteristics of a product or service

that bear on its ability to satisfy stated or implied needs” [11]
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search in the past, that investigates which factors affect the software quality.
This includes, among others, investigating the software development process,
the software quality properties2, and system testing. Moreover, a lot of work
has been put in standardization allowing businesses to adopt to international
standards e.g. ISO 25010 relating to product quality and ISO 15504 relating to
the software process.

Quality management is a process adopted in most industries, and in software
engineering, this often refers to the practice of testing a system and reviewing
the changes of fellow developers. However, testing is expensive and error-prone
itself, and a high code coverage is not necessarily equivalent to less bugs [28].
Additionally, code reviewing is a costly process in terms of wages and, due
to limited resources in every businesses, covering all modules and parts of a
complex software system with test cases might not be feasible. Therefore, it
could be helpful to inform developers about which parts of a software system
that would need more quality assurance.

One of the fields, that has been given substantial attention in research, is bug
prediction [20], where the overall goal is to guide the developers to parts of a
system which are subject to more bugs. This facilitates better management of
resources, so that test and review efforts can be directed to more error prone
areas of a system. Many prediction models have been proposed, and while many
of them report promising results on the test data, it seems that the prediction
power decreases to a high extent when the classification models are transferred
into other contexts [20]. In addition to the transferability difficulties, it has also
been reported that, a single set of metrics, which yields the highest prediction
power for all software, exists [35].

Over the last decade, researchers have increasingly looked into software reposito-
ries as a source of valuable information about the software development process
and its artifacts [25]. As the field of data mining has grown into a mature
and proven discipline, subfields, like Mining Software Repositories (MSR), have
emerged. The goal of MSR is to "analyze the rich data available in software
repositories to uncover interesting and actionable information on software sys-
tems and projects" [37]. By using the rich data about the software develop-
ment process extracted from a software repository within domain of machine
learning, namely data classification, it is possible to build bug prediction soft-
ware that have shown promising research results, especially on the Eclipse JDT
project3 [33] [34].

This thesis will investigate how knowledge about the development process can

2or the so-called "ilities" [46]
3https://www.eclipse.org/jdt/

https://www.eclipse.org/jdt/
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be extracted from a software repository and used to predict defective parts of
a software system. By exploiting data about the software development process,
this thesis will use techniques and theories from data mining and the MSR field
to implement bug prediction software, which is able to predict which files that
are defective. Furthermore, this thesis will investigate how well a model trained
with using data from one repository is performing when transferred to another
repository. By using data from open source systems (OSS) available on GitHub,
the objective is also to realize a general prediction tool that performs satisfyingly
well across multiple independent repositories.

The thesis will answer the following research questions:

RQ1 How powerful are combinations of process metrics when trans-
ferred across different open source repositories?

RQ2 How do combinations of process metrics that have proven pow-
erful on the Eclipse project transfer to different open source
repositories?

The motivation behind RQ1 is, to get a better understanding of the develop-
ment process across software projects. How do process metrics, that are strong
predictors of bugs in one project predict the bugs in other software projects
with possibly a quite different development process? The next research ques-
tion, RQ2 seeks to investigate, how the combinations of process metrics from
previous studies, that also have yielded good results in the Eclipse project do,
when they are used to predict bugs in open source projects. Do the current
process metrics discovered in the literature work as good predictors for multiple
projects?

2.1 Related work

MSR has received increasing attention over the last decade and a yearly MSR
conference has been held since 2004 [37]. The MSR field seeks to achieve multiple
different goals, with some of them overlapping others. These goals include but
are not limited to [25]:

- Supporting software maintenance

- Improving the software development process

- Validating new ideas in software engineering
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- Predicting defects or inconsistencies

Bug prediction is arguably one of the most investigated areas of MSR, and it has
been studied extensively with the rising attention given to MSR [20]. By uti-
lizing supervised learning techniques from data mining, multiple bug prediction
approaches have been proposed [9] [27] [38] [5] [49].

Ohlsson et al. reported a study where metrics that was derived from design
documents could be used to predict fault-prone modules [36].

In an early study, Basili et. al concluded that object oriented (OO) metrics work
as predictors for software bugs [2]. This was later confirmed by [44]. Zimmerman
et al. studied the Eclipse project and found a considerable correlation between
complexity metrics and post-release defects. In addition, they contributed with a
publicly available data set of the Eclipse project with files mapped with defects
and complexity metrics [49]. Naggapan et. al also found, that complexity
metrics correlate with post-release defects, and that there exist a set of metrics
which can predict post-release bugs within a project. Likewise, they partially
confirmed that the combined metrics found within one project can predict bugs
in other projects, but this is only limited to similar projects. Furthermore, they
rejected the hypothesis that one single set of metrics which predict bugs in all
software projects exists [35]. Menzies et al. also found that there exist no best
set of metrics for complexity metrics. [31]

Hassan [23] found, that "the more complex changes to a file, the higher the
chance the file will contain faults." He also showed, that prior faults are better
predictors compared to prior changes. Yu et al. showed, that previous bugs
work well as predictors for future bugs [47].

In 2000, Graves et al. predicted defects using process metrics, and argued that
process metrics posses better prediction power compared to product metrics [18].
Moser et. al [33] showed that process metrics outperform product related met-
rics (including complexity metrics) and a combination of product and process
metrics in the Eclipse project. They used naïve Bayes, logistic regression and
decision trees to conduct their experiments. Zimmerman et al. used a combina-
tion of process and product metrics to investigate the power of cross-project bug
prediction by building models from one project and transferring them to another
project. The concluded, that classification models cannot be used across soft-
ware projects [48]. Muthukumaran et al. proposed new process metrics related
to the distribution of change over a time period and experimented with bug pre-
diction on the Eclipse project using data from GitHub and reported promising
results. In their experiment, they used naïve Bayes, logistic regression, decision
trees, and the hybrid näive bayes trees [34].
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2.2 Methodology

This thesis is based on empirical software engineering, where a software system
is implemented to set up an experiment. The experiment will be conducted to
collect empirical data about the performance of process metrics, and this data
will be used to answer the research questions of the thesis. To carry out this
experiment, a software system that is able to extract, preprocess and analyze
repository data must be built. The overall functionality of the system will be
based on the work of Muthukumaran et al. [34], who also built a tool to inves-
tigate process metrics extracted from Eclipse project hosted on GitHub. Their
methods are partly reproduced in this thesis, but also extended in the sense,
that the implementation will be able to mine data from all GitHub repositories.

The experimental part of the thesis will be carried out by selecting a number of
repositories that satisfy a defined set of inclusion and exclusion criteria. Each
of the included repositories are mined, and the performance of multiple combi-
nations of process metrics is evaluated across the repositories. The evaluation
is based on assessing the classification errors which are reported with a set of
widely used evaluation metrics.

2.3 Contribution

The main contributions of this thesis are threefold:

- extending the work of Muthukumaranet et al. [34] by proposing a bug
prediction library supporting all GitHub-hosted repositories.

- studying how the combination of process metrics are transferred across
open source repositories.

- studying how combinations of process metrics that have proven consider-
able results on the Eclipse project perform when they are used to predict
bugs in open source projects.
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Chapter 3

Concepts and terms

This chapter introduces the key concepts and terms which are used throughout
the thesis. First, a general explanation of the software development process is
conducted followed by an introduction to the MSR field. Subsequently, a general
explanation of the data mining process is provided, and concepts related to MSR
are elaborated on. In MSR, and data mining in general, several terms are used
interchangeably to describe the same thing. In data mining literature, one single
standard terminology has not been adopted, and in order to avoid a mix-up and
confusion of terms, this chapter establishes a terminology which is consistently
used throughout this thesis. It is noteworthy, that the introduced terms do not
stem from one specific text book. Along with this chapter, a glossary is found
on page 101.

3.1 Software development process

Software engineers have over the history adopted different development pro-
cesses to increase productivity and efficiency. A software development process
is divided into a number of phases that covers different aspects of the realiza-
tion of a software system. Historically, two very distinct processes have been
used; namely, the sequential approach, which dominated the 1970’s through the
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1990’s, referred to as the waterfall model, and the iterative approach, referred to
as agile, which is more or less the de facto standard today. In sequential software
development, a project is divided into phases which are performed sequentially
with only slightly overlapping phases, hence, it can be perceived as a waterfall.
A typical realization of the waterfall model would start with the analysis of a
problem followed by the definition of a formal requirements specification. Subse-
quently, a complete design which would satisfy every defined requirement would
be made and, lastly, the design would be completely implemented and only then
ultimately tested by the end user. It is outside the scope scope of this thesis to
cover all advantages and disadvantages of each approach, but the waterfall model
is obviously flawed, when considering, that most things in this world are any-
thing but constant. The lack of flexibility upon the change of requirements that
the waterfall model imposes, has led to severe delays and over-budget software
projects over time. During the 1990’s, the iterative approach saw increasing us-
age through the frameworks of Scrum, extreme programming (XP), and rational
unified process (RUP); ultimately collected as principles in the Agile manifesto.
Iterative software development allows for a high level of agility through con-
tinuous delivery and a close customer interaction. The iterative approach has
been highly adopted by most commercial software companies, and while many
elements from the agile method are recurring, the overall development process
can be seen in many variations across software projects.

When applying the principles of software engineering to fulfill a software related
task, that being analysis, design, implementation, or maintenance, it is typically
related to some kind of a project. Most software projects are carried out in one
or more teams of people that collaborate to reach a shared goal. An example
of a typical agile-based software development team working on a specific prod-
uct or module would consist of a number of junior and senior developers, an
architect and a team lead. This team would try to conform with a defined set
of development principles. To give an example, this could among other things
state that the team should release a new version of their product approximately
every other week as well as commit their code changes to the version control
system as early as possible.

The latter in the example is a generally adopted rule across projects, as devel-
opment teams with multiple contributors often work on the same parts of the
system and thus each developer often rely on the changes of their fellow devel-
opers. As in any other software project, this team also introduces new bugs in
their source code as a result of their changes, and to this end, the team have a
bug tracking system in which new bugs are reported. To maintain traceability
in the revision history, every change and commit that is related to the task of
fixing a bug is tagged with the identifier of the respective bug. The concept
of releases and the reporting of new bugs will be introduced in more details in
Section 3.7.
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The general practices mentioned in this example are also widely adopted across
many software projects of varying size in proprietary closed-source projects as
well as in open-source software (OSS) projects. However, as software engineering
is typically performed in teams, the characteristics of the team: e.g. the size and
the group dynamics greatly influence how the development process in reality
is carried out. Additionally, OSS projects tend to be even more diverse in
their development processes due to their very different organizational structure
compared to more traditional corporate development teams. While some OSS
projects have been founded by a single developer, who have implemented most of
the product and then scaled it up with the assistance of multiple contributors1,
other projects are much more distributed in terms of contributions2.

3.2 Data mining terminology

"Data mining is the study of collecting, cleaning, processing, analyzing, and
gaining useful insights from data" [1]. In this thesis, data mining techniques will
be used to recognize patterns in the development process that lead to defective
software. To lay out a theoretical foundation for the remainder of the thesis,
multiple concepts and terms from the data mining field are introduced. To put
the terms into the setting of bug prediction, a simple running example will be
provided.

3.2.1 Data set

In data mining, a data set is a collection of data that is typically represented as
a table or a matrix with columns and rows. A record corresponds to one single
row in the data set, where each record contains a set of fields. Throughout this
chapter, a running example from the software development domain is estab-
lished. Table 3.1 shows an example of a multidimensional data set containing
data about files from a software repository that have been changed over time.

Filename Commits Developers Additions Deletions
HelloWorld.js 2 1 8 3
Foo.cs 7 1 15 13
Bar.js 12 4 168 57

Table 3.1: Data set A. Example of a simple multidimensional data set con-
taining 5 columns and 3 records

1Like vue.js (https://github.com/vuejs/vue)
2Like the Wordpress Calypso project (https://github.com/Automattic/wp-calypso)

https://github.com/vuejs/vue)
https://github.com/Automattic/wp-calypso
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Each record in the data set corresponds to a file, and is identified by the column
filename. Each record does also contain additional fields that describe the char-
acteristics of the record. It is seen that in this data set, the file HelloWorld.js
has had two commits by one developer. In total, there has been a total of 8
added lines of code (LOC) and 3 deleted LOC to the file.

3.2.2 Feature

A feature is a specific field in a record which is used to describe the particular
record. A feature is in other words a characteristic of the record. In the provided
example, the columns commits, developers, additions, and deletions are features
in the data set.

3.2.3 Label

A class label describes the class to which a specific record belongs. The class
is the ground truth of the record. Reusing the running example, the data set
can be extended to also contain a column which is considered the class label of
each record. In the context of MSR and bug prediction, the column defective is
introduced, which tells if a file is defective e.g. has one or more software bugs
in it. This is seen in Table 3.2

Filename Commits Developers Additions Deletions Defective
HelloWorld.js 2 1 8 3 No
Foo.cs 7 1 15 13 No
Bar.js 12 4 168 57 Yes

Table 3.2: Data set A. The column defective does in fact tell whether a file
contains one or more bugs or not

The data set in this example has a label that is binary nominal. The label
is binary, as it belongs to a set of two classes namely No or Yes. The label is
nominal since it does not have a quantitative value and it cannot be ordered. On
the other hand, the example could also include a multi-class ordinal label which,
as the name suggests, would belong to a set of multiple classes. An example
in this context could be the labels: Not defective, Somewhat defective and Very
defective, indicating that Somewhat defective files would hold only a few bugs,
while Very defective files would hold many bugs. These classes are ordinal, as
the order of the classes is significant, that is, Very defective is perceived worse
than Somewhat defective, which again is worse than Not defective.
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3.2.4 Data classification

Data classification is a technique used to categorize data into classes. The
categorization is conducted by learning from a data set, where the records are
already organized in existing classes identified by the class labels. By learning
from existing examples, a model can be trained and then be used to estimate
class labels of unlabelled data. The data that is already categorized by class
labels are referred to as the training data, while the unseen data is referred to as
the test data. To actually build the model, a classification algorithm is used [1].
When a model is built and trained, test data is used as input to the model, and
the output of the model is an estimation of the class labels of the test data i.e.
a prediction. Using the data set from the example as training data, a model can
be trained and built to classify the label of an unlabelled data set i.e. test data.
An example of an unlabelled data set is seen in Table 3.3. Using the model
trained with the training data, the prediction of the classification model is seen
in Table 3.4

Filename Commits Developers Additions Deletions
Baz.ts 1 1 3 1
Qux.cs 16 3 381 182

Table 3.3: Data set B. Example of an unlabelled data set used as test data

Filename Prediction (defective)
Baz.ts No
Qux.cs Yes

Table 3.4: The predicted label, defective of each record identified by the name
of the file

3.2.5 Feature selection

In general, data mining algorithms tend to be ineffective when working with too
many features. Some features may be irrelevant for the classification problem,
and, thus, add noise to the model. Some features may be highly or completely
correlated with other features i.e. redundant, and will, therefore, not bring
any prediction power to the model itself. To this end, it is crucial to select a
relevant subset of features to be used in the training of a model. This is referred
to as feature selection, and is the process of evaluating each feature, followed by
choosing only the most relevant features and, thereby, reduce the dimensionality
of the problem. It is important, however, to mention that, although a single
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feature may not be relevant by itself, it can be transformed or used to construct
new features that bring more relevant information.

3.3 The data mining process

Due to the rising amount of data available and the increasing computing power,
data mining has proven to be a very useful process to extract knowledge. The
domains, in which data mining can be applied are manifold, and finance, biology,
health care et cetera are areas and industries where data mining is commonly
used. Thus, the data sources can be quite heterogeneous with distinct data
types, formats and missing data. To this end, a general data processing pipeline
is used among data scientists and analysts. The overall process is the same
across all problem domains. The pipeline and its varieties include different
phases which are divided into: a collection phase, a preprocessing phase, and
an analytical phase. An outline of such process can be seen in Figure 3.1.

Figure 3.1: The data processing pipeline. Reprinted by permission from
Springer Nature [1].

The data collection phase is about extracting and collecting the data to be
analyzed. The data can be collected from multiple sources like specific types
of hardware, physical documents or external systems, and the goal of the data
collection phase is to store the data into a single source e.g. a database, a data
warehouse or similar. A common idiom in machine learning and data mining
is “garbage in, garbage out”, which means that input of low quality or flawed
input yields a similarly bad output. To this end, it is crucial to ensure that the
quality of the extracted data is as high as possible.

The next phase is the data preprocessing phase. The ultimate goal of this phase
is to generate a structured data set that can be used for further analysis. The
most crucial step in the preprocessing phase is the feature extraction. When
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having a data set, feature extraction is used to find the most important features
that can describe the data set. Feature extraction is highly dependent on the
domain and application of use.

The collected raw data, which was a result of the data collection phase, can
have multiple flaws, which may result in poor or simply misleading results in the
analytical phase. The raw data can be perceived as dirty when it is incomplete,
inaccurate, or inconsistent [6]. Data cleaning is used in the preprocessing phase
to handle the erroneous data by removing or correcting some specific entries.
When the above steps have been completed, the result should be a structured
set of features, that describes the complete data set.

The analytical phase is where the actual analytical algorithms are applied to
the preprocessed data set. Aggarwal [1] lists four problems, that are considered
fundamental and repeatedly seen in the context of data mining. These are:
data clustering, classification, association pattern mining, and outlier detection.
Bug prediction is by its nature a very suitable problem for the classification
technique, as classification does indeed use historical data for estimating the
class of a record.

Since the primary technique of this thesis is classification, it is outside the scope
of this thesis to introduce the three other techniques mentioned.

Figure 3.2 outlines the internal relationship between the introduced terms. In
this thesis, two types of classifiers will be used, namely: probabilistic classifiers
and decision trees.

Figure 3.2: Training a classification model
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3.4 Classification algorithms

As previously described in Subsection 3.2.4, in order for a classification algo-
rithm to classify records, it has to learn from training data i.e. a data set that
has already been labeled. By using the training data to build the underlying
mathematical model, a classifier will use the structure of the features of the
training data to determine the label of, hitherto, unseen test data [1]. A more
detailed description of how a classifier is validated follows in Section 3.5. In
order to build a classification model, a classification algorithm has to be used.
The most commonly used algorithm types are

- Probabilistic classifiers (Naïve Bayes, logistic regression)

- Decision trees

- Random forests

- Neural networks

- k -nearest neighbor

- Support vector machines

The bug prediction problem can both be defined as a binary and a multi-class
classification problem, but to keep the problem domain as simple as possible,
while still being able to answer the research questions, the bug prediction prob-
lem in this thesis is defined as binary i.e. whether a file is defective or not. To
this end, all classification algorithms, that are able to solve binary class classi-
fication problems can be used. However, in order to be consistent with similar
researches and to be able to compare the results, the realization of the bug pre-
diction tool will only make use of a subset of these algorithms, namely: Naïve
Bayes, logistic regression, decision trees and random forests [33] [34]. As this
work does not go into the implementation details of the different algorithms, nor
propose any novel modifications to the algorithms, existing implementations of
the algorithms are merely used as black boxes configured by a number of pa-
rameters. The following sections describe each of the algorithms used in this
thesis at a high level.

3.4.1 Probabilistic classifiers

Probabilistic classifiers are a group of classifiers that use the feature variables to
model the probability of a label [1]. The two most commonly used probabilistic
classifiers are naïve Bayes and logistic regression.
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Naïve Bayes:

The Naïve Bayes classifier is a Bayesian classifier that is based on Bayes’ theo-
rem [21] which is defined as “the ratio between the value at which anexpectation
depending on the happening of the event ought to be computed, and the value of
the thing expected upon its happening” [22]. Simply put, the theorem is “a simple
mathematical formula used for calculating conditional probabilities” [24]. In data
mining, the theorem is used to model the probability of the class label using the
features of a record [1]. Using Bayes’ theorem for a classification problem on
data sets of a substantial size would be extremely computationally expensive,
and to this end, the theorem is used together with the naïve assumption; that
all features are independent. This is referred to as naïve due to the fact that
second to no features are in reality completely independent. However, the sim-
ple Naïve Bayes classifier has proven very strong and its performance has been
comparable with even more complex classification algorithms [21].

Logistic regression:

Logistic regression is another probabilistic classifier that, instead of using Bayes’
theorem to map the features with the label probability, builds upon linear re-
gression. Linear regression uses a linear function to estimate continuous output.
If the bug prediction problem was changed to a regression problem the predic-
tion of a file would not be binary, but rather continuous e.g. an estimate of how
many bugs a file would have. Using linear regression, a relationship between
the number of commits and the number of bugs could be modelled. By using
a linear function, linear regression would output the number of bugs for any
given input number of commits. Logistic regression does instead use a logistic
function to map the features with the label. Instead of outputting a continu-
ous value, logistic regression instead uses the probability to estimate the binary
label of a record.

3.4.2 Decision trees

A decision tree is another classification model, that does not model the proba-
bility of a label, but rather model a “set of hierarchical decisions on the feature
variables, arranged in a tree-like structure” [1]. The nodes in the trees, referred
to as split criteria, indicate a decision on a specific feature variable. Reusing
the example data sets introduced in Subsection 3.2.1 and Subsection 3.2.4, and
for simplicity, considering only the features Commits and Additions, a decision
tree can be trained with training set A containing the ground truth. Predicting
the label of data set B, a decision tree is constructed, as seen in Figure 3.3
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Figure 3.3: Example decision tree trained with data set A used for predicting
the labels of data set B

The random forest algorithm builds upon the ensemble method which is “an
approach to increase the prediction accuracy by combining the results from mul-
tiple classifiers.” [1]. The concept of the random forest is to build and combine
multiple decision tree models and create one composite model. The output of
each decision tree classifier is considered as a vote, and the class label with the
majority of the votes is the output of the random forest algorithm.

3.5 Classifier evaluation

To validate if a classification model actually goes beyond blind guessing and
to also evaluate how it performs compared to other classification models, dif-
ferent validation techniques and evaluation metrics are used in data mining.
Multiple validation techniques exist; including hold-out, cross-validation, and
bootstrapping.

3.5.1 Evaluation metrics

In binary classification, a classifier can either classify a record as negative (0)
or as positive (1). In bug prediction this corresponds to classifying a file as not
defective (0) and defective (1). In reality, the resulting classification of a classifier
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belongs to one of four possible categories. If the classifier correctly classified a
specific record as positive this is referred to as true positive, on the other hand,
if a classifier classified a record as positive, while it in fact are negative, this is
referred to false negative. The four possible outcomes of a classification are as
follows:

- True positive (TP): Records that are correctly classified as positive

- False positive (FP): Records that are incorrectly classified as positive

- True negative (TN): Records that are correctly classified as negative

- False negative (FN): Records that are incorrectly classified as negative

A basic evaluation metric is accuracy, which is a measure of the degree to which
the predictions match the reality [41]. However, this metric does not necessarily
provide a fair and complete picture of the classification performance on data
sets that are considerably class-imbalanced [4]. Consider a software project,
where a fictive number of 10 % of all files are defective, a data set of 500 files
would consist of 450 negatives (not defective) and only 50 positives (defective).
If a very pessimistic classifier classified all of the files in data set as negatives
(not defective), the accuracy of the classifier would still be quite high, although
all the defective files would stay under the radar, which cannot be considered a
success. Since the data sets used in the domain of bug prediction are most likely
not class balanced, accuracy is not powerful enough to evaluate the performance.
To this end, a confusion matrix comprised of TP, FP, TN and FN can be used
to calculate more complete evaluation metrics. The structure of a confusion
matrix is seen in Table 3.5

Predicted

0 1

Actual
0 TN FP

1 FN TP

Table 3.5: Confusion matrix in binary classification

Instead of measuring how accurate the classifier is on a class-imbalanced data
set, it would be more useful to understand the classifier’s ability to classify the
positive records within a data set. This evaluation metric is referred to as recall
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and is defined in Equation 3.1.

Recall =
TP

TP + FN
(3.1)

However, recall cannot be used to describe the classifier performance alone, since
if the classifier were to classify every record as positive, the recall would be 1.0.
A recall of 1.0 would, for instance, mean that all files in a software repository
would be classified as defective. To this end, the evaluation metric, precision
is used to describe the classifier’s ability to classify only the true positives as
positive [29]. Precision is defined in Equation 3.2.

Precision =
TP

TP + FP
(3.2)

Reusing the example where a classifier would classify every file as defective, the
recall would be perfect, while the precision would be extremely low. On the
other hand, if the classifier were to only classify one file as defective, which in
fact is truly defective, the precision would be perfect as no false positives would
exist. In that case, the recall would be extremely low.

This pair of evaluation metrics is useful for measuring the performance of a
classifier on a class-imbalanced data set as they are complementary to each
others weaknesses in their expressive power. These metrics can also be combined
into one metric referred to as F1 defined in Equation 3.3.

F1 = 2 · Precision ·Recall

Precision + Recall
(3.3)

It is possible to assign different weights to precision and recall, depending on
which metric is considered more valuable in a specific context. F1 is balanced
and is, therefore, the harmonic mean of recall and precision. When evaluating
the performance of the process metrics used with the different classifiers in this
thesis, F1 is the score that determines which set of metrics performs better.

3.5.2 Validation techniques

In the hold-out technique, a data set is split into two sets: one with training
data and one with test data respectively. The training data is used for training



3.5 Classifier evaluation 21

the model, while the test data is unknown to the model [42]. To conduct the
evaluation, the model predicts the labels of the test data and then the predictions
are compared with the ground truth. A major drawback of the hold-out method
is, however, the fact that the evaluation is heavily affected by the way the data
set is split. On highly imbalanced data sets, a test set with the size of 25 % of
the complete data set, may contain no or only a few records belonging to one
class. This clearly affects the evaluation and the result is that the performance
estimate generally has a high variance [1]. Redoing the method with a different
split may yield quite different results.

k -fold cross-validation builds upon the hold-out method, but instead of splitting
the data set into two disjoint sets, the data set is split into k different subsets.
The hold-out technique is then repeated k times using one of the k subsets as
the test set and the other k -1 subsets joint together as the training set. The
average result of all tests are then reported as the result of the k -fold cross
validation. The overall concept of this technique is depicted in Figure 3.4

Figure 3.4: k -fold cross validation

The main advantage of using k -fold cross validation is the lower variance of
the performance estimate which is achieved by repeating the hold-method on
multiple splits. A disadvantage on large data sets is, that the computation is
significantly more expensive, given that the model has to be trained again on
each k run.

To answer the research questions of this thesis, it has been considered satisfac-
tory to use k -fold cross-validation to obtain the recall, precision and F1 scores,
and specifically use the F1 to compare the performance across the process met-
rics combinations and classification algorithms. As the absolute scores of the
classifiers are not overly important in this case, but rather comparing the rela-
tive performance, it has been deemed out of scope to go into detail about the
recall/precision trade-off and for instance consider ROC/AUC curves on every
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data set.

3.6 Metrics

In the context of bug prediction, two classes of metrics have traditionally been
used as features, namely product metrics and process metrics.

Name Description
Commits Sum of commits to the file
Deletions Sum of deleted lines of code
Additions Sum of added lines of code
Authors Number of different contributors to the file
Commits pre release Number of commits just before a release. Can be defined

by a fixed number n days before the release date.
Last commit Days since the last commit to the file
Refactorings The number of times a file has been refactored (checking

if commit message contains refactor [33]
In development bugs Number of bugs reported to the file in the development

phase [33]
Entropy The distribution of changes in the timeline [34]
Mean period of change Estimation of center of concentration of changes [34]
Maximum burst Sequence of consecutive changes using parameters gap

size and burst size [35]
Maxmimum change set Maximum number of other files changed together with

the file [33]
Average change set Average number of files changed together with the

file [33]
Age Total age in days of the file [33]
Weighted age Weighted age [33]
Maximum additions Max number of added lines to the file
Average additions Average number of added lines to the file
Max deletions Maximum number of deletions to the file
Average deletions Average number of deletions to the file
Code churn Sum of added lines minus deleted lines to the file
Maximum code churn Maximum code churn to the file
Average code churn Average code churn to the file
Average time between
changes

The average number of days that have passed between
the changes of the file

No commit messages Number of commits without a commit message

Table 3.6: Process metrics
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Process metrics do not describe the actual software, but rather the underlying
development process, i.e. the process that leads to the product. Based on
historical data, process metrics describe the changes that have been made to
a software system. This include the additions and deletions of code [12], how
many different developers that have made the changes, and when they were
made. It does also include the number of previous bug fixes [33].

Table 3.6 outlines different process metrics that has been used in previous studies
to predict bugs. These metrics are thereby the foundation for the research
questions in this this work.

Product metrics are, as the name indicates, about the state of the product,
i.e. the software system. Metrics in this class describe properties of the actual
software, which include, but are not limited to: LOC, OO metrics [19], usage
of design patterns (and antipatterns [45]), complexity, and the structure of the
code. There are several other product metrics used in literature, but as this
thesis focuses on process metrics, it is outside the scope of this thesis to present
them in details.

3.7 Releases and bug reports

Now that the technical foundation for bug prediction has been introduced, it is
time to investigate, how releases and bug reports of a software project can be
used to construct a data set suitable for bug prediction.

In software engineering, a release is a specific version of a software system which
is published to its end users. A release is therefore comprised of a state of the
software system as well as a release date. As software naturally matures, the
development process that leads to bugs in the early stage of a project’s life
cycle may be significantly different from the process of a system which has been
refined for years. To this end, releases fit very well into the construction of a
data set in the sense that developers make changes to software for a planned
release in order to jointly publish these changes at the same time. By reusing
these release dates as delimiters, multiple bug prediction data sets within the
life cycle of a software project can be created.

Most software is tagged by a version number, that is, a version number is
assigned to a unique state of a software system. One of the most widespread
versioning schemes adopted are The Semantic Versioning specification which
defines a version number as:
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“A normal version number MUST take the form X.Y.Z where X, Y, and Z are
non-negative integers, and MUST NOT contain leading zeroes. X is the major
version, Y is the minor version, and Z is the patch version. Each element
MUST increase numerically. For instance: 1.9.0 → 1.10.0 → 1.11.0” [39].

Different projects do however, vary in the scope of their major, minor and, patch
versions. Some projects tend to release a lot of changes in a minor version or
patch version, while other projects will release the same of amount of changes
in a major version. It is, therefore, important to note that across repositories,
the releases of both major and minor and patch versions can be picked as the
delimiter of a data set. The reason is, that both the number of changes and the
absolute time between major and minor and patch versions vary greatly due to
project policies and requirements.

Recall the labelled data set A in Table 3.2 on page 12 which consists of both
features and a label for each file. In this thesis, a data set is created from the
changes that have occurred in the time span between two consecutive releases.
In order to construct such a data set, it is simple to extract the process metrics
of a file by using the change history between the two releases. It is, however, not
that simple to extract if the file indeed does contain bugs or not. To this end,
the bug reports, that have been reported after a release and, most importantly,
the bug fixes that have been made after a release, are used to decide whether a
file or not is defective.

The bug prediction data set will, therefore, be constructed by extracting features
pre-release while the labelling of each file is done by extracting bug reports and
bug fixes post-release. Given the release dates R1 and R2 such that R1 < R2,
the pre-release period will in this thesis be defined as Tpre = ∆R. Given a
post-release bug fix period, Y > 0, the post-release period will be defined as
Tpost = Y . The post-release bug fix period is the maximum number of days that
will have passed after the release, before bugs reported post-release will have
been fixed.

Figure 3.5: A prediction timeline constituted by two release dates R1 and R2

and a post release bug fix period which ends at Pend.

Figure 3.5 shows how a pre-release period Tpre and a post-release period Tpost
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constitutes the timeline used in the bug prediction classification problem. The
details on how this extraction is carried out are decribed in Chapter 5.

3.8 Git and GitHub

Software consists of source code, which is text files containing human-readable
sequences of executable code. When software developers work together on the
same source code i.e. the same text files, it is essential to have proper a version
control system (VCS) to contain the history of the changes but also allow for col-
laborative changes without the risk of losing some contributions. A VCS usually
consists of a central repository, to which developers submit their modifications.
Git is a distributed VCS, where each developer has their own local version of
the repository. While it is not strictly necessary to have a central repository
(hence it is distributed), most of today’s workflows have exactly that, where
the developers merge the changes from the local repository to a central, remote
repository. This is seen in Figure 3.6

Figure 3.6: A distributed VCS with a central remote repository. Source: [10]

With more than 85 million repositories3 [13], GitHub is the world’s largest online
version control hosting service using Git. Beside the obvious hosting of source
code, GitHub also provides a large number of important features, including:
issue tracking, pull request, graphs, and social-network like features. The wide
adoption of GitHub among companies of sizes varying from small startups to

3Reported by April 2018.
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Facebook, open source communities and academia, bring a lot of possibilities of
extracting valuable information about the software development process.

The most central element in git and GitHub is a commit. For this project, it is
less relevant how a commit is created in git, but rather what it tells about the
change. Simply put; a commit contains information about the modified files on
the local repository which can be merged and pushed to the remote repository.

Additionally, GitHub does through each repository provide a built-in issue
tracker to manage bugs and any other issues in a software project. The struc-
ture of a GitHub issue is very simple as seen in Figure 3.7. GitHub issues have
a very limited structure with only text field where the description of the issue
is provided. Issues can be labelled using repository-defined labels, as well as,
being attached to repository-specific projects and milestones.

Figure 3.7: A typical GitHub issue with a title, a textual description and a
label

Another central element of git is branching. A software project will at all time
have a master branch, which should always contain the latest working version
of software system. To allow for the development of new features, without the
necessity of commiting directly to the master branch, git offers a lightweight
branching model, in which developers are encouraged to diverge from the master
branch, and work on their own branch dedicated to the work at hand e.g. the
realization of a new feature or a bug fix.

To leverage this branching feature, GitHub recommends the usage of their
GitHub Flow depicted in Figure 3.8.
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Figure 3.8: GitHub Flow. Source: [17] - modified

A pull request is a specialized type of issues, which also contains references
to commits in a specific branch. Pull requests have been widely adopted in
OSS environment, allowing developers to create their own branch which they
can work from and open a new pull request containing their changes. This
gives other contributors the opportunity to discuss and review the code changes.
When the pull request has passed the test cases and is accepted by the owners of
the project, it can be merged into the master branch. This enables developers,
who do not have the privileges to commit to the master branch, to contribute
to the project. An example of how a pull request can look like can be seen in
Figure 3.9

Figure 3.9: A labelled pull request that states to resolve a specific bug. The
PR has been labelled, reviewed and merged into the master branch
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This strong relationship between commits, issues, and pull requests, can be
utilized by cross-referencing issues and pull requests in commits and vice-versa.

GitHub does also provide an API to query the information about publicly avail-
able projects. Table 3.7 shows a highlight of some valuable GitHub objects and
attributes that contain useful data for studying the code changes, as well as, the
cross-references to issues and pull requests.

Object Attribute Description

Commit

Author The name of the author of the commit
Date The date and time when the commit was authored
Files List of the files changed in the commit
Stats Number of additions and deletions in the commit
Message The commit message (can be multiline)

File
Additions Number of additions to the file
Deletions Number of deletions to the file
Filename The filename (including relative path) of the file
Status The status of the file (e.g. modified)

Issue

Assignees List of users assigned to the issue
Body The body text of the issue
Closed at The date, if any, the issue was closed
Closed by The user, if any, the issue was closed by
Created at The date the issue was created
Labels List of the current labels labelled to the issue
Milestone The milestone, if any, the issue refers to
Pull Request The pull request, if it was created as such4

State The current state of the issue (e.g. open)

Table 3.7: Highlight of available data in GitHub

In a study from 2014, Kalliamvakou et al. identified multiple risks in using the
data from GitHub for research and drawing conclusions in general [26]:

- A repository is not necessarily a project.

- Most projects have very few commits.

- Most projects are inactive.

- A large portion of repositories are not for software development.

- Two thirds of projects (71.6% of repositories) are personal.
4“GitHub’s REST API v3 considers every pull request an issue, but not every issue is a

pull request. For this reason, "Issues" endpoints may return both issues and pull requests in
the response” [15].
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- Only a fraction of projects use pull requests. And of those that use them,
their use is very skewed.

- If the commits in a pull-request are reworked (in response to comments)
GitHub records only the commits that are the result of the peer-review,
not the original commits.

- Most pull requests appear as non-merged even if they are actually merged.

- Many active projects do not conduct all their software development in
GitHub

Kalliamvakou et al. also found, that not all active projects make use of GitHub’s
builtin issue tracker, and therefore manage issues in other systems. Additionally,
some projects do also have contribution outliers, namely; committers with a very
large nmber of commits, which suggests the committer to be a bot.

These perils are important to take into consideration in the context of MSR and
bug prediction and therefore, a number of measures have to be taken during the
development of the software system and the evaluation process. To evaluate the
performance of combinations of process metrics across repositories, a systematic
approach has to be used to select which repositories should be investigated.
Consequently, a set of inclusion and exclusion criteria for the experiment will
be defined in Chapter 7.

3.9 Domain

Following the introduction of the essential concepts and terms required for re-
alizing the bug prediction tool, modelling, and describing the domain is a sig-
nificant task towards understanding the requirements and proposing a design
for the system. Modelling the domain allows for establishing the physical and
abstract objects of the domain and their internal associations. The purpose
for a domain model is manifold as it can, at a very high level, convey the key
problem, scope and essentials of a software system. Additionally, the domain
model helps defining the requirements of the system, as well as, to accelerate
the design of the data model and the system architecture. The domain model
in Figure 3.10 depicts the different key entities in the domain.

It is clearly seen, how Github repository, File, Commit and Bug are central
entities in the domain with multiple and important associations. The entity
Project can be perceived as the overarching concept, which gives rise to the
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other entities in the domain. The Project and a corresponding Github repository
relate to the overall software development process described in Section 3.1, while
the GitHub repository and its derived entities stem from concepts and terms
introduced in Section 3.8. Lastly, the entities Feature, Prediction, Model, and
Evaluation originate from the terms introduced in Section 3.2.

Figure 3.10: Domain model



Chapter 4

Requirements

With the terms and concepts necessary and relevant for the problem statement
introduced, a set of formal requirements for the prediction system has been
established. This chapter will cover the scope of the realization and present a
requirements specification. Since the overall development method is based on
the agile methodology, and since the prediction system to be developed will
mainly be perceived as a prototype, the requirements have been prioritized to
allow for a flexible work process.

4.1 Scope

The overall vision of this project is to create a prototype of a prediction system
where the purpose is twofold. The main objective of the prediction system, and
ultimately of the thesis, is to investigate and answer RQ1 and RQ2. However,
a derived objective is to also create a flexible and extensible library, for further
use by either academia or industry. To this end, it is deemed important that the
final product of the thesis is designed with sound software engineering practices
and principles.
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4.2 Requirements specification

Requirements are identified with a unique number in order to keep traceability
in the project. Requirements prefixed with 1. refer to functional requirements
whereas requirements prefixed with 2. refer to non-functional requirements.
All requirements are labeled M, S, C or W using the rather informal priority
technique, MoSCoW [7]. A mapping for the labels is seen in Table 4.1.

Label Priority Description
M Must have The requirement is all-important for the software.
S Should have The requirement is important, and has been estimated to

be feasible within the project period.
C Could have The requirement is desirable, but not crucial for the prod-

uct within the project period
W Won’t have The requirement is identified and recognized as desirable,

but has been estimated to be infeasible within the project
period

Table 4.1: Labels and priorities with the MoSCoW technique

All requirements considered a "must have", do constitute the minimum viable
product (MVP) of the realization. If one requirement prioritized as a must have
is not achieved, the project can be considered a failure.

4.2.1 Functional requirements

The following functional requirements for the software system are as follows:

1.1: The system must be able to extract metadata from an OSS system hosted on
GitHub (M)

1.2: The system must be able to extract metadata between two releases defined by
datetimes (M)

1.3: The system must only extract necessary metadata (S)
1.4: The system must be able to extract post release metadata

1.5: The system must be able to identify all files changed in a time span (M)
1.6: The system must be able to extract metadata from two defined release numbers

(S)
1.7: The system must be able to determine if a post release change is a bug fix (M)
1.8: The system must store the extracted data in an easily parsable format (S)
1.9: The system must be able to identify the number of commits made to a file between

two releases (M)
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1.10: The system must be able to identify the sum, average and maximum number of
additions made to a file between two releases (M)

1.11: The system must be able to identify the sum, average and maximum number of
deletions made to a file between two releases (M)

1.12: The system must be able to identify the number of different developers who made
changes to a file between two releases (S)

1.13: The system must be able to identify the number of commits made to a file within
a defined number of days before the later release (C)

1.14: The system must be able to identify the number of days from the later release
since the last commit to a file (C)

1.15: The system must be able to identify if a commit includes refactoring (C)

1.16: The system must be able to identify the number of refactoring commits made to
a file between two releases (C)

1.17: The system must be able to identify the number of bugs fixed in a file between
two releases. (S)

1.18: The system must be able to identify the entropy of commits made to a file between
two releases (C)

1.19: The system must be able to identify the center of concentration of the commits
to a file (C)

1.20: The system must be able to identify the maximum sequence of commits to a file
within a defined maximum gap between the commits (C)

1.21: The system must be able to identify the maximum and average number of other
files changed together with file (C)

1.22: The system must be able to identify the age of a file (C)

1.23: The system must be able to identify the average number of days between commits
to a file (C)

1.24: The system must be able to identify the number of commits to a file with no
commit message (C)

1.25: The system must be able to identify the age of a file (C)

1.26: The system must be able to predict post release bugs by using a classification
algorithm (M)

1.27: The system must support bug prediction by using multiple classification algo-
rithms (S)

1.28: The system must support k -fold cross validation to evaluate the performance of
a classifier (S)

4.2.2 Non-functional requirements

2.1: It must be possible to execute each data mining phase either alone or in combi-
nation with other phases of the data mining processing pipeline
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Chapter 5

Design

This chapter describes how the bug prediction tool is designed. By applying
and combining the concepts presented in Chapter 3, this chapter presents a
detailed design that satisfies the requirements set for the system. The high level
architecture of the system is presented, followed by a description of both the
structural or static aspects of the system and the behavioural or dynamic aspects
of the components. This chapter covers what is to be considered as "important"
design decisions, and argues for the justification of each design decision.

Since the vision and ultimate goal of this realization is to answer the research
questions, but also to create an extensible product, the architecture of the system
has to be created in such a way, that both of these objectives are taken into
consideration. This calls for an architecture that allows the system to execute
the full data mining process pipeline presented in Figure 3.1, but also having the
system logic behind each phase sufficiently decoupled in order to, for instance,
execute only a subset of the phases on a particular data set1 at a time. As the
scope of this realization is to mine software repositories hosted on GitHub, there
is only need for one integration to the outside world of the system, namely; to
collect the data exposed on GitHub. At a high level, Figure 5.1 outlines what the
realization should cover. Data from a software repository hosted at GitHub will
feed the prediction tool with raw data, from which process metrics are extracted.

1Which can be either raw or preprocessed at execution time
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A well structured data set using these metrics as features is preprocessed, and
will go into a classification algorithm which is able to produce results, that
is, predictions and evaluations of the classifier performance. Ultimately, these
results will be visualized in a clear and understandable matter.

Figure 5.1: High level overview of the realization

To satisfy requirement 2.1,

2.1: It must be possible to execute each data mining phase either alone or in combination
with other phases of the data mining processing pipeline

the system must consist of a number of architectural elements or components,
each having a clearly defined set of boundaries and responsibilities. The data
mining process already has such boundaries defined in form of the different
phases. For this purpose, it seems logical from an architectural point of view
to propose a structural design that imitates these phases. In other words, the
structural design will consist of components responsible for the tasks in each of
the data mining phases.

Additionally, to accommodate the different needs for the system, a software sys-
tem consisting of two main components is proposed as shown in Figure 5.2. The
component msrlib is a library exposing the functionality necessary to perform
each of the phases in the data mining processing pipeline. The library can be
used as it is, but to produce the results necessary to answer RQ1, the compo-
nent RaV is added to the system. RaV (Research and Visualization) consists of
a research component, handling the execution of the full sequential data min-
ing process by using the exposed functionality of msrlib. Additionally, RaV also
contains a visualization component, which is able to present the gathered results
in an understandable manner.
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Figure 5.2: The two components constituting the realization of the software
system

5.1 msrlib

Given that the purpose of msrlib is to provide access to the tasks contained
in each data mining phase, it would not make sense to organize the component
by a multilayered architecture. Rather, the library is structured "by feature"
or sliced "vertically" thereby grouping related domain concepts [30]. The ad-
vantage of choosing a package-by-feature is in this case, that it allows for a
higher modularity and minimal coupling between the other components. Fig-
ure 5.3 shows the internal structure of msrlib, where each subcomponent has
the responsibility of each phase in the data mining processing pipeline.

The main responsibilities of each subcomponent are described as follows

Extraction: is responsible for extracting raw data for further use in the
data mining processing pipeline. The primary input to this component
is a data source providing access to a software repository (which in this
implementation is GitHub), while the primary output is structured set of
relevant change history data. Moreover, this component exposes function-
ality to search for GitHub repositories with a set of search properties.

Preprocessing: is responsible for the feature extraction, data cleaning
and transformation (if necessary) and labelling of the files. The primary
input to this component is the raw data extracted from the Extraction
component. The output is a well structured data set as defined in Subsec-
tion 3.2.1. Additionally, the component can be extended to also provide
an analysis of the features, as well as, feature selection.

Prediction: is responsible for conducting the prediction of bug prone files
based on yet unseen data i.e. the class label of each file. The input is a
trained model as well as a preprocessed data set with an unknown class
label. The output is the predicted class label of each file.

Validation: is responsible for evaluating the performance of multiple clas-
sification algorithms. The input is a well structured data set containing
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Figure 5.3: High level overview of the components and their dependencies

features and labels for each file. The output is a report on the results from
the evaluation

Persistence: is responsible serializing the produced data to the disk.
The component provides the interface Disk, which enables the callers to
serialize the data structures to documents on the disk.

In general, the subcomponents of msrlib do not have any dependencies to each
other, but instead, each provide an interface allowing a caller to use the service of
each component individually. Since the subcomponents are not interdependent,
but rather dependent on the results serialized by the use of Persistence, a data
model has to be established.
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5.1.1 Data model

The data model will be defined at the three traditional levels, namely with a
conceptual model, a logical model and a physical model. The conceptual data
model is closely associated with the domain model discovered in Figure 3.10.
The conceptual data model reuses some of the entities discovered in the domain
model, while it is necessary to introduce two new entities to evaluate the classifi-
cation performance through the Validation component. The conceptual model
is depicted as an entity-relationship (ER) model in Figure 5.42.

Figure 5.4: Conceptual entity-relationship model

Two new entities, FeatureSet and Score are introduced in the conceptual model.
Score is a conceptual entity derived from the Evaluation entity, while Feau-
tureSet is simply constituted by a number of features. The logical data model
describes the information structure, reusing the entities and relationships iden-
tified in the conceptual model. The logical model is, however, technology in-
dependent, and does not describe the implementation of the data model. The
logical data model is depicted in Figure 5.5

2Multiple ER notations exist and have been used throughout the software engineering
history. In this thesis, UML is consistently used.
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Figure 5.5: Logical data model

Ultimately, the physical data model describes the implementation and the phys-
ical schema. The ability to use each subcomponent of msrlib independently
from each other, is a significant requirement of the software system. The phys-
ical data model must accommodate this need as well. To this end, the design
avoids the use of a relational database schema, but rather use a non-relational
approach by storing documents associated with each subcomponent. This allows
callers of the library to only use a subset of the provided functionality, while still
being able to get useful results, which can be used outside the msrlib environ-
ment. Moreover, as multiple machine learning libraries mostly work with flat
files e.g. stored as comma-separated values (CSV) or JavaScript Object Nota-
tion (JSON), it has been deemed much more convenient for the callers to get the
exact same file format instead of data stored in a less flexible relational database.
For this purpose, all data is stored as JSON, and where possible also as CSV
files. To keep the initial version of msrlib simple and flexible, a simple file-based
approach has been chosen. A viable and more robust alternative, which could
be an extension of the system, would be to set up a NoSQL database to store
the documents. Working with non-relational documents instead of relational
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tables, an embedded data model allows for storing the references as embedded
data in the same document [32]. Relationships that, in a traditional relational
schema, would be implemented as related tables with foreign keys are instead
embedded in the same record.

When msrlib is used, the caller selects an output directory of the library. Each
component will through the Persistence component store their output in a re-
lated directory. The directory structure below depicts what an output directory
would contain following a full run:

/

extraction

pre-release-commits

0a70cc6d46f75971b1bdbd465b1e633b175b5557.json

bb7a60ffc5b3d19b592059fc0d98b771ebe45d2a.json

..

pre-release-files.json

post-release-commits

6b2c0d902b003425a495c9236aad56adffd252d5.json

..

post-release-files.json

preprocessing

data.json

data.csv

validation

results.json

prediction

predictions.json

Extraction stores information about each extracted commit in either the direc-
tory pre-release commits or post-release-commits. Likewise, a list of all the files
modified in the period (either Tpre or Tpost that is) are stored in a separate file.
Listing 1 shows an example of the physical schema of an extracted pre-release
commit. Please note how the File entity is embedded in the Commit entity.

A post-release commit contain most of the same information, but the additions
and deletions of each file are replaced with a boolean value indicating whether
the file is defective or not. An example of the physical schema is provided in
Listing 3 in Appendix A.

The preprocessed data set that Preprocessing produces, is a simple multidi-
mensional data set of records. These records stored as a combination of the
File entitiy and the Feature entity both as CSV and JSON. An example of the
physical data schema of the JSON document can be seen in Appendix A.
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1 {

2 "author": "jrieken",

3 "datetime": "2018-10-02 19:04:47",

4 "files": [

5 {

6 "additions": 3,

7 "deletions": 3,

8 "filename": "src/vs/editor/contrib/suggest/completionModel.ts",

9 "sha": "a87441ed3911ccb10257f872dd619c1d6c5bcb69"

10 }

11 ],

12 "message": "make sure `ensureLowerCaseVariants` has been called",

13 "sha": "0fb324496a962f8fd0f1b8734e9d2daa4eaf3059"

14 }

Listing 1: Example of an extracted pre-release commit. Source of data: https:
//github.com/Microsoft/vscode

Prediction stores prediction results as a very simple list of files and a boolean
value indicating whether each file is defective or not. This is stored both as CSV
and JSON. An example of the physical data schema of the JSON document can
be seen in Appendix A.

Lastly, Validation stores the results as a combination of the FeatureSet, Model
and Score entity in a single document. An example of the physical data schema
of the JSON document can be seen in Appendix A.

5.1.2 Extraction

To establish a data set that is suitable for the classification of buggy files, the
outcome of the extraction phase should be the preliminary step towards creating
the data set. The Extraction component must therefore, extract the raw data
about all the changes including the files affected before a release. In other words,
all commits in Tpre referred to as pre release commits must be extracted. The
calculation of the different process metrics introduced in Section 3.6 will be
explained in the following section, but in terms of the raw data needed, the
following attributes introduced in Table 3.7 will be extracted: author, date,
message, file additions, file deletions, filenames as well as the commit
sha and the file shas.

https://github.com/Microsoft/vscode
https://github.com/Microsoft/vscode
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Besides extracting the details of the commits to calculate the process metrics,
it is essential to know the ground truth if a file that has been changed in Tpre

is defective or not. To achieve this, it is necessary to consult the commits in
Tpost in order to infer whether a post release commit did fix a bug that was
introduced in Tpre. If a commit is considered a bug fix, and since the changeset
of a commit may include multiple files, all files in the changeset will be labeled
defective. Thus, to construct the data set, all pre-release commits will be used in
the preprocessing phase to extract the features of the files, while all post-release
commits will be used to label the files.

In order to infer the ground truth from the post release commits, a better
understanding of the relationship between files changed in pre- and post-release
commits and the reported post-release issues is needed. Figure 5.6 shows an
example of a excerpt of the lifecycle of the files f and g and the issue i. Consider
the two files, f and g, that each have had three changes in Tpre. Whether or not
these changes stem from the same commits is irrelevant in this context. Just
after the transition into Tpost, the issue i is created. Later, both files f and g
are changed in the same commit whose commit message holds a reference to i.
As it turns out that issue i is marked as a bug, and both files f and g was part
of the changeset in the bug fix, both f and g can be considered defective.

Figure 5.6: Example of changes to files f and g and their relationship with
issue i. Issue i can also be a pull request
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The introduction of the concepts of issues and pull requests in Chapter 3 re-
vealed, that issues and pull requests can contain chains of references. A simple
example is a commit that through its commit message refers to pull request, A.
The body text of PR A contains a reference to issue B, and issue B contains
a reference to issue C in its title. This leads to a huge network of references,
which would require more sophisticated measures to evaluate whether a commit
is a bug fix through a chain of references.

Therefore, it has been decided that msrlib will only evaluate the first reference
from a commit message and thus not parse issue texts to find and lookup ad-
ditional references. This introduces an important limitation to msrlib in the
sense that the directly referenced issue/PR from a commit message must indi-
cate whether it is a bug or not. Since many GitHub issues are mostly a mix-up
of reported bugs, new features requests, questions, etc. the issue labels will be
used to determine whether an issue is a bug or not.

With this in mind, a general approach to label the files as defective or not is
proposed as pseudocode in algorithm 1.

Algorithm 1: IsBugFix

Input: A GitHub commit with a commit message
Output: Whether the commit is a bug fix or not

if commit message contains issue reference then
get issue from issue tracker
if issue was created in Tpost then

if issue is marked as a bug then
return true

end
end

end
return false

This simple approach will find the issue reference (if any) in the commit message,
and find the issue in GitHub’s builtin issue tracker. If the issue was created in
Tpost and is also marked as a bug, the changeset in the commit is labelled
defective.

Multiple approaches are available to actually extract data from GitHub. The
two most commonly used are: (1) directly requesting the GitHub REST API, (2)
using a curated dataset mirroring GitHub’s data. The use of these approaches
are approximately distributed evenly among other studies [8]. The main disad-
vantage of the GitHub API is the request rate limit, which is currently 5,000
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requests/hour for an authenticated user. The alternative to the GitHub API
is primarily GHTorrent which is an offline mirrored data set. For the scope
of this project, it has been deemed acceptable to use the GitHub REST API
despite the rate limit constraint. Since data from only a single repository will be
extracted, the rate limit is not considered problematic. As the extraction com-
ponent is not subject to execution time requirements, measures can be taken to
get around the limit if need should be. Additionally, wrapper libraries for the
GitHub REST API are avaliable for multiple programming languages [16] with
a substantial amount of documentation and examples.

Figure 5.7: Overview of the overall extraction process
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Combining these decisions, the overall process in the extraction phase is outlined
in Figure 5.7. Initially, the environment configuration is loaded, providing the
GitHub credentials for the extraction, the repository to extract data from the
definition of Tpre and Tpost as well as additional extraction settings.

5.1.3 Preprocessing

The Preprocessing component has multiple responsibilities, but the majority
of the work in this design, is to extract and construct new features from the raw
data. Recall the process metrics that was introduced in Table 3.6 on page 22.
A mapping has been created between the descriptive names of the features and
an internal code name as seen in Table 5.1. It must be noted that, msrlib in
its current form does not support the extraction of the metrics max burst, age
and weighted age. This limitation will be addressed in Chapter 7.

Code name Descriptive name
COMMITS Commits
DELE Deletions
ADD Additions
AUTHORS Authors
CMPRERE Commits pre release
LASTCM Last commit
REFACTOR Refactorings
INDEVBUGS In development bugs
ENTROPY Entropy
MPOCH Mean period of change
MAXCHSET Maxmimum change set
AVGCHSET Average change set
MAXADD Maximum additions
AVGADD Average additions
MAXDEL Max deletions
AVGDEL Average deletions
AVGTBCH Average time between changes
NOCMMSG No commit messages

Table 5.1: Mapping between the descriptive names and the code names of the
process metrics

The following section describes how these metrics are calculated from the raw
data.

COMMITS:
The sum of commits in Tpre that have had the file as part of their changeset.
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ADD:
The sum of LOC added to the file by all commits in Tpre.

DELE:
The sum of LOC deleted from the file by all commits in Tpre.

AUTHORS:
The sum of unique authors that have commited changes to the file in Tpre. The
authors are identified from the file commits.

CMPRERE:
The sum of commits in Tpre which had the file as part of their changeset "just
before" the release date, R2. As release policies vary across projects, the term
"just before" can be configured by the number, n, such that all commits in
[R2 − n;R2] are considered "just before".

LASTCM:
The number in days between the latest commit to the file in Tpre and R2.

REFACTOR:
The sum of commits changing the file in Tpre which contains refactoring changes
in their changeset. As contribution policies across projects vary, commits are
identified as refactorings, if their commit message contains a refactoring related
keyword e.g. ’refactor’. Accordingly, these keywords can be defined as part of
the configuration.

INDEVBUGS [33]:
The sum of commits changing the file in Tpre that fixes bugs in their changeset.
As contribution policies across projects vary, commits are identified as bug fixes
if their commit message contains a bug fix related keyword e.g. ’bug’ or ’fix’.
Consequently, these keywords can be defined as part of the configuration.

ENTROPY [34]:
Tpre can be divided into N equal periods, and provided that all changes to a file
in Tpre are uniformly distributed, an equal amount of commits would be present
in each of the N periods. However, as this is almost guaranteed to not be true
in reality, Shannon’s entropy can be used to calculate the change distribution.
The distribution of changes can be defined by following Shannon’s definition of
information entropy [43]:

H = −
∑
i

pi log pi (5.1)
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Given Ci as the number of commits to the file in the ith period ofN and Ctotal as
the total number of commits to the file in Tpre the entropy for a file is calculated
as:

ENTROPY = −
N∑
i=1

(
Ci

Ctotal

)
log

(
Ci

Ctotal

)
(5.2)

MPOCH [34]:
The mean period of change is constructed in a similar way as the entropy, by
dividing the timeline into N periods. The mean period of change is an estimate
the center of the concentration of changes in the timeline. This is done as
follows:

MPOCH =

N∑
i=1

i ∗
(

Ci

Ctotal

)
(5.3)

MAXCHSET [33]:
The maximum number of files in the same changeset as the specific file of all
commits in Tpre.

AVGCHSET [33]:
The average number of files in the same changeset as the specific file of all
commits in Tpre.

MAXADD:
The maximum number of LOC added to the file by one of all commits in Tpre.

AVGADD:
The average number of LOC added to the file by all commits in Tpre.

MAXDEL:
The maximum number of LOC deleted from the file by one of all commits in
Tpre.

AVGDEL:
The average number of LOC deleted from the file by all commits in Tpre.

AVGTBCH [40]:
The average time in days between all commits changing the file in Tpre.
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NOCMMSG:
The sum of commits changing the file in Tpre with an empty commit message

In addition to the calculation of the process metrics, msrlib.preprocessing
will also label each file with the binary class 0;1 indicating if the file is defective
(1) or not (0). This is simply done by transforming the total number of bug
fixes to a file to the binary equivalent. If a file has had at least one bug fix, it
will be labelled defective (1). The overall process of the feature extraction in
msrlib.preprocessing is seen in Figure 5.8.

Figure 5.8: Overview of the overall process of the calculation of process metrics
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In addition the calculation of process metrics, msrlib.preprocessing will also
expose limited functionality to explore and gain knowledge about the extracted
features. In the scope of this project, msrlib.preprocessing will provide cal-
culations of the feature correlations, as well as, the generation of a correlation
heatmap. Moreover, msrlib.preprocessing provides a basic data-based ap-
proach of feature selection namely through recursive feature elimination with
cross validation. The details will also be covered in Chapter 6.

5.1.4 Prediction

msrlib.prediction is used to predict which files of a yet unseen data set are
defective. Using this component is done by providing two data sets; (1) a
preprocessed data set containing the relevant features and the ground truth
which will be used to train the model and (2), a preprocessed data set without
class labels that the classifier will use to predict on. The caller of this component
can use the other components msrlib.extraction and msrlib.preprocessing
to generate such data sets. Both of these components support the possibility to
work with unlabelled data sets i.e. msrlib.extraction will not try to infer the
ground truth and msrlib.preprocessing will not label the files.

5.1.5 Validation

The overall design of msrlib.validation is quite simple, since the sole purpose
of this component is to build multiple classification models from the preprocessed
data set and evaluate the performance of each classifier built with different
metric sets by using k -fold cross validation.

An important design decision is however, to handle the generally high class
imbalance in the bug prediction domain and the quite small data sets overall.
msrlib incoorporates two measures to deal with this matter. A classification
model is built in such a way, that it penalizes the prediction errors of the mi-
nority class higher than errors related to the majority class. The details of the
implementation of this penalization is provided in Chapter 6.

Moreover, cross validation with a high number of folds could potentially lead to
training and test folds without any records with the positive class for highly im-
balanced data sets. For instance, with a data set containing 500 files with only
10 % of the files being defective and using cross validation with 10 folds could
possibly lead to the case, where only a few or no positive labels would figure in
a fold. This scenario is generally not desirable, as a fold would thereby not be
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representative of the whole data set. Therefore, the technique of stratification
is used along with cross validation. “Stratified cross-validation uses proportional
representation of each class in the different folds and usually provides less pes-
simistic results.” [1].

msrlib.preprocessing can be configured both in terms of which classifiers and
which metrics that should be used to build a model. The overall validation
process in msrlib.validation is seen in Figure 5.9.

Figure 5.9: Overview of the overall validation process

5.1.6 Configuration

In order to make msrlib flexible and applicable across repositories with different
structures and policies, mrslib has to be made highly configurable in all parts
of the data mining process that the library supports. As a result, a global
configuration file will be shipped with the library, which allows the caller to
configure the different phases as needed. As the general use of msrlib will
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include significant configuration, it has been deemed more convenient to gather
the configuration in one file, rather than passing parameters to single functions.

5.2 RaV

The purpose of the RaV component is twofold. The main objective of the compo-
nent is to answer the research questions of the thesis, by using the functionality
exposed by the msrlib library. Moreover, the component contains a prototype
of the visualization of the results generated by the use of msrlib. The moti-
vation behind this, is to also facilitate the bug prediction capabilities to other
activities than research i.e. real usage in current software projects. The visual-
ization component is intended as a first iteration of a web-based product that
includes the functionality of msrlib.

5.2.1 Research

The Research subcomponent will be able to execute the full data mining process
by using all of the before-mentioned subcomponents of msrlib. Furthermore,
the component will handle the selection of repositories used in the evaluation in
Chapter 7 by systematically inspecting relevant repositories.

5.2.2 Visualization

The Visualization subcomponent will be a prototype that, in simple manner,
will visualize the results generated by msrlib. The prototype is the first step
towards a fully-fledged open-source web application that can be used for bug
prediction in practice. The overall vision of this component is a web-based
bug prediction application allowing fellow developers to make bug predictions
on their GitHub-hosted projects. This could be done by typing in a target
repository, use GitHub with OAuth and request the GitHub API with their
own user, and then use msrlib to conduct the actual predictions. The results
could ultimately be presented in the user interface. msrlib.rav will, as a result,
contain a single page application realized with a reactive JavaScript framework
together with a proven user interface design. The details of the realization of
this component will be presented in Chapter 6



Chapter 6

Implementation

This chapter introduces the technologies, frameworks and libraries used for the
realization of the system, as well as, describing the most important parts of
the implementation. The system is generally implemented to conform with the
SOLID design principles [30].

6.1 Technologies

Python has been used to realize most of the components, since it is a general
purpose programming language that has been widely adopted in the data science
community. With a high flexibility and an easy syntax, it is easy to create both
small scripts at hand as well as full-fledged applications. Due to a substantial
community, a wide variety of libraries are available, many of them centered
around data science and data manipulation. Most notably - and relevant for this
realization - a variety of sophisticated machine learning libraries are avaliable
e.g. scikit-learn and TensorFlow.

msrlib constitutes the core of the system and is implemented as a python pack-
age. The vision of the library is to make it publicly available through the
python package manager, pip. In its current form, RaV is also structured as a



54 Implementation

python package containing both the python scripts used for the research and
a JavaScript web application used for the visualization. These subcomponents
should eventually be divided into self-contained packages. The web applica-
tion is realized as a JavaScript application with a vue.js frontend running on a
webpack development server.

The following list highlights the technologies and libraries used for the realiza-
tion:

- Python 2

– scikit-learn: used for the all machine learning tasks, including clas-
sification and performance evaluation

– pandas: used for general data manipulation in combination with
scikit

– numpy: used for manipulation of arrays

– PyGitHub: used to request the GitHub REST API. The library
wraps GitHub entities to python objects

– python-bugzilla: used to request the BugZilla REST API. The
library also wraps BugZilla entities to python objects

– seaborn: used to visualize feature correlation with a heatmap

– matplotlib: used for various plotting tasks during development

– pickle: used to serialize classification models

- HTML5, JavaScript (ES6), CSS

– vue.js: used as a reactive JavaScript framework to build a component-
based frontend.

– vue-material: used for the design of the UI. The library provides
vue components designed to conform with the Google Material De-
sign specifications

– webpack: used during development to serve the vue.js project on
localhost

- JetBrains PyCharm (with several plugins)

- Atom (with several plugins)

- Git and GitHub
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6.2 msrlib

Only the most important and non-trivial aspects of the implementation of
msrlib will be covered in this section since both the structural and behavioral
design have been covered in Chapter 5.

6.2.1 Extraction

The most important object in Extraction is the class, GHExtraction which
exposes one function, namely extract(is_post_release, label). The function
enables the caller to extract commit data from the repository specified in the
run commands file. The whole extraction is handled internally by the class and
the output is a list of ExtractedCommit classes. The ExtractedCommit class is
a simple data structure that contains primitive data about a commit e.g. the
author, commit time, message, files etc.

The GitHub API has a request limit in its current version at 5,000 requests/hour
for any OAuth authenticated users. Many extraction tasks will not exceed the
hourly limit, but GHExtraction can be configured to add a delay between each
request to keep below 5,000 requests/hour. The limit is reset an hour from the
first request, which allows for continuous extraction, as long as the limit is not
exceeded. The GitHub API is requested via the PyGitHub library which is a
wrapper library for the REST API.

The Eclipse projects in GitHub do not use the builtin issue tracker, but has bug
reports managed in BugZilla. To accommodate the evaluation of the eclipse
projects, BugZilla is used similarly to the GitHub issue tracker, to extract
whether a commit is a bug fix or not. This is achieved with the use of the
python-bugzilla library. BugZilla does not have any request limit.

6.2.2 Preprocessing

The calculation of the process metrics is done by the FeatureExtraction class
with the extract_features(pre_rel_commits, post_rel_commits, label) func-
tion. The input is a list of extracted pre-release and post-release commits and a
boolean value, indicating if the files shall be labeled. For each of the pre-release
commits, the changed files are identified and stored as File classes. The File
class has a filename and it contains a list of commit ids i.e. the SHA1 of a com-
mit and a dictionary of the process metrics, where the calculated values will be
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stored with the metric key. When all files are identified, all process metrics are
calculated and saved to each file. The output is a list of File classes containing
process metrics.

Moreover, Preprocessing provides functionality to do data based feature se-
lection by means of recursive feature elimination using stratified k -fold cross
validation. The class FeatureSelection exposes select_features(dataset)
which takes in a preprocessed data set, builds a classification model using a
specified algorithm and runs recursive feature elimination on the k folds. The
output is the set of features that yielded the highest score on the data set. The
implementation of this functionality is based on the scikit-learn library.

6.2.3 Validation

The evaluation of the classifiers can be done by the use of the Validation class
and its eval_performance(dataset) function. The function builds one or more
classification models defined in the run commands, and conducts stratified k -fold
cross validation for all combinations of metrics on the data set. The output is
a ValidationReport object, containing the scores of all metric sets and different
classifiers. The different classifiers, naïve Bayes, logistic regression, decision
trees and random forest are built with the scikit-learn library. To overcome the
class-imbalanced problem of the data sets, logistic regression, decision trees and
random forest are built with a class weight, which penalizes classification errors
with a defined class weight. Scikit-learn provides a balanced class weight, so
that classification errors made to the minority class is penalized harder than
erros to the majority class.

6.2.4 Configuration

The configuration of msrlib is conducted by adjusting the library’s run param-
eters. The file msrlibrc.py is stored at the root of the msrlib package, and
contains a list of all global run parameters. The default run parameters can be
seen in Appendix B. Listing 2 shows an example of how to override the default
run parameters e.g. by setting up the library to target the Eclipse JDT Core
project.
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1 from msrlib import msrlibrc

2

3 msrlibrc.REPOSITORY['USERNAME'] = 'eclipse'

4 msrlibrc.REPOSITORY['REPOSITORY_NAME'] = 'eclipse.jdt.core'

5 msrlibrc.RUN_TITLE = 'eclipse-4.9-4.10'

6 msrlibrc.OUTPUT_DIR = '~/bug-prediction/runs'

7 msrlibrc.START_DATE = '2018-09-19'

8 msrlibrc.END_DATE = '2018-12-19'

9 msrlibrc.MAX_FIX_TIME = 45

Listing 2: Example of overriding the default run parameters of msrlib

6.3 RaV

This section covers the non-trivial details of the implementation of the RaV
component.

6.3.1 Research

rav.research ties together the different functionalities of msrlib to conduct the
experiment of the thesis. This cover all the phases in the data mining process
pipeline including extraction, preprocessing and analysis. The analysis covers
both the evaluation of the classifier performance, as well as, a live prediction of
defective files.

6.3.2 Visualization

rav.visualization is a Vue.js project used together with the vue-material li-
brary. The implementation is a prototype of how a potential realization of a
full-fledged web application could look like. The motivation is to allow the
adoption of MSR and bug prediction in industry for real life decision making.
A webpack development server is used to serve the web application locally. The
application is a single page application comprised of six different vue compo-
nents. TabRouter.vue uses routing to provide access to five different tabs. The
content of each tab; Intro, Metrics, Correlation, Validation, and Prediction is
created by respective vue components. An example of the validation page can
been seen in Figure 6.1
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Figure 6.1: Screenshot of the Validation component vue.js project showing the
performance of each metric set on the different classifiers

Given that the visualization component only plays a minor role in the com-
plete system implementation, the web application should merely be perceived
as a high fidelity prototype of the user interface in a full-fledged solution. The
numbers used in the example stem from sample data that is shipped with the
application. Hence, it is currently not possible to provide a new data set through
the user interface.



Chapter 7

Results and evaluation

In this chapter, the performance of the defined process metrics in Subsec-
tion 5.1.3 is evaluated. As for the experimental setup, the implemented RaV
component will be used in combination with the bug prediction library msrlib
to answer the research questions that motivated the work. For the experiments,
a set of inclusion and exclusion criteria is established in order to select rele-
vant repositories to analyze. When the results are presented, each repository is
briefly introduced by some basic properties e.g. the number of commits, con-
tributors, issues and pull requests, followed by an informal description of the
main structure and contribution policy of the repository.

7.1 Data selection

To scope the project and to provide the most valuable results, a set of inclusion
and exclusion criteria for the repositories to be studied are defined. The criteria
are created in such a way, that the extracted data sets are sufficiently large both
in terms of commits and reported bugs. The inclusion and exclusion criteria are
defined in Table 7.1
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Inclusion criteria (a repository
must)

Exclusion criteria (a repository
must not)

(I1) be publicly available on GitHub

(I2) have more than 9,000 stars

(I3) contain more than 10,000 commits

(I4) have at least 5 contributors

(I5) use GitHub’s issue tracker

(I6) contain commits which reference
GitHub issues/pull requests

(I7) contain a software project that is
divided with releases

(E1) have bugs reported in third party
issue trackers (besides BugZilla)

(E2) mix together bugs with other
types of issues unless they are
clearly marked as such (e.g. new
features)

Table 7.1: Inclusion and exclusion criteria

As GitHub hosts millions of projects, a number of criteria are defined to narrow
the target group. To this end, repository stars are used to initially filter out a
vast majority of all publicly available repositories. A repository star indicates
that a GitHub user has actively chosen to follow that repository, thus, GitHub
uses stars to rank repositories’ popularity and suggest similar repositories to
interested followers [14]. The rationale behind using a high number of stars i.e.
the most popular repositories on GitHub, is to exclude repositories that may
suffer from the perils identified in Section 3.8. Given that most of the GitHub
repositories have very few commits, are inactive or simply not used for software
development, the repository popularity works as a good initial indiciator in the
data selection process. The numbers used in criteria (I2)-(I4) are consequently
used as an evidence for a substantial data set.

The initial filtering of the available repositories are conducted automatically by
implementing inclusion criteria (I1)-(I5) as a python script. The RaV component
has been extended to also contain data selection functionality by using the
PyGitHub library. (I1)-(I5) are all criteria which can easily be automated by
simple checks when inspecting each repository. Criteria (I6)-(I7) and (E1)-
(E2) are, however, more difficult to apply computationally, as the structure and
policies of the repositories vary greatly. To this end, these criteria have been
applied by inspecting and assessing the structure of the repositories manually.
All closed issues and pull requests are filtered by the keyword bug through the
GitHub user interface, which searches for the keyword in the body of the issues
or pull requests. All 25 results from the first page are assessed. If at least 2/25
issues or pull requests clearly indicate that they are bugs without being properly
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labeled as bugs, the repository is rejected. The indication of an issue/PR being
a bug is assessed by inspecting the title. An example is a PR with the title “Fixes
#66573 - search hidden search results”. While the referenced issue #66573 is
indeed an issue labelled as a bug, the pull request itself is not labelled as a bug
nor a bug fix. As msrlib does not support inferring if a commit is a bug fix
by looking a network of issues or pull requests, but only look up the directly
referenced issue from the commit message, the repository is rejected.

The data selection process is outlined in Table 7.2

Step # of repositories
(I1) - (I2): Identify public repositories with at least 9,000
stars by using PyGitHub and the search endpoint of the
GitHub API

1,169

(I3) - (I5): Traverse each repository and check for number of
commits, contributors and the use of the issue tracker using
PyGitHub and the repository endpoint of GitHub API

108

(I6) - (I7) and (E1) - (E2): Manually inspect the structure
of the repositories assessing the use of labels in issues/PRs.

8

Table 7.2: Inclusion and exclusion criteria

The 108 repositories included after the application of criteria (I3) - (I5) are
listed in Appendix C.

Project name Location
Eclipse JDT Core https://github.com/eclipse/eclipse.jdt.core

Eclipse JDT UI https://github.com/eclipse/eclipse.jdt.ui

NumPy https://github.com/numpy/numpy

Plotly https://github.com/plotly/plotly.js

Yii https://github.com/yiisoft/yii2

Terraform https://github.com/hashicorp/terraform

Godot https://github.com/godotengine/godot

Symfony https://github.com/symfony/symfony

Ansible https://github.com/ansible/ansible

Elastisearch https://github.com/elastic/elasticsearch

Table 7.3: Selected repositories

In addition to the 10 accepted repositories, the Eclipse project is also included to
compare the results with previous studies. The experimental setup can easily be
expanded to cover more repositories, as the implemented library msrlib supports

https://github.com/eclipse/eclipse.jdt.core
https://github.com/eclipse/eclipse.jdt.ui
https://github.com/numpy/numpy
https://github.com/plotly/plotly.js
https://github.com/yiisoft/yii2
https://github.com/hashicorp/terraform
https://github.com/godotengine/godot
https://github.com/symfony/symfony
https://github.com/ansible/ansible
https://github.com/elastic/elasticsearch
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bug prediction on any GitHub-hosted repositories. The selected repositories for
this experiment are listed in Table 7.3.

7.2 Metric sets

To answer the research questions, RQ1 and RQ2, multiple sets of metrics will be
used in the evaluation. Two metric sets proposed in other studies will included
in the evaluation, as well as two new sets proposed in this thesis. The metrics
used by Moser et al. [33] on the Eclipse project performed well with high recall
scores. These metrics are used as a set in this work referred to as MO. The
metrics used by Muthukumaran et al. [34] constitute another set of metrics
referred to as MU. It is important to note, that a current limitation in msrlib
is, that it does not support the calculation of the metrics AGE, WAGE and
MAXBURST. As a result, the metric sets are not completely identical to the
ones used in the other studies. In addition to these metric sets, two new sets
are proposed, containing a subset of the available metrics in msrlib.

Identifier Metrics

MO COMMITS
REFACTOR
INDEVBUGS
AUTHORS

ADD
MAXADD
AVGADD
DELE

MAXDEL
AVGDEL
CCHURN
MAXCCHURN

AVGCCHURN
MAXCHSET
AVGCHSET

MU COMMITS
ADD
DELE

AUTHORS
CMPRERE
LASTCM

INDEVBUGS
ENTROPY
MPOCH

MAXCHSET
AVGCHSET

JM COMMITS
AUTHORS
AVGADD

AVGDEL
AVGCCHURN

INDEVBUGS
AVGTBCH

ENTROPY
AVGCHSET

JM2 COMMITS AUTHORS MAXADD MAXCHSET

ALL COMMITS
ADD
DELE
AUTHORS
CMPRERE
LASTCM

REFACTOR
INDEVBUGS
ENTROPY
MPOCH
MAXCHSET

AVGCHSET
MAXADD
AVGADD
MAXDEL
AVGDEL

AVGTBCH
NOCMMSG
CCHURN
MAXCCHURN
AVGCCHURN

Table 7.4: Set of metrics used in the experiments

The first, JM has been created by (1) analyzing the correlation between the
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metrics and (2) trying to include metrics that describe different aspects of the
development process. The correlation between the metrics have been analyzed
by merging the five generated Eclipse JDT Core data sets into one joint data set.
A correlation heatmap has the been generated using the Spearman correlation
and only the metrics with small correlation coefficients are considered. The
correlation heatmap can be seen in Appendix D. The metrics included in JM
is an attempt to describe the changes by content, time and people. The other
set, JM2 has been created by considering only the commits made to the files.
Lastly, a set with all available metrics is included referred to as ALL.

The different combinations of metrics are seen in Table 7.4.

7.3 Results

The empirical data have been obtained by using the implemented RaV in combi-
nation with msrlib. Lists of the classification performances for all repositories,
measured by the precision (P), recall (R) and combined F1 score can be seen
in Appendix E. The numbers are presented as percentages. Table 7.5 maps
the classifiers to identifiers in the generated results tables. The configuration of
the classifiers are the same across all runs, and all features have been extracted
with the parameters seen in Appendix B. The bug fix period has for all releases
been set to the number of days from the release date until the next consecutive
release of the same version type i.e. major, minor or patch.

Identifier Classifier
NB Gaussian naïve Bayes
LR Logistic regression
DT CART decision tree
RF Random forest using CART decision trees

Table 7.5: Classifiers

In the study of Moser et al. [33], they evaluated the performances with the
recall and the false positive rate (FPR). They justified this, by putting a strong
emphasis on the recall score, as it expresses the classifiers ability to deal with
false negatives i.e. how many of the actual positives were predicted. False
negatives are in the domain of bug prediction quite undesirable, since an actual
defective file that is not predicted will lead to costly software bugs. On the
other hand, precision expresses how the classifier deals with false positives i.e.
how many of the positive predictions were actually correct.
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The results in this are ultimately presented using the F1 score. This is justified
by the fact, that precision expresses classification errors that undeniably also
can be costly for development teams in the sense, that they will waste resources
on non-defective files. Moreover, the F1 is calculated by the harmonic mean of
the precision and recall, and thus, if the recall score would very low, e.g. 10 %
and the precision high e.g. 75 %, the F1 score would still be very low (17.5 %
in this example).

The following pages contain a brief introduction to each repository along with
tables showing the best performing metric set for each release and for each
classifier. Most importantly, the last column of the tables, Best shows which
metric set scored the highest F1 score in the release.

7.3.1 Eclipse JDT Core

Eclipse JDT Core
https://github.com/eclipse/eclipse.jdt.core

# of commits: 23755 # of issues: N/A

# of contributors: N/A # of pull requests: N/A

Summary: Eclipse JDT Core constitutes the infrastructure of the popular
Eclipse IDE. It is developed by The Eclipse Foundation and was initially
released in 2001. The project is written in Java. Eclipse has a thorough
introduction to contributing to the project with certain policies on how to
proper use the version control system and structure the code.

Release NB LR DT RF Best
3.0 - 3.1 JM MU JM2 MU MU
3.1 - 3.2 JM MO JM2 ALL MO
3.2 - 3.3 JM MU JM2 JM2 MU
3.3 - 3.4 JM JM2 ALL ALL JM2
3.4 - 3.5 JM MO JM JM JM

https://github.com/eclipse/eclipse.jdt.core
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7.3.2 Eclipse JDT UI

Eclipse JDT UI
https://github.com/eclipse/eclipse.jdt.ui

# of commits: 27908 # of issues: N/A

# of contributors: N/A # of pull requests: N/A

Summary: Eclipse JDT UI constitutes the user interface of the Eclipse IDE.
Contribution guidelines similar to the ones in JDT Core are available. The
project is written in Java.

Release NB LR DT RF Best

3.0 - 3.1 JM MO ALL MU JM

3.1 - 3.2 MU JM MO JM JM

3.2 - 3.3 JM MO MU JM MO

3.3 - 3.4 MU MO ALL MU MO

3.4 - 3.4 MU MO MO JM2 MO

7.3.3 NumPy

NumPy
https://github.com/numpy/numpy

# of commits: 19625 # of issues: 6883

# of contributors: 723 # of pull requests: 5980

Summary: NumPy is a very popular python package for scientific comput-
ing. Half of the content in the repository is C files and the other half is python
files. NumPy has an extensive contribution guide, that introduces a requierd
development workflow, the release policy, project governance etc.

Release NB LR DT RF Best

1.12 - 1.13 JM2 JM2 MO JM2 JM2

1.13 - 1.14 MU MU MU JM MU

1.14 - 1.15 JM MU MO JM2 MU

https://github.com/eclipse/eclipse.jdt.ui
https://github.com/numpy/numpy
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7.3.4 Plotly

Plotly
https://github.com/plotly/plotly.js

# of commits: 17647 # of issues: 2022

# of contributors: 108 # of pull requests: 1463

Summary: Plotly.js is an open source JavaScript charting library maintained
by the company, Plotly. The project has a set of contribution guidelines that
states how new issues should be structured, as well as how to get started
with developing on the project. The guidelines do not enforce any specific
development workflow.

Release NB LR DT RF Best

1.38 - 1.39 JM2 ALL MU JM2 ALL

1.39 - 1.40 MU MU ALL MU MU

1.40 - 1.41 MU ALL JM JM2 ALL

7.3.5 Yii

Yii
https://github.com/yiisoft/yii2

# of commits: 18796 # of issues: 10279

# of contributors: 948 # of pull requests: 6628

Summary: Yii is a PHP web framework used to ease the development of
MVC web applications.

Release NB LR DT RF Best

2.0.9 - 2.0.10 MO MO MO MU MO

2.0.10 - 2.0.11 MU MU MU JM2 MU

2.0.11 - 2.0.12 MU MU MU MO MU

https://github.com/plotly/plotly.js
https://github.com/yiisoft/yii2
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7.3.6 Terraform

Terraform
https://github.com/hashicorp/terraform

# of commits: 23302 # of issues: 11414

# of contributors: 1236 # of pull requests: 8573

Summary: Terraform is a tool used to plan and build data center infras-
tructure as code. The project is created by HashiCorp and is written in Go.

Release NB LR DT RF Best

0.8.0 - 0.9.0 JM2 MO ALL MU ALL

0.9.0 - 0.10.0 MU JM2 MU MU MU

7.3.7 Ansible

Ansible
https://github.com/ansible/ansible

# of commits: 42268 # of issues: 21340

# of contributors: 4123 # of pull requests: 30025

Summary: Ansible is a configuration management and deployment tool used
for various automation tasks. It is written in Python.

Release NB LR DT RF Best

2.4.0 - 2.5.0 MO MO MU MU MO

2.5.0 - 2.6.0 JM2 MU JM MU JM

https://github.com/hashicorp/terraform
https://github.com/ansible/ansible
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7.3.8 Symfony

Symfony
https://github.com/symfony/symfony

# of commits: 40020 # of issues: 11510

# of contributors: 1767 # of pull requests: 18474

Summary: Symnfony is like Yii, a PHP web application framework. Is is
written in PHP.

Release NB LR DT RF Best

3.0.0 - 3.1.0 MO JM2 MU JM JM2

3.1.0 - 3.2.0 MO MO MU MU MO

3.2.0 - 3.3.0 ALL ALL JM MU ALL

7.3.9 Godot

Godot
https://github.com/godotengine/godot

# of commits: 18856 # of issues: 15155

# of contributors: 788 # of pull requests: 9383

Summary: Godot is a 2D and 3D game engine mainly written in C++. The
release policy and versioning scheme used by Godot result in data sets that
are poorly defined in terms of bug prediction. As a result, only release 2.0.0
- 2.1.0 have been analyzed.

Release NB LR DT RF Best

2.0.0 - 2.1.0 MU JM2 ALL ALL MU

https://github.com/symfony/symfony
https://github.com/godotengine/godot
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7.3.10 Elasticsearch

Elasticsearch
https://github.com/elastic/elasticsearch

# of commits: 44060 # of issues: 18701

# of contributors: 1145 # of pull requests: 19102

Summary: Elasticsearch is a disbributed RESTful search engine based on
the Apache Lucene library. It is written in Java.

Release NB LR DT RF Best

6.0.0 - 6.1.0 ALL ALL JM2 JM2 ALL

6.1.0 - 6.2.0 JM MU MU MU MU

6.2.0 - 6.3.0 JM MU MU MU MU

6.3.0 - 6.4.0 MU JM ALL MU ALL

7.4 Discussion

This section provides a discussion of the collected data from the different repos-
itories. First, an evaluation of how the metric sets perform intra-repository i.e.
across the releases in the same repository is provided followed by an evaluation
of the inter-repository performance, that is, how the metric sets perform across
the repositories.

When assessing the results for each of the repositories, it is clear, that there
is not one repository, where the same metric set has performed best across all
releases. To synthesize the results from the previous pages, Table 7.6 shows the
number of releases across all repositories, where each metric set has the highest
F1 score.

Metric set # of highest F1

MU 11

JM 4

MO 7

JM2 3

ALL 6

Table 7.6: Number of runs where each metric set scored the highest F1 score

https://github.com/elastic/elasticsearch
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This clearly shows that one metric set cannot be claimed to yield the best
performance across all releases and repositories.

Different combinations of metrics prove to perform the best across different
releases, while there are some indications that, for some repositories, a metric
set is recurring across some of the releases. This is the case for Eclipse JDT UI,
NumPy, Plotly, Yii and Elasticsearch. With regard to the repositories, Eclipse
JDT Core, Terraform, Ansible and Symfony, the results do not indicate that
one metric set is the best across all releases.

In order to evaluate, how the metric sets have performed inter-repository, the
arithmetic mean of the F1 scores for all releases within a project has been
calculated. In addition, the mean of the F1 scores for all releases with the best
metric sets has been calculated. To give an example, the average performance
of the JM2 metric set in Eclipse JDT Core has been calculated by averaging
the best F1 score of the JM2 metric set across all releases in Eclipse JDT Core.
The overall best average in Eclipse JDT Core has been calculated by averaging
the best F1 score of all metric sets across all releases. The numbers are seen in
Table 7.7

Project MU JM MO JM2 ALL Best

Eclipse JDT Core 54.69 54.65 53.57 53.26 53.17 55.76

Eclipse JDT UI 35.81 35.70 35.87 35.07 34.94 36.68

NumPy 58.41 58.88 58.21 58.52 57.06 59.76

Plotly 46.51 42.93 44.11 43.37 46.11 46.52

Yii 41.54 40.72 42.52 38.07 39.12 43.52

Terraform 24.72 20.33 20.17 22.31 25.34 25.81

Ansible 53.68 53.37 54.66 53.82 53.16 55.32

Symfony 46.59 47.32 48.10 47.64 48.01 48.82

Godot 49.72 43.51 46.37 43.92 46.98 49.72

Elasticsearch 25.59 21.50 21.79 20.64 25.94 26.66

Table 7.7: The arithmetic mean of the F1 scores for all metric sets across
repositories. The column, Best is calculated using the best F1 score
from each release

These numbers reveal that there is generally not a big difference in the perfor-
mance when using one specific metric set for all releases compared to the best
metric sets. The highest observed difference is on the Godot project using the
JM set with a difference 6.21 percentage point. This confirms, that metric sets
that generally perform well in one repository also have a good prediction power
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when compared to the best achieved performance of the other sets. There is
only a small number of percentage points in difference.

Table 7.7 also show, that the metric sets, MU and MO which have proven to
perform well on the Eclipse project, generally perform equally when transferred
to the open source projects analyzed in this thesis. Looking at the actual values,
however, show that the overall prediction power is not impressive. The highest
F1 score achieved for a single repository including all releases is on the NumPy
project with an average F1 score at 59.76 %

The highest observed F1 score achieved across all releases and repositories in
this experiment is 64.74 % with MU and the random forest classifier on the
Eclipse JDT Core 3.0 - 3.1 data set. The highest observed recall is 98.75 % with
JM2 and the naïve Bayes classifier on the Numpy 1.12 - 1.13 data set.

The results can be compared with the original studies of the included metric
sets. Moser et al. did not report precision or F1 scores, but instead, they mainly
focused on the recall score. They analyzed the Eclipse core project on the
releases 2.0, 2.1 and 3.0. Without the use of cost sensitive analysis, they scored
a recall of 30%, 47%, and 65% for the NB, LR, and DT classifiers respectively.
With the cost-sensitive analysis, which penalized the false negatives errors, they
scored a recall of 83% with DT. The recall on Eclipse JDT Core 3.0 in this
project was 42%, 64%, 64%, and 58% for NB, LR, DT, and RF respectively.
The recall of NB and LR is higher in this thesis, while the recall of DT is lower.

Muthukumaran reported precision, recall and F1, however, they calculated these
evaluation metrics differently, as they calculated the average recall using both
the positive and the negative labels. This differs from the broadly used definition
of precision, recall and F1 in binary classification, where only the positive label
is considered. To this end, it does not make sense to compare the results between
the studies.

7.5 Limitations and threats to validity

One of the main threats to the validity of these results, is the reliability of the
extracted data. There is a great source of an erroneous extraction of the ground
truth i.e. whether a commit is a bug fix or not, due to (1) the labelling of issue
and pull requests in GitHub are evidently not consistent across all repositories
and (2) that msrlib only supports inferring the ground truth from the first di-
rect issue reference. With a more sophisticated extraction of the ground truth,
the results might show different. In addition, it cannot be guaranteed that the
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extraction of the process metrics that are based on other developers ability to
be consistent are not flawed. For instance, not all commits that mainly involved
refactoring may have been identified as the REFACTOR metric relies solely
on the refactor keyword in the commit message. Not all in development bugs
may have been extracted either due the before-mentioned labelling inconsisten-
cies. With regard to the extraction of the other process metrics, it cannot be
completely guaranteed that it is flawless. The general extraction of the process
metrics have been assessed extensively, but as with any software implementa-
tion, there are be edge cases that might not have been covered.

In general, the generalization on other types of projects cannot be claimed. As
development processes vary to a great extent and the process metrics used so
far only describe a few aspects of the process, the results might be very different
on other repositories with different characteristics than the ones used in this
thesis. Closed source software, software in other industries etc. might yield
other results.

The classification models used in this thesis have been built with simple algo-
rithms from the machine learning theory. The reason for this was, that these
algorithms have yielded promising results in other studies, however the results
obtained using these classifiers cannot be claimed to be the same for more com-
plex learners e.g. neural networks. The combinations of metrics might perform
differently using other mathematical models.

The metrics have been evaluated in different combinations. These combinations
did either originate from other studies or have been proposed in this work by
analyzing the correlations of the process metrics combined with domain knowl-
edge and intuition. For this reason, the results and conclusions obtained cannot
be generalized for all possible sets of known process metrics. It cannot be con-
cluded based on this thesis, that there does not exist a single set of metrics that
perform satisfyingly well across open source projects. Future work could include
a data based feature selection approach e.g. by using recursive feature elimina-
tion across open source projects to conclude, which process metrics would be
the most powerful predictors.



Chapter 8

Conclusion

The software development process is a complex structure of many variables that
vary greatly across software projects. Predicting defective parts of a software
system by extracting and gaining knowledge from the change process have in
earlier studies proven to be possible. One of the current approaches is to extract
process metrics from software repositories, and it has also been shown, that for
some projects, process metrics are stronger indicators of defective software than
product related metrics for instance expressing code complexity. However, there
is little knowledge about, how these process metrics perform when they are
transferred into open source projects with software processes that are anything
but similar.

Over the course of this thesis, a software system has been realized comprised
of a bug prediction library and a research and visualization component. The
bug prediction library, msrlib has been implemented so that it can be used to
extract and gain knowledge about the change history from any publicly available
GitHub-hosted repository. By using proven machine learners, the library is able
to learn from historic data, to predict the presence of defective files in a software
system.

Empirical software engineering research have been conducted, by creating an
experiment that extracted data from 10 very popular and different software
repositories hosted on GitHub. The data sets from the different releases across
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the repositories were used to build classification models to predict bugs within
a repository. Different sets of process metrics were used for the predictions.
The results showed, that one set of process metrics did not prove to be the best
across the all repositories. Moreover, it was found, that while there may not be
a best set of metrics, the difference in performance between the different sets was
considerably low, and they did generally perform fairly equal. Lastly, the ex-
periment showed, that the metric sets that have proven powerful on the Eclipse
project did not yield noteworthy results across the open source projects used in
this experiment. However, there is still plenty of research to do in the field of
bug prediction with process metrics. This thesis did not use a data-based fea-
ture selection approach, and there might therefore exist better combinations of
process metrics that describe the relationship between the development process
and the introduction of bugs in a better way within each project. Moreover, the
approach used in this thesis was to create a generalized bug prediction system,
that could predict bugs across many GitHub-based repositories. The classifiers
for each release and each repository was not tuned in any way, and as a re-
sult, it is very likely, that tuning of hyperparameters and the inclusion of more
sophisticated learners will yield higher scores.
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Appendix A

Physical data model

A.1 Post-release commits (JSON schema)

1 {

2 "author": "Martin Aeschlimann",

3 "datetime": "2018-10-18 09:42:43",

4 "files": [

5 {

6 "filename": "src/vs/workbench/services/textfile/common/textFileService.ts",

7 "is_bugfix": true,

8 "sha": "766d4e482b38b66dcbc675a275bdccd0a5e6764d"

9 }

10 ],

11 "message": "Save file dialog initialized with the filesystem root. Fixes #60939",

12 "sha": "0ca196a5cd4af9529334348f44873b7868b53b90"

13 }

Listing 3: Example of an extracted post-release commit
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A.2 Preprocessed data set (JSON schema)

1 [

2 {

3 "ADD": 1008,

4 "AUTHORS": 4,

5 "AVGADD": 201.6,

6 "AVGCHSET": 299.0,

7 "AVGDEL": 175.6,

8 "AVGTBCH": 39118.5,

9 "CMPRERE": 1,

10 "COMMITS": 5,

11 "DELE": 878,

12 "ENTROPY": 0.7219280948873623,

13 "INDEVBUGS": 0,

14 "LASTCM": 36141,

15 "MAXADD": 219,

16 "MAXCHSET": 299,

17 "MAXDEL": 178,

18 "MPOCH": 0.4,

19 "NOCMMSG": 0,

20 "REFACTOR": 0,

21 "bug_prone": 1,

22 "filename": "build/lib/standalone.ts"

23 },

24 {

25 "ADD": 1304,

26 "AUTHORS": 10,

27 (..)

28 "bug_prone": 0,

29 "filename": "build/lib/stats.js"

30 },

31 ..

32 ]

Listing 4: Example of a preprocessed data set

A.3 Validation report (JSON schema)
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1 {

2 [

3 {

4 "runs": {

5 "DecisionTree": {

6 "confusionMatrix": {

7 "fn": 97,

8 "fp": 101,

9 "tn": 1053,

10 "tp": 76

11 },

12 "scores": {

13 "f1": 0.6791870001795396,

14 "precision": 0.6625779192114636,

15 "recall": 0.6722180576378478

16 }

17 },

18 "LogisticRegression": {

19 "confusionMatrix": {

20 "fn": 130,

21 "fp": 19,

22 "tn": 1135,

23 "tp": 43

24 },

25 "scores": {

26 "f1": 0.639644007031624,

27 "precision": 0.78785134015486,

28 "recall": 0.606422426041881

29 }

30 }

31 // ..

32 }

33 },

34 }

Listing 5: Example of a validation report
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Configuration

1 #################################

2 # General settings #

3 #################################

4 # Required

5 MODE = 'full'

6

7 # Required

8 RUN_TITLE = 'eclipse_jdt_core_3.0-3.1'

9

10 # Required

11 OUTPUT_DIR = '~/dev/master-thesis'

12

13 #################################

14 # Extraction settings #

15 #################################

16

17 # Required

18 REPOSITORY = {

19 "USERNAME": "eclipse",

20 "REPOSITORY_NAME": "eclipse.jdt.core",

21 "CREDENTIALS": {

22 "USERNAME": "foo",

23 "PASSWORD": "bar"
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24 }

25 }

26

27 # Required

28 START_DATE = "2004-06-25"

29 END_DATE = "2005-06-27"

30

31 # Required

32 DATETIME_PATTERN = '\%Y-\%m-\%d'

33

34 # Required

35 MAX_FIX_TIME = 'auto'

36

37 # Required

38 BUG_REPOSITORY = 'bugzilla'

39

40 # Required

41 BUGZILLA_URL = "https://bugs.eclipse.org/bugs/xmlrpc.cgi"

42

43 # Required

44 BUGZILLA_DATETIME_PATTERN = '\%Y\%m\%dT\%H:\%M:\%S'

45

46 # Required

47 BUGZILLA_RESOLUTION = 'FIXED'

48

49 #

50 INCLUDED_FILES = [

51 "java",

52 "ts",

53 "cs",

54 "js",

55 "c",

56 "py",

57 "cpp",

58 "php",

59 "go",

60 ]

61

62 # Required

63 # ISSUE_REGEX = '[#](\d+)' # Github "#362"

64 ISSUE_REGEX = r'(\d{5,6}\b)' # BugZilla 5-6 digits

65

66 # Required

67 BUGFIX_KEYWORDS = [

68 "bug",

69 "fix"
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70 ]

71

72 # Required

73 IGNORE_PULL_REQUESTS = False

74

75 # Required

76 FILTER_ISSUES_BY_LABEL = True

77

78 # Required

79 BUG_LABELS = [

80 "bug"

81 ]

82

83 API_REQUEST_DELAY = 0

84

85 #################################

86 # Preprocessing settings #

87 #################################

88

89 # Required

90 REFACTOR_KEYWORDS = [

91 "refactor"

92 ]

93

94 # Required

95 CMPRERE_THRESHOLD = 10

96

97 # Required

98 ENTROPY_PERIODS = 10

99

100 # Required

101 MPOCH_PERIODS = 10

102

103 #################################

104 # Validation settings #

105 #################################

106

107 # Required

108 CLASSIFIERS = [

109 "NaiveBayes",

110 "LogisticRegression",

111 "DecisionTree",

112 "RandomForest"

113 ]

114

115 # Required
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116 CROSS_VALIDATION_FOLDS = 10

117

118 # Required

119 FEATURE_SETS = {

120 "MO": [

121 "COMMITS",

122 "REFACTOR",

123 "INDEVBUGS",

124 "AUTHORS",

125 "ADD",

126 "MAXADD",

127 "AVGADD",

128 "DELE",

129 "MAXDEL",

130 "AVGDEL",

131 "CCHURN",

132 "MAXCCHURN",

133 "AVGCCHURN",

134 "MAXCHSET",

135 "AVGCHSET"

136 ],

137 "MU": [

138 "COMMITS",

139 "ADD",

140 "DELE",

141 "AUTHORS",

142 "CMPRERE",

143 "LASTCM",

144 "INDEVBUGS",

145 "ENTROPY",

146 "MPOCH",

147 "MAXCHSET",

148 "AVGCHSET"

149 ],

150 "JM": [

151 "COMMITS",

152 "AUTHORS",

153 "AVGADD",

154 "AVGDEL",

155 "AVGCCHURN",

156 "INDEVBUGS",

157 "AVGTBCH",

158 "ENTROPY",

159 "AVGCHSET"

160 ],

161 "JM2": [
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162 "COMMITS",

163 "AUTHORS",

164 "MAXADD",

165 "MAXCHSET"

166 ],

167 "ALL": [

168 "COMMITS",

169 "ADD",

170 "DELE",

171 "AUTHORS",

172 "CMPRERE",

173 "LASTCM",

174 "REFACTOR",

175 "INDEVBUGS",

176 "ENTROPY",

177 "MPOCH",

178 "MAXCHSET",

179 "AVGCHSET",

180 "MAXADD",

181 "AVGADD",

182 "MAXDEL",

183 "AVGDEL",

184 "AVGTBCH",

185 "NOCMMSG",

186 "CCHURN",

187 "MAXCCHURN",

188 "AVGCCHURN"

189 ]

190 }

191

192 #################################

193 # Prediction settings #

194 #################################

195

196 # Required

197 PRED_START_DATE = '2005-06-25'

198

199 # Required

200 PRED_END_DATE = '2006-06-29'

201

202 # Required

203 PRED_CLASSIFIER = 'RandomForest'

204

205 # Required

206 PRED_FEATURES = [

207 "COMMITS",
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208 "AUTHORS",

209 "MAXADD",

210 "MAXCHSET"

211 ]

212

213 #################################

214 # Miscellaneous #

215 #################################

216

217 # Required

218 ALL_FEATURES = [

219 "COMMITS",

220 "ADD",

221 "DELE",

222 "AUTHORS",

223 "CMPRERE",

224 "LASTCM",

225 "REFACTOR",

226 "INDEVBUGS",

227 "ENTROPY",

228 "MPOCH",

229 "MAXCHSET",

230 "AVGCHSET",

231 "MAXADD",

232 "AVGADD",

233 "MAXDEL",

234 "AVGDEL",

235 "AVGTBCH",

236 "NOCMMSG",

237 "CCHURN",

238 "MAXCCHURN",

239 "AVGCCHURN"

240 ]
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Data selection

Name URL Commits
AspNetCore https://github.com/aspnet/AspNetCore 37073
mpv https://github.com/mpv-player/mpv 46701
openssl https://github.com/openssl/openssl 23286
radare2 https://github.com/radare/radare2 20573
numpy https://github.com/numpy/numpy 19614
cphalcon https://github.com/phalcon/cphalcon 10484
akka https://github.com/akka/akka 22965
plotly.js https://github.com/plotly/plotly.js 17632
salt https://github.com/saltstack/salt 102504
spree https://github.com/spree/spree 19223
NodeBB https://github.com/NodeBB/NodeBB 17903
cypress https://github.com/cypress-io/cypress 11506
ccxt https://github.com/ccxt/ccxt 20197
jquery-mobile https://github.com/jquery/jquery-mobile 13109
eos https://github.com/EOSIO/eos 10013
deeplearning4j https://github.com/deeplearning4j/deeplearning4j 23769
matomo https://github.com/matomo-org/matomo 25529
roslyn https://github.com/dotnet/roslyn 41706
wp-calypso https://github.com/Automattic/wp-calypso 32686
react-native-macos https://github.com/ptmt/react-native-macos 12983
coreclr https://github.com/dotnet/coreclr 19609
tutorials https://github.com/eugenp/tutorials 11476
celery https://github.com/celery/celery 10730
incubator-weex https://github.com/apache/incubator-weex 11152
curl https://github.com/curl/curl 23904
apollo https://github.com/ApolloAuto/apollo 10369
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amphtml https://github.com/ampproject/amphtml 11926
odoo https://github.com/odoo/odoo 122755
crystal https://github.com/crystal-lang/crystal 11146
yii2 https://github.com/yiisoft/yii2 18793
generator-jhipster https://github.com/jhipster/generator-jhipster 16916
cocos2d-x https://github.com/cocos2d/cocos2d-x 36873
phpunit https://github.com/sebastianbergmann/phpunit 11369
realm-cocoa https://github.com/realm/realm-cocoa 10785
metabase https://github.com/metabase/metabase 17352
selenium https://github.com/SeleniumHQ/selenium 23367
servo https://github.com/servo/servo 36000
ipython https://github.com/ipython/ipython 23697
mattermost-server https://github.com/mattermost/mattermost-server 10610
pandoc https://github.com/jgm/pandoc 11970
homebrew-cask https://github.com/Homebrew/homebrew-cask 82408
elixir https://github.com/elixir-lang/elixir 15279
libgdx https://github.com/libgdx/libgdx 13509
metasploit-
framework

https://github.com/rapid7/metasploit-framework 50254

terraform https://github.com/hashicorp/terraform 23285
cockroach https://github.com/cockroachdb/cockroach 36033
influxdb https://github.com/influxdata/influxdb 28275
corefx https://github.com/dotnet/corefx 31390
CNTK https://github.com/Microsoft/CNTK 16029
hhvm https://github.com/facebook/hhvm 30162
framework https://github.com/laravel/framework 22937
brew https://github.com/Homebrew/brew 17769
emscripten https://github.com/emscripten-core/emscripten 19040
mongoose https://github.com/Automattic/mongoose 10235
pandas https://github.com/pandas-dev/pandas 18769
vagrant https://github.com/hashicorp/vagrant 11821
godot https://github.com/godotengine/godot 18744
grpc https://github.com/grpc/grpc 36590
sentry https://github.com/getsentry/sentry 24086
symfony https://github.com/symfony/symfony 39917
julia https://github.com/JuliaLang/julia 43979
DefinitelyTyped https://github.com/DefinitelyTyped/

DefinitelyTyped
56716

ember.js https://github.com/emberjs/ember.js 17908
home-assistant https://github.com/home-assistant/home-assistant 17000
Rocket.Chat https://github.com/RocketChat/Rocket.Chat 16083
rethinkdb-legacy https://github.com/rethinkdb/rethinkdb-legacy 33387
go-ethereum https://github.com/ethereum/go-ethereum 10468
etcd https://github.com/etcd-io/etcd 14895
phaser https://github.com/photonstorm/phaser 12058
pytorch https://github.com/pytorch/pytorch 15855
fastlane https://github.com/fastlane/fastlane 14834
pdf.js https://github.com/mozilla/pdf.js 11378
spring-framework https://github.com/spring-projects/

spring-framework
17732

grafana https://github.com/grafana/grafana 19407
foundation-sites https://github.com/zurb/foundation-sites 16309
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legacy-homebrew https://github.com/Homebrew/legacy-homebrew 63881
brackets https://github.com/adobe/brackets 17702
neovim https://github.com/neovim/neovim 12491
opencv https://github.com/opencv/opencv 25865
babel https://github.com/babel/babel 12169
scikit-learn https://github.com/scikit-learn/scikit-learn 23599
storybook https://github.com/storybooks/storybook 15728
rust https://github.com/rust-lang/rust 88758
spring-boot https://github.com/spring-projects/spring-boot 20123
ansible https://github.com/ansible/ansible 42187
jekyll https://github.com/jekyll/jekyll 10297
bitcoin https://github.com/bitcoin/bitcoin 19350
elasticsearch https://github.com/elastic/elasticsearch 43956
meteor https://github.com/meteor/meteor 21792
ant-design https://github.com/ant-design/ant-design 13604
rails https://github.com/rails/rails 71764
TypeScript https://github.com/Microsoft/TypeScript 26335
angular https://github.com/angular/angular 12712
youtube-dl https://github.com/rg3/youtube-dl 16758
kubernetes https://github.com/kubernetes/kubernetes 73729
atom https://github.com/atom/atom 35947
three.js https://github.com/mrdoob/three.js 26147
flutter https://github.com/flutter/flutter 12978
moby https://github.com/moby/moby 36290
go https://github.com/golang/go 39068
node https://github.com/nodejs/node 25463
vscode https://github.com/Microsoft/vscode 44912
electron https://github.com/electron/electron 21070
react-native https://github.com/facebook/react-native 15546
tensorflow https://github.com/tensorflow/tensorflow 47597
react https://github.com/facebook/react 10613
bootstrap https://github.com/twbs/bootstrap 18357
freeCodeCamp https://github.com/freeCodeCamp/freeCodeCamp 20854
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Appendix D

Correlation heat map
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Appendix E

Classifier performance

This appendix synthesizes the complete results generated by the classifier per-
formance evaluation across all repositories.
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E.1 Eclipse JDT Core

Release FS
NB LR DT RF

P R F1 P R F1 P R F1 P R F1

MU 70.74 40.68 51.43 53.96 69.47 60.38 61.81 57.43 60.12 73.72 57.23 64.74

JM 61.73 56.12 58.57 38.75 73.27 49.9 61.33 58.08 59.91 73.0 50.63 61.18

MO 72.81 38.15 49.71 53.74 65.03 58.89 61.78 65.27 62.68 72.62 51.05 60.09

JM2 68.26 42.15 51.95 55.03 63.74 58.96 62.18 64.01 62.84 70.59 58.06 63.65
3.0 - 3.1

ALL 76.8 37.52 50.13 47.69 67.56 55.35 62.01 57.23 58.6 72.9 54.25 62.45

MU 67.68 34.62 45.64 50.46 72.31 58.86 50.42 51.54 50.02 70.34 41.03 50.69

JM 64.8 44.36 52.34 49.34 72.56 58.8 48.05 44.1 44.6 57.37 37.18 43.78

MO 66.98 27.69 38.76 51.3 70.26 59.26 52.1 49.49 50.55 62.07 43.59 52.5

JM2 70.79 40.0 50.75 50.69 67.18 57.58 53.35 50.77 52.34 58.54 46.15 52.58
3.1 - 3.2

ALL 67.03 27.95 39.02 51.7 71.28 59.2 53.67 52.31 51.29 68.32 42.31 52.68

MU 52.44 23.8 32.17 42.17 68.27 52.16 37.82 39.35 37.06 49.92 24.78 35.46

JM 48.86 57.13 51.48 38.66 72.42 50.95 35.45 38.6 35.97 46.66 27.62 34.02

MO 47.53 34.43 38.4 39.61 63.75 48.48 36.64 37.82 36.62 41.76 26.68 31.52

JM2 59.47 29.53 39.0 43.04 56.28 48.39 38.85 38.57 37.99 43.56 31.25 39.62
3.2 - 3.3

ALL 47.67 34.85 38.31 38.86 68.28 50.01 34.46 34.93 35.59 52.34 25.95 33.59

MU 62.32 37.69 46.91 43.84 74.62 54.8 48.03 45.77 46.37 56.93 35.77 43.44

JM 56.46 42.31 48.19 41.01 80.0 54.25 42.35 43.08 42.41 54.78 36.92 39.97

MO 58.34 32.31 41.34 43.53 71.15 53.77 41.64 39.62 39.45 50.2 32.31 37.89

JM2 59.93 39.62 47.57 45.46 70.77 55.1 40.7 39.62 40.38 49.9 34.62 42.57
3.3 - 3.4

ALL 57.06 30.38 39.39 41.78 76.54 53.77 48.31 47.69 46.72 60.08 35.38 45.04

MU 62.02 31.87 41.37 31.0 68.05 42.87 39.22 39.74 38.38 67.34 24.41 34.32

JM 47.41 49.71 47.56 32.46 68.01 43.0 39.64 37.35 39.31 62.9 27.5 37.37

MO 59.13 31.87 40.87 34.36 60.7 43.67 34.26 37.21 37.19 62.49 24.34 36.1

JM2 57.46 31.91 40.25 33.03 57.61 41.6 35.01 38.64 34.74 43.46 35.51 33.45
3.4 - 3.5

ALL 60.08 31.21 40.41 29.76 66.91 40.34 42.04 36.25 38.3 53.84 24.49 34.23

Table E.1: Eclipse JDT Core
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E.2 Eclipse JDT UI

Release FS
NB LR DT RF

P R F1 P R F1 P R F1 P R F1

MU 38.01 43.1 40.24 23.77 70.8 35.6 28.2 31.18 29.35 40.19 18.44 26.4

JM 39.16 44.89 41.59 22.3 72.91 33.75 26.97 30.37 27.95 43.1 16.35 20.86

MO 37.16 39.82 38.25 25.63 68.12 37.15 29.14 32.47 29.38 39.15 12.76 19.94

JM2 37.1 41.31 38.87 24.55 66.63 35.75 23.2 29.18 26.06 27.72 19.63 22.92
3.0 - 3.1

ALL 37.64 37.43 37.38 23.75 71.41 35.72 31.08 33.32 30.73 39.11 18.17 24.38

MU 39.11 29.71 33.67 27.9 64.57 38.92 31.46 30.57 32.03 53.67 19.43 26.75

JM 42.96 23.71 30.42 28.24 71.14 40.18 29.78 31.14 29.97 56.65 17.43 30.02

MO 37.62 26.0 30.66 28.87 62.86 39.45 33.97 33.43 35.3 48.54 16.86 22.63

JM2 37.88 26.29 30.84 26.42 58.29 36.27 24.7 28.29 25.22 35.19 21.14 24.68
3.1 - 3.2

ALL 36.94 22.86 28.2 27.13 69.71 38.72 31.99 32.29 32.49 58.11 20.29 27.98

MU 51.32 29.05 36.75 35.67 53.61 42.29 41.35 41.97 41.64 64.3 25.59 32.81

JM 53.45 31.26 38.81 31.67 58.33 40.46 39.48 37.25 38.61 51.58 22.73 33.57

MO 49.63 31.26 38.12 35.12 54.86 42.54 37.23 36.96 36.72 50.76 22.1 31.67

JM2 54.31 30.6 38.53 35.17 52.36 41.73 36.21 38.79 37.35 43.74 29.06 30.48
3.2 - 3.3

ALL 51.41 29.35 37.0 32.51 56.73 41.98 39.86 39.45 38.38 56.6 23.97 32.5

MU 34.85 35.92 35.14 24.31 67.98 35.76 27.32 25.37 24.62 53.67 16.32 23.73

JM 39.44 31.18 33.73 22.0 66.73 32.89 22.78 24.15 22.3 45.83 13.9 14.15

MO 32.31 36.54 34.16 24.91 64.3 35.81 26.39 26.47 26.49 41.08 15.18 20.94

JM2 34.92 33.53 33.55 24.7 63.71 35.57 22.53 27.98 23.83 22.8 15.7 21.37
3.3 - 3.4

ALL 35.07 34.78 34.72 23.35 68.57 34.84 27.83 28.16 27.96 42.95 13.86 22.76

MU 25.63 20.76 21.86 11.88 53.26 19.07 11.82 16.59 13.62 10.1 7.05 5.23

JM 24.59 20.08 21.24 14.21 54.32 22.55 15.64 17.35 14.97 14.48 4.39 9.72

MO 17.92 22.58 19.49 14.79 55.91 23.28 18.06 18.56 17.25 11.92 7.88 7.65

JM2 26.27 18.26 20.47 14.79 51.67 22.91 10.4 21.74 15.07 8.15 9.77 9.72
3.4 - 3.5

ALL 20.12 19.24 18.87 13.48 56.82 21.79 12.11 15.68 13.47 10.32 2.58 3.96

Table E.2: Eclipse JDT UI
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E.3 NumPy

Release FS
NB LR DT RF

P R F1 P R F1 P R F1 P R F1

MU 35.33 96.25 51.48 50.83 55.0 53.17 49.3 47.32 45.59 61.21 42.86 46.52

JM 35.8 96.07 52.11 52.76 61.79 55.23 51.83 49.64 50.36 69.83 43.21 50.53

MO 35.18 97.5 51.63 52.7 64.29 54.76 56.58 54.82 54.15 61.68 40.54 42.07

JM2 35.86 98.75 52.55 58.74 59.11 57.23 52.14 51.43 51.54 58.33 39.64 50.85
1.12 - 1.13

ALL 35.33 97.5 51.81 48.79 57.68 51.56 57.44 50.54 48.27 65.91 40.71 43.35

MU 73.12 48.0 57.08 61.88 69.89 64.34 64.89 62.78 61.56 65.21 51.22 52.54

JM 66.99 39.67 48.74 61.95 65.44 64.25 60.95 56.56 59.1 64.05 50.11 61.79

MO 72.55 35.33 45.79 66.34 62.56 63.75 56.82 60.56 56.33 69.2 53.44 48.96

JM2 71.11 39.44 49.7 65.31 65.44 63.94 46.39 47.67 47.96 56.54 45.78 52.98
1.13 - 1.14

ALL 72.76 36.44 47.08 62.18 62.67 62.11 55.36 57.56 55.07 69.43 44.67 59.91

MU 61.62 40.14 47.23 47.02 72.78 57.71 41.51 42.22 40.62 55.66 39.86 49.4

JM 45.91 74.86 56.38 48.75 71.25 57.16 51.45 47.36 47.95 57.14 42.36 49.08

MO 34.94 84.72 48.58 48.27 67.92 56.12 54.92 52.22 51.35 61.48 38.61 48.89

JM2 65.12 40.97 48.79 54.34 56.39 54.38 50.03 44.72 45.48 64.38 47.22 53.63
1.14 - 1.15

ALL 33.73 82.08 46.98 48.86 72.92 57.26 50.17 48.61 48.53 60.88 38.61 50.99

Table E.3: NumPy
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E.4 Plotly

Release FS
NB LR DT RF

P R F1 P R F1 P R F1 P R F1

MU 30.83 29.17 29.64 33.81 55.0 39.99 46.36 49.17 46.1 53.33 20.0 23.71

JM 27.65 59.17 35.22 27.52 69.17 38.69 21.67 22.5 20.97 15.0 17.5 24.0

MO 16.01 91.67 27.22 31.12 63.33 41.13 24.0 21.67 15.43 20.0 10.0 8.0

JM2 41.42 40.83 39.18 26.74 54.17 33.53 41.5 36.67 39.51 48.33 32.5 36.63
1.38 - 1.39

ALL 16.6 91.67 28.05 35.56 70.0 46.11 35.67 36.67 45.6 50.67 22.5 26.33

MU 29.09 82.14 42.89 37.97 62.86 47.76 40.14 37.62 36.04 56.01 26.43 36.42

JM 24.81 93.81 39.21 32.75 71.43 45.08 36.28 41.9 37.71 52.95 30.0 30.95

MO 23.96 94.29 38.18 35.8 65.71 46.63 37.17 39.76 35.27 41.81 17.38 23.77

JM2 25.26 91.43 39.43 34.99 68.57 46.24 38.25 32.14 34.67 49.76 27.86 32.73
1.39 - 1.40

ALL 23.93 94.29 38.14 38.69 64.29 45.68 40.13 42.38 40.34 53.69 25.71 30.08

MU 29.29 92.86 44.41 32.12 78.57 45.68 38.74 34.29 35.16 38.79 30.0 26.97

JM 27.34 94.29 42.3 30.5 88.57 45.01 39.98 31.43 35.46 42.42 21.43 25.96

MO 12.76 95.71 22.52 30.23 77.14 44.57 30.67 31.43 27.59 36.17 24.29 25.83

JM2 28.64 88.57 43.12 31.51 78.57 44.36 32.65 40.0 33.47 36.17 37.14 36.22
1.40 - 1.41

ALL 12.98 97.14 22.9 32.57 80.0 45.83 40.8 38.57 34.31 39.17 25.71 24.72

Table E.4: Plotly
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E.5 Yii

Release FS
NB LR DT RF

P R F1 P R F1 P R F1 P R F1

MU 20.55 20.0 18.28 25.17 62.5 36.02 33.14 39.17 36.74 72.67 36.67 48.38

JM 20.0 76.67 31.57 29.65 77.5 42.65 57.62 57.5 51.99 70.95 37.5 48.13

MO 19.89 87.5 32.35 32.21 70.83 43.94 49.46 65.0 54.33 63.33 45.83 46.59

JM2 0.0 0.0 0.0 17.05 69.17 27.19 38.53 47.5 40.65 47.67 39.17 38.43
2.0.9 - 2.0.10

ALL 19.58 87.5 31.93 28.07 65.83 39.0 43.45 50.83 45.74 64.33 31.67 46.71

MU 32.8 35.24 32.67 25.73 62.62 36.0 37.6 24.52 30.04 50.0 12.62 9.32

JM 32.01 30.95 30.06 20.36 65.95 30.84 16.67 16.9 18.58 10.0 4.29 11.0

MO 35.0 26.19 27.33 24.37 56.67 33.93 17.56 16.43 14.33 17.5 1.43 4.0

JM2 30.83 24.76 26.82 25.76 57.86 35.37 19.94 19.52 17.21 19.5 9.05 13.74
2.0.10 - 2.0.11

ALL 43.36 29.29 32.14 24.78 56.67 31.94 25.32 29.29 24.71 25.0 10.71 13.48

MU 39.65 44.0 40.23 33.35 54.0 40.01 30.44 34.0 32.08 14.83 12.33 8.5

JM 30.82 42.33 34.83 32.34 54.0 39.33 32.0 28.67 29.73 13.17 16.67 15.16

MO 34.65 47.67 39.3 30.4 55.67 38.33 15.33 22.33 17.24 28.17 8.67 24.61

JM2 44.02 35.33 38.08 29.55 55.67 38.18 21.15 24.0 22.28 27.08 10.0 16.59
2.0.11 - 2.0.12

ALL 30.36 45.67 35.46 29.38 55.67 38.52 28.83 34.0 25.38 24.76 14.0 6.04

Table E.5: Yii

E.6 Terraform

Release FS
NB LR DT RF

P R F1 P R F1 P R F1 P R F1

MU 44.02 25.3 31.75 20.68 77.66 32.61 37.64 37.19 36.56 51.67 27.98 35.05

JM 39.8 24.7 30.14 20.43 76.17 31.7 34.95 37.43 36.21 44.81 24.4 28.78

MO 37.41 23.21 28.42 20.85 79.46 32.91 33.82 33.64 34.95 37.09 17.54 24.6

JM2 48.18 26.21 33.53 20.88 53.29 29.95 31.32 33.64 33.14 38.9 25.9 27.45
0.8.0 - 0.9.0

ALL 36.35 20.83 26.26 20.89 77.38 32.77 39.37 39.86 38.73 49.03 21.72 30.43

MU 6.97 33.5 11.51 3.11 66.0 5.93 7.84 36.5 12.88 5.24 16.5 9.18

JM 1.72 73.5 3.32 2.32 56.0 4.45 1.17 20.0 4.17 0.19 2.5 0.58

MO 0.91 90.0 1.8 2.81 63.5 5.38 0.98 17.5 2.1 0.0 2.5 0.0

JM2 6.85 29.0 11.08 3.18 56.0 6.01 0.75 15.0 2.06 0.15 7.5 6.86
0.9.0 - 0.10.0

ALL 0.94 92.5 1.85 2.54 56.0 5.14 7.51 34.0 11.94 4.42 14.0 6.84

Table E.6: Terraform
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E.7 Ansible

Release FS
NB LR DT RF

P R F1 P R F1 P R F1 P R F1

MU 54.95 33.05 41.17 43.28 59.34 49.55 46.49 50.02 48.74 62.78 40.36 48.79

JM 53.7 33.05 40.77 37.88 70.04 47.7 43.17 44.5 44.48 56.98 33.66 42.95

MO 51.84 37.8 43.56 46.67 57.97 51.61 42.6 44.21 44.13 58.33 33.2 42.69

JM2 57.13 30.6 39.68 46.12 57.06 50.97 41.36 47.11 43.42 47.24 37.32 41.41
2.4.0 - 2.5.0

ALL 52.65 35.34 42.13 39.04 63.61 48.88 45.31 50.03 47.23 61.23 37.63 47.84

MU 63.66 31.92 42.2 53.9 56.12 54.87 56.8 60.12 57.81 64.15 51.8 57.56

JM 65.31 32.82 43.38 51.89 57.2 54.41 58.29 57.41 59.03 61.11 50.35 55.94

MO 62.49 32.85 42.91 55.33 53.78 54.53 57.08 57.44 57.7 60.06 47.31 53.29

JM2 63.62 34.27 44.4 54.87 51.97 53.26 56.52 58.14 56.66 62.6 53.07 55.75
2.5.0 - 2.6.0

ALL 63.71 30.31 40.85 52.43 57.2 54.02 56.03 57.04 56.89 65.15 49.63 57.43

Table E.7: Ansible

E.8 Symfony

Release FS
NB LR DT RF

P R F1 P R F1 P R F1 P R F1

MU 60.77 28.12 37.93 43.32 54.07 47.66 43.97 40.26 42.23 58.19 32.34 40.84

JM 63.7 31.94 42.3 46.56 52.15 48.99 39.36 41.11 38.7 53.54 29.72 41.26

MO 61.41 33.06 42.57 46.91 50.23 48.28 41.23 43.72 41.24 54.92 30.78 35.53

JM2 59.11 29.67 39.18 48.61 51.75 49.87 38.78 39.52 38.39 48.44 35.33 40.67
3.0.0 - 3.1.0

ALL 60.28 33.05 42.16 45.35 55.93 48.76 42.42 41.01 41.44 57.75 32.36 39.48

MU 56.8 33.33 41.67 41.03 55.02 46.77 40.43 41.53 41.15 49.68 29.21 35.85

JM 57.18 33.04 41.62 39.15 58.17 46.5 40.46 38.97 40.33 49.81 29.23 32.2

MO 54.62 35.26 42.62 44.02 55.01 48.75 39.34 40.28 39.39 46.1 23.55 32.99

JM2 58.89 29.26 38.6 42.36 53.76 47.28 33.8 36.77 35.82 45.29 27.97 33.3
3.1.0 - 3.2.0

ALL 52.94 34.94 41.89 40.65 58.48 47.43 39.88 40.27 39.4 55.46 25.8 33.41

MU 54.76 29.32 37.88 38.6 55.0 45.35 40.8 42.05 41.13 54.92 33.41 38.76

JM 59.53 29.55 39.14 39.62 56.82 46.48 41.64 44.09 43.42 54.7 30.91 37.32

MO 50.67 32.27 39.03 42.98 53.18 47.27 44.39 43.41 43.24 52.32 30.45 35.25

JM2 57.51 29.09 38.01 41.66 51.14 45.77 41.03 41.82 41.55 47.37 33.64 36.26
3.2.0 - 3.3.0

ALL 51.86 32.95 39.79 41.75 55.91 47.84 42.02 45.23 43.17 48.69 27.27 37.44

Table E.8: Symfony
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E.9 Godot

Release FS
NB LR DT RF

P R F1 P R F1 P R F1 P R F1

MU 47.93 55.69 49.72 22.65 81.53 35.68 25.41 35.0 28.75 39.72 28.33 22.91

JM 35.93 56.94 43.51 20.72 82.36 32.97 25.53 37.22 26.57 48.6 27.5 33.25

MO 43.16 53.33 46.37 21.24 83.89 33.67 28.13 30.0 26.5 42.68 26.94 32.29

JM2 47.56 46.53 43.92 27.49 67.22 38.75 26.66 29.31 27.03 46.79 28.89 26.71
2.0.0 - 2.1.0

ALL 40.88 58.06 46.98 20.87 80.28 33.01 25.79 28.61 29.39 49.37 24.44 33.64

Table E.9: Godot

E.10 Elasticsearch

Release FS
NB LR DT RF

P R F1 P R F1 P R F1 P R F1

MU 19.33 41.67 26.06 11.56 70.97 19.83 16.73 14.86 15.81 21.5 13.61 12.73

JM 19.91 30.56 23.64 11.14 68.75 19.13 13.75 13.75 11.84 17.5 1.11 8.76

MO 18.65 46.25 26.38 12.21 69.72 20.75 20.07 21.67 21.4 15.33 3.47 1.43

JM2 19.93 26.11 22.04 10.83 63.06 18.45 19.38 31.53 25.77 13.75 19.17 22.24
6.0.0 - 6.1.0

ALL 22.36 41.81 28.88 11.76 68.61 20.88 13.15 14.86 13.93 29.17 2.22 3.43

MU 18.81 15.38 16.66 10.73 69.43 18.65 23.83 50.42 32.39 23.79 41.92 29.35

JM 16.66 21.26 18.45 10.58 59.05 17.92 16.11 48.14 23.84 15.21 36.05 19.99

MO 7.64 64.96 13.5 10.53 59.51 17.88 15.9 46.42 23.5 13.73 33.81 18.59

JM2 14.86 10.87 12.38 6.54 43.81 11.36 13.71 46.4 20.95 13.17 36.52 20.09
6.1.0 - 6.2.0

ALL 7.69 67.59 13.75 11.01 71.26 18.54 23.6 49.96 31.51 24.31 38.32 28.01

MU 23.95 23.8 23.73 16.19 62.6 25.74 25.1 32.97 28.27 27.97 18.8 22.8

JM 27.15 24.29 25.51 15.49 52.24 23.78 20.2 29.84 23.52 29.37 14.95 21.9

MO 22.02 24.3 22.95 15.66 51.53 23.95 22.33 30.35 25.29 27.67 15.88 18.86

JM2 25.88 22.36 23.83 14.97 53.68 23.38 16.93 35.14 22.94 17.77 22.38 19.95
6.2.0 - 6.3.0

ALL 23.34 24.06 23.51 15.97 61.16 25.33 22.31 31.77 26.24 26.94 13.98 20.65

MU 10.58 15.22 12.39 6.43 56.1 11.12 14.85 17.25 15.62 29.33 10.11 11.42

JM 9.88 14.51 11.66 6.9 56.87 12.15 12.26 12.2 13.01 25.55 7.86 9.07

MO 8.46 13.74 10.43 6.62 54.67 11.78 12.33 12.97 11.97 23.86 4.29 6.28

JM2 9.1 10.82 9.74 6.72 56.87 12.02 2.31 6.54 3.46 2.51 3.57 4.48
6.3.0 - 6.4.0

ALL 7.74 13.02 9.66 6.54 56.04 11.37 13.66 15.05 17.11 18.69 6.48 10.62

Table E.10: Elasticsearch
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accuracy TP+TN
TP+TN+FP+FN .

class label A discrete attribute assigned to a record in a
data set. The value of the class label is what is
predicted.

code coverage A measure of how much of the source code is
covered by test cases. 100 % code coverage tells,
that all functions, statements, and branches in
the source code will be executed when running
the test suite.

confusion matrix A matrix of actual binary value as well as the
predicted binary values of a classification model.
The matrix is, thus, comprised of TP, TN, FP,
and FN.

CSV comma-separated values.

data set A number of records containing features.
decision tree A simple classification algorithm.

ER entity-relationship.

F1 2 · Precision·Recall
Precision+Recall .

FN false negative.
FP false positive.
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issue An entity in GitHub used to contain informa-
tion about bugs, requests, new features etc. in
a repository.

JSON JavaScript Object Notation.

LOC lines of code.

model A mathematical model that has been built by
used of a classification algorithm which has been
trained with historical data.

MSR Mining Software Repositories.

OSS open-source software.

precision TP
TP+FP .

probabilistic classifier A classification algorithm that is based on prob-
ability theory.

pull request A specialized issue in GitHub, used to announce
the presence of a new change to other users of
a repository. Can be used to discuss and review
the change..

recall TP
TP+FN .

record A specific instance in a data set. A record is
comprised of one to many features.

test data The subset of an entire data set that is used to
evaluate the model. The test data is unknown
to the model.

TN true negative.
TP true positive.
training data The subset of an entire data set that is used to

train the model.

VCS version control system.
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