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Abstract

As investment in offshore wind energy continues to increase in order to meet decarbonization goals,
the density of wind farms in offshore areas is increasing, leading to clusters of closely packed wind
farms. The negative effect this can have on the local wind resource leads to reductions in annual
energy production, and the current project is dedicated to achieving a better understanding of
wakes from offshore wind farm clusters.

This thesis investigates the behaviour of these wakes using mesoscale modelling, and includes
analysis of the first long-term simulation for large offshore wind farm clusters using the two wind
farm parameterizations Fitch and the Explicit Wake Parameterization (EWP) in the Weather
Research and Forecasting (WRF) model.

Simulations in WRF are validated using measurements from the offshore research platform FINO3,
and velocity deficits are examined as functions of wind speed, wind direction, and atmospheric
stability. The wake effect is quantified by characteristics such as wake length, wake-affected area,
and recovery profile, and the effect on power production of neighbouring wind farms is assessed.
The behaviour of turbulence kinetic energy (TKE) in the wake of wind farms is also examined.

Results show that wakes simulated using the Fitch scheme are on average 50% longer than when
simulated using the EWP scheme. There are significant differences in the recovery profile when
using the two schemes. The Fitch scheme displays a more intense velocity reduction over the
wind farm and the recovery follows an exponential curve, while the EWP scheme has a lower wind
reduction and the recovery follows a linear curve.

The influence of climatological parameters shows that wakes are longest for winds between 5-10ms−1

and under stable conditions. By analyzing SCADA data, the reduction in power production is
found to be greatest under these conditions. The wind direction can also have a significant impact
on power production depending on the location of the surrounding wind farms, and winds from
directions that are densely populated by wind farms will have a further reduced velocity.
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CHAPTER1

Introduction

This master’s thesis is conducted as part of the OffshoreWake project, a collaboration between
DTU Wind Energy and Vattenfall investigating the wind shadow effect behind large offshore wind
farms and the effects of ocean surface parameters. This thesis focuses on examining the behaviour
of wakes in large offshore wind farm clusters using the wind farm parameterizations Fitch and
EWP in the mesoscale model WRF, and quantifying the wake effect and the differences between
the two parameterizations. A number of parameters that are relevant for offshore wind energy
applications, including wind velocity deficits and turbulence kinetic energy, are examined as a
function of climatological parameters such as atmospheric stability, wind speed and wind direction.

The study is based on data from WRF simulations run by previous master’s student Erin Langor,
where the 2018 climate in a region of the North Sea was simulated, and the focus is on Vattenfall
wind farms Sandbank and DanTysk which are situated in a large cluster of offshore wind farms in
the German Bight. The simulations by Langor are the first long-term simulations for large offshore
wind farm clusters using the Fitch and EWP schemes. Langor’s thesis highlighted monthly trends
in the behaviour of wind farm wakes in the North Sea and illustrated the effect of wakes on
power production through analysis of annual mean capacity factors and their dependency on wind
direction. She also found that the Fitch scheme consistently showed greater velocity deficits than
the EWP scheme.

In this thesis, a systematic approach to quantifying wake characteristics is taken, expanding on the
results found by Langor by applying data binning and statistical analysis to quantify the influence
of climatological parameters on wakes and the differences when using the two parameterization
schemes. A validation of the simulations is conducted using met mast measurements from the
FINO3 research platform, and SCADA data from the DanTysk wind farm is used to determine the
influence of wakes on turbine capacity factors under certain conditions. The theoretical concepts
necessary to conduct and understand this study are explained in the report, including meteorological
concepts and the theory behind the wind farm parameterization schemes.

This chapter includes the motivation for studying wind farm wakes in offshore wind farm clusters
and a review of some of the discoveries and advancements already made in the field of study.

1
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1.1 Motivation

In 2019, 15.4GW of wind power was installed in Europe, of which 24% was offshore, adding a
record 3.6GW to the European offshore wind energy capacity (WindEurope Business Intelligence
2020). In 2017, 71% of all offshore wind capacity in Europe came from installations in the North
Sea (Sawyer and Liming 2017). The offshore wind sector is growing, but there is a limit to the
space available for offshore wind farms in shallow waters. Due to the decreasing area available for
new installations, wind farms are being erected in closer proximity to each other, creating clusters
of wind farms, and the effect of neighbouring farms on power production could be considerable
(Agora 2020).

A wind turbine extracts kinetic energy from the atmosphere, turning it into electrical energy via
a generator which is sent to the electricity grid. The decrease in kinetic energy in the atmosphere
results in a reduced wind speed in the wake of the turbine. The wake effects become more complex
when a group of turbines are placed in close vicinity of one-another, as is the case with a wind
farm.

The OffshoreWake project, a collaboration between DTU Wind Energy and Swedish energy com-
pany Vattenfall, aims to improve the efficiency of the Danish power system by studying the large-
scale wake effects from neighbouring wind farms (OffshoreWake 2017). As part of the OffshoreWake
project, the purpose of this thesis is to create a better understanding of the modelling of wind farm
wakes and their climatological effects.

Using the mesoscale model Regional Atmospheric Modeling System (RAMS), Baidya Roy et al.
(2004) found that the presence of a wind farm significantly slowed down the wind at turbine hub-
height level. Depending on climatological factors, wakes behind Horns Rev and Nysted extended
over a distance of 5-20 km in a study by Christiansen and Hasager (2005), where wakes were
observed using satellite synthetic-aperture radar (SAR). These findings indicated that there may
be a negative impact on the efficiency and power production of wind farms when located in these
clusters.

1.2 Literature review

The study of inter-turbine wakes, or wakes within a wind farm, is well-documented. Jensen (1983)
devised a simple wake model for calculating the wake behind a wind turbine. Barthelmie et al.
(2009) demonstrated that power losses due to wakes can be modelled using computational fluid
dynamics (CFD), and Barthelmie and Jensen (2010) quantified relationships between wind farm
efficiency and climatological parameters such as wind speed, wind direction, turbulence and at-
mospheric stability using the wind farm software Wind Atlas Analysis and Application Program
(WAsP).

Baidya Roy et al. (2004) and Christiansen and Hasager (2005) found that not only were velocity
deficits caused by the presence of wind farms, but that the wake recovery behind a wind farm was
dependent on the wind speed, atmospheric stability and the number of turbines in operation. Using
SAR, Djath et al. (2018) observed that stable atmospheric conditions favoured longer wakes, and
that the overlapping and interaction of wakes could vastly extend their length. Platis et al. (2018)
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found the first in situ evidence of wakes in the far field behind offshore wind farms, using research
aircraft to confirm wake lengths of tens of kilometers under stable atmospheric conditions and wind
speed deficits of up to 40%.

In studies by Ivanova and Nadyozhina (2000) and Malyshev et al. (2003), wind farms were approxi-
mated by increasing the surface roughness length of the wind farm area, implicitly representing the
general large-scale impacts of wind farms. Using this method, it is difficult to choose an appropriate
roughness length without field measurements; however, due to its computational effectiveness, it has
been widely used in a number of studies (Keith et al. 2004), (Kirk-Davidoff and Keith 2008), (Wang
and Prinn 2010), and (Wang and Prinn 2011). Baidya Roy et al. (2004) modelled a wind farm as
an elevated momentum sink and a source of turbulence, a method used in a number of subsequent
papers, and improved upon in (Blahak et al. 2010) by adding a loss factor to include mechanical
and electrical losses in the model. Other parameterizations of wind farm effects include explicit pa-
rameterization of each individual turbine drag using computationally heavy numerical simulations
such as large eddy simulation (LES) in Lu and Porté-Agel (2010) or other CFD modelling.

In 2012, a new wind farm parameterization (WFP) was developed by Fitch et al. (2012) for the
Weather Research and Forecasting (WRF) Model. While some previous studies neglected any
representation of turbulence or wind shear, the Fitch scheme (also known as the WRF-WF scheme)
based the turbine-induced drag on the thrust coefficient of a modern turbine. Additionally, the
source of the turbulence kinetic energy (TKE) varied with wind speed. Using the Fitch scheme,
wakes extended up to 60 km behind an idealized wind farm.

In a study by Volker et al. (2015), a new approach called the Explicit Wake Parametrisation
(EWP) was developed and implemented in WRF, using a different definition of TKE than in the
Fitch scheme. Although results showed similar wake lengths upon comparison, the recovery profiles
of the two schemes differed. The EWP scheme exhibited a linear recovery of velocity behind the
wind farm, while the Fitch scheme showed a rapid recovery in the near-wake followed by a slower
recovery further downstream. Additionally, differences in the TKE field as well as the velocity
profiles were observed when using the two schemes.

There is debate as to which parameterization scheme is more accurate, and few studies have utilized
and compared the two wind farm parameterization schemes. Shepherd et al. (2020) compared EWP
and Fitch using a single year-long simulation over onshore wind farms in the U.S., finding that
using EWP resulted in faster wake recovery and capacity factors of 2-3% higher than for the more
commonly applied Fitch scheme. However, due to the absence of measured wake data, ‘it would
be premature to make recommendations with regard to which wind farm parameterization exhibits
superior fidelity’ (Shepherd et al. 2020, p. 358). Running a 9-month WRF simulation for an onshore
wind farm cluster, Pryor et al. (2020) evaluated the sensitivity of wake effects and power production
to model resolution using the Fitch and EWP schemes, finding that EWP resulted in a higher gross
capacity factor (CF) than Fitch, equating to a ∼ 5% higher power output. Differences in capacity
factor were also shown to be greater under stable conditions. Pryor found that the spatial extent of
wind farm wakes was greater when using Fitch, while noting that Lee and Lundquist (2017) reported
that the Fitch scheme showed positive bias in wake intensity and therefore negative bias downwind
in power production, meaning Fitch underestimated power production compared to observations.
Despite Pryor’s results, the lack of long-term data meant it was not possible to determine which of
the wind farm parameterizations exhibited greater fidelity, and Pryor stated:
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Pending availability of suitable computing resources and release of long-term power
production data from individual wind farms, future work should include multiyear sim-
ulations and detailed validation against those observations (Pryor et al. 2020, p. 172).

There are currently no publications comparing the EWP and Fitch schemes in long-term simulations
for offshore wind farms, making this thesis one of the very first studies to deal with the subject.



CHAPTER2

Wakes and wake modelling

This chapter introduces the concept of wakes and wake models, and presents some theoretical
background for the concepts used throughout this study. The details of mesoscale modelling and
the theories behind the two wind farm parameterization schemes Fitch and EWP will be explained,
and a summary of findings in current literature that compare the two schemes is presented.

5
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2.1 Wakes

In order to generate electricity, wind turbines extract kinetic energy from the wind. The kinetic
energy in the air behind the rotor is thereby reduced, leading to a reduced wind speed downstream
of the turbine, as shown in Figure 2.1, and increased turbulence. The reduction in wind speed
can cause significant power production losses in wind farms. This reduction in flow velocity and
increase in turbulence intensity in the downstream region is referred to as the wake. The wake
is divided into the near and the far wake. In the near wake there is a sudden pressure drop,
which quickly recovers due to turbulent mixing. The drop in pressure induces a thrust force in the
stream-wise direction against the incoming flow, and the magnitude of this thrust force dictates
the magnitude of the velocity deficit. Not only does the flow velocity decrease due to the flow
momentum extracted by the rotor, but it continues to decrease throughout the near wake as this
region expands due to the conservation of mass principle (Zhang 2015). The near wake is a complex
region, where mechanical turbulence is induced by tip vortices caused by the blade aerodynamics,
and shear-induced turbulence occurs as the high-velocity ambient flow mixes with the low-velocity
flow within the wake. The near wake extends roughly 5 rotor diameters downstream (Okulov
et al. 2014), where the far wake begins. Here the mixing layer, which causes the mechanical
turbulence, has reached the axial line, changing the centre-line velocity, and the far wake is now
governed entirely by the turbulence shear mixing. This mixing continues until the flow velocity has
fully recovered and reached that of the ambient flow. The velocity deficit in the far wake can be
approximated by a Gaussian distribution (Vermeer et al. 2003).

The far wake region can be analyzed using various wake models. This can be simple for a two-turbine
case, but it gets more complicated for multiple wind turbines where wakes start overlapping.
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Figure 2.1: Streamlines past the rotor and the axial velocity and pressure up- and downstream of the rotor. Figure
from Hansen (2015, p. 24). Copyright by Taylor & Francis Informa UK Ltd. Reprinted with permission.

2.2 Wake models

Many models have been developed to describe wakes, and they can generally be divided into three
categories:

• Engineering models

• CFD models

• Mesoscale models

Engineering models are analytical models and often greatly simplified, and therefore requiring only
few computational resources. One of the first engineering wake models is the Jensen/PARK model,
first developed by Jensen (1983). Instead of a Gaussian profile, the far wake is approximated to a
top-hat profile, such that the wake is uniformly distributed at a given distance. The wake expansion
is assumed to be linear and is defined by a wake decay coefficient. The Jensen/PARK model is
applied in several commercial wind resource assessment tools such as WAsP and WindPRO.

For increased precision, CFD models such as the linearized Navier-Stokes equations, Reynolds-
averaged Navier-Stokes (RANS) equations, direct numerical simulation (DNS), and LES can be
used. The various models are used depending on the scales to be investigated; for example, LES
and DNS are often used for resolving turbulence on the smallest scales, requiring fine grids and
high computational costs.
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Mesoscale models, often complex and costly, are widely used in atmospheric research and atmo-
spheric forecasting and can be used for wake simulation and analysis with a high precision. In this
study, results from simulations using the mesoscale model WRF have been used.

2.3 Atmospheric stability

As discussed previously, the flow velocity inside a wake is largely governed by turbulence shear
mixing. An increased level of mixing means a faster velocity recovery and shorter wake. The level
of turbulent mixing is heavily influenced by atmospheric conditions in the atmospheric boundary
layer (ABL), and these conditions are broadly divided into the three categories unstable, stable,
and neutral stability. Barthelmie and Jensen (2010) found that the efficiency of the Nysted wind
farm decreased by up to 8.1% under stable conditions when compared to neutral conditions, while
unstable conditions lead to an increase of up to 3.0%. This section will introduce some of the key
parameters for determining atmospheric stability (or stratification), as well as several methods that
can be used to define the stability.

The stability of the atmosphere is closely related to temperature gradients, or the variation of
temperature with height. This temperature variation is called the lapse rate Γ, and the adiabatic
lapse rate of dry air is given by:

− dT/dz = Γd = cp/g , (2.1)

where T is the temperature at height z, cp is the specific heat capacity, and g is the gravitational
acceleration. The dry adiabatic lapse rate is roughly −10K/km, meaning the temperature of a
dry air parcel decreases approximately 10K per kilometre that it moves upwards (Zhang 2015).
The assumption of a dry atmosphere when calculating stability is due to added complexity when
including water vapour, and neglecting the influence of humidity, especially in offshore conditions,
may lead to errors in the vertical extrapolation of the mean wind speed.

Another important term in the field of stability is the potential temperature θ, which is the tem-
perature that a parcel of air would have if it were expanded or compressed adiabatically to the
surface pressure, and it can be calculated using Poisson’s equation (Wallace and Hobbs 2006).

θ = T

(

p0
p

)R/cp

(2.2)

Here, T is the absolute temperature [K] at a given height, p the pressure at the same height, p0
the pressure at the surface, and R the gas constant.

The effect of the adiabatic lapse rate can be seen in Figure 2.2, where the temperature of an air
parcel in neutral conditions will decrease by the same amount as the surrounding temperature, and
no buoyancy forces appear to accelerate the parcel. As the environmental lapse rate is greater than
the adiabatic in unstable conditions, the lifted parcel will be warmer and therefore lighter than the
surrounding air, causing positive buoyancy forces and vertical acceleration. Unstable conditions
occur when the surface temperature is warmer than the air above it. Stable conditions occur when
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the surface is cooler than the air above it, and an air parcel displaced upwards will return to its
original height, resisting vertical motion.

Figure 2.2: Three cases of vertical parcel displacement. Figure from Zhang (2015, p. 230). Copyright by John Wiley
and Sons. Reprinted with permission.

Atmospheric stability can therefore be defined by the heat flux H, which is the amount of heat
that goes into or out of the surface per unit area caused by a difference in temperature between
the atmosphere and surface. Heat flux from the surface to the atmosphere is positive leading to
unstable conditions (greater turbulent mixing), and from the atmosphere to the surface is negative
leading to stable conditions (lower turbulent mixing).

• H > 0 unstable atmosphere

• H = 0 neutral atmosphere

• H < 0 stable atmosphere

Another definition of stability comes from Monin-Obukhov similarity theory, where buoyancy and
turbulent flows can be expressed through the Monin-Obukhov length L.

L = −
u3
∗
θv

κg
(

w′θ′v
)

s

(2.3)

Here, u∗ is the frictional velocity, θv is the mean virtual potential temperature, κ the von Kármán
constant, and

(

w′θ′v
)

s
the surface virtual potential temperature flux. L represents the height where

turbulence is generated more by buoyancy than by wind shear (Landberg 2016). Atmospheric
stability can be classified according to intervals of the Monin-Obukhov length, and several sub-
classes are defined in various literature, such as very unstable, near-stable, near-neutral stable etc.
For this study, just three classes have been defined for simplicity. These are based on stability class
definitions in Peña et al. (2008).
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Table 2.1: Atmospheric stability classes according to intervals of the Monin-Obukhov length L.

L [m] Stability class

−500 ≤ L ≤ 0 Unstable

500 < |L| Neutral

0 < L ≤ 500 Stable

However, both these measures of stability (heat flux H and Monin-Obukhov length L) have a high
uncertainty in WRF due to the model’s difficulty in estimating momentum and heat fluxes.

Instead, the Bulk Richardson Number RiB, which uses commonly available observations of tem-
peratures and wind speeds, is used to classify stability conditions in this study. Using the WRF
outputs for potential temperature θ and wind speed U at the sea surface and at height z, RiB can
be calculated as follows (Larsén et al. 2011):

RiB =
g

θ

∆θ

∆z

/(

∆U

∆z

)2

(2.4)

Generally, positive RiB values point to stable conditions, negative values to unstable conditions,
and values close to 0 indicate neutral conditions. The differentiation between stability classes is
often based on the critical Bulk Richardson Number RiBc, but there is a considerable uncertainty
when choosing an appropriate value. Therefore, stability conditions are estimated using the relation
between the Monin-Obukhov length and the Bulk Richardson Number. Using the calculated value
for RiB, L can be estimated using the following equations (Hansen et al. 2012), and the stability
is determined from Table 2.1.

z

L
= 10RiB when RiB ≤ 0 (2.5)

z

L
=

10RiB
1− 5RiB

when RiB > 0 (2.6)

When determining stability conditions, the thermal properties of the surface are significant, as
expressed by θ and ∆θ in Equation 2.4. Zhang (2015) explains that while conditions on land
experience diurnal variations, an annual variation is seen offshore due to the high heat capacity
of the ocean. This is because the surface temperature of the sea is at its highest in the summer
and lowest during the winter, which leads to predominantly unstable conditions in autumn and
early winter, and stable conditions in spring and early summer. Near the coast, the situation is
complicated by land and sea breezes where low-level jets can occur, strongly affecting the wind
speed near hub height (Zhang 2015).

The stability also influences the surface layer wind profile, as seen in Figure 2.3. The surface layer is
the lowest part of the atmospheric boundary layer and can vary from tens of metres to hundreds of
metres, depending on the stability. The surface layer is low under stable conditions and high under
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unstable conditions. Using a stability function Ψm, the logarithmic wind profile in the surface layer
can be calculated as:

u(z) =
u∗
κ

ln

(

z

z0
+Ψm

( z

L

)

)

, (2.7)

where z0 is the surface roughness length.

Figure 2.3: The influence of atmospheric stability on a wind velocity profile in the surface layer: Neutral (dashed
line), unstable (dot-dashed line), stable (solid line). Figure from Zhang (2015, p. 233). Copyright by John Wiley and
Sons. Reprinted with permission.

Zhang (2015) states that the increase in turbulent mixing under unstable conditions accelerates
wake recovery, leading to shorter wakes. This is favourable with regard to power production for
any downstream turbines or wind farms.

2.4 Mesoscale modelling and wind farm parameterization schemes

Mesoscale meteorology is the study of weather systems in the range of 103-106 metres, between
the microscale and the synoptic scale, simulating the atmospheric flow using the RANS equations.
The 3D domain is divided into cells with a horizontal resolution usually between a few hundred
metres up to 10-20 km, and a vertical resolution in the order of tens of metres. Due to the rela-
tively low horizontal resolution, sub-grid processes such as turbulence are unresolved in mesoscale
models, introducing the need for parameterizations. WRF includes parameterizations for processes
such as turbulence and diffusion, cumulus convection, and planetary boundary layer and surface
layer physics. As wind turbines affect the flow on these small scales, advanced parameterizations
have recently been developed in order to resolve the effect of wind turbines inside grid cells. Early
parameterizations treated wind turbines as an increase in roughness length (a measure for the fric-
tion imposed on the wind by the surface of the Earth), while modern wind farm parameterizations
model turbines as an elevated momentum sink and a function of wind speed and thrust coefficient.
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The first of these was developed by Fitch et al. (2012) and is commonly referred to as the Fitch
scheme, and the second was developed by Volker et al. (2015) and dubbed the Explicit Wake Pa-
rameterization (EWP). Both schemes model turbines as drag devices that extract kinetic energy
from the atmosphere, causing the wind speed to decrease in the wake, but their differing treatment
of TKE is the main distinguishing factor. Both schemes will be discussed in further detail later in
this chapter.

2.4.1 Weather Research and Forecasting Model framework

When simulating the meteorology of a domain, WRF has the option to run an ideal simulation
or a real simulation. An ideal simulation takes a constant wind speed and direction as initial
conditions, whereas a real simulation uses observed data passed through the WRF Preprocessing
System (WPS), interpolating the meteorological and terrestrial data onto the projected domain
grid, supplying WRF with a 3D snapshot of the atmosphere as boundary conditions. A flowchart
of the processes for a real simulation in WRF can be seen in Figure 2.4. The process starts with a
number of subroutines in the pre-processing system WPS: GEOGRID defines the model domains
and resolutions and creates static files of geographical data; UNGRIB extracts reanalysis data from
GRiB files containing gridded observational data; METGRID interpolates the meteorological and
terrestrial data found in UNGRIB to the model domain defined in GEOGRID. The WPS output
is passed to the real-data pre-processor in ARW (Advanced Research Weather Research and Fore-
casting model), which generates initial and lateral boundary conditions. With this information,
the simulation can begin in WRF. This study uses the 2018 climate over a domain in the North
Sea, obtained in real simulations run by Langor (2019) using Climate Forecast System Reanalysis
(CFSR) data and Optimum Interpolation Sea Surface Temperature (OISST) data for the initial-
ization of the meteorological fields. A summary of the settings for simulations used in this study
can be seen in Chapter 3.2.

Figure 2.4: Schematic showing data flow and program components in WPS, and how the WPS feeds initial data to
the ARW. Figure from Skamarock et al. (2008, p. 44) in accordance with the Creative Commons Attribution license.
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2.4.2 Governing equations in WRF

A central technique when using RANS-based models is the use of Reynolds decomposition, where
an instantaneous quantity is decomposed into its expectation value (the spatial or ensemble aver-
age) and its fluctuations. This can be applied to the Navier-Stokes equations, which describe the
motion of a fluid. Due to the various mixing-length scales involved in turbulent flow, finding a
solution to the Navier-Stokes equations is close to impossible due to computational time required.
Applying Reynolds decomposition to the Navier-Stokes equations, which describe the motion of
fluids, the Reynolds-averaged Navier-Stokes equations are obtained, and time-averaged solutions
to the Navier-Stokes equations can be calculated. The RANS equations describing flow evolution
are shown in Equation 2.8.

∂ui
∂t

+ uj
∂ui
∂xj

+
∂u′iu

′

j

∂xj
= −

1

ρ

∂p

∂xi
− 2εijkΩjuk − δi3g + fdi (2.8)

The Navier-Stokes and RANS equations arise from applying Newton’s second law to fluid motion,
and the left-hand side (l.h.s.) of Equation 2.8 describes the momentum of the fluid, while the
right-hand side (r.h.s.) describes the forces applied to the fluid. Reynolds-averaged quantities are
denoted by an overline, and fluctuations around the mean quantities are denoted by a prime. The
terms on the l.h.s. describe the storage of momentum, the advection of the mean momentum, and
the influence of the Reynolds stress on the mean flow, respectively. The terms on the r.h.s. describe
the mean pressure-gradient force, the Coriolis force, and the gravitational acceleration, and the final
term fdi is the average horizontal forcing due to the wind turbines (Volker et al. 2015).

The prognostic equation governing the evolution of TKE can be stated in the compact form:

∂e

t
+ T = ps + pb + pt − ǫ , (2.9)

where e denotes TKE and T represents the TKE transport, including advection and turbulent
transport of TKE and divergence of pressure correlation. Shear production, turbulence production,
turbine-induced turbulence, and dissipation are represented by ps, pb, pt, and ǫ, respectively. The
turbine-induced turbulence pt is calculated in the wind farm parameterization.

2.4.3 Fitch scheme

The Fitch scheme, introduced in Fitch et al. (2012), models the wind turbine drag as a function
of extracted kinetic energy (KE) from the atmosphere by turbines, and is dependent on the thrust
coefficient CT . The thrust coefficient is obtained from the thrust curve, making it a function of
wind speed, expanding on the method used by Blahak et al. (2010) where the fraction of energy
converted to TKE was constant with wind speed. In the Fitch scheme, the velocity fluctuation u′′ is
defined as the difference between the grid-cell-averaged velocity 〈u〉 and the instantaneous velocity
u (Figure 2.5). The Fitch scheme models the turbines’ effect on the atmosphere by representing the
turbines as a momentum sink, transferring a fraction of the extracted kinetic energy to electricity
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and the remainder to TKE. The loss of KE from the atmosphere due to the action of N wind
turbines in a single grid cell is described by Equation 2.10. Note that the Fitch scheme only takes
into account wake effects between turbines in adjacent cells, and not for wake effects between
turbines in the same grid cell. The rate of loss of kinetic energy from the atmosphere due to the
drag from wind turbines is calculated by:

∂ED

∂t
= −

CTN
∑

k A(k)|U(k)|3

2(∆x)2∆z(k)
, (2.10)

where A(k) is the turbine rotor area intersecting with model level k, and ∆x and ∆z are the
horizontal and vertical model grid spacings, respectively (Volker 2014). Of this extracted kinetic
energy, the amount used for production of electrical energy is:

∂E

∂t
=

CPN
∑

k A(k)|U(k)|3

2(∆x)2∆z(k)
(2.11)

The difference between total power extracted by turbines (Equation 2.10) and power converted to
electricity (Equation 2.11) is converted into turbulence kinetic energy:

pt =
CeN

∑

k A(k)|U(k)|3

2(∆x)2∆z(k)
, Ce = CT − CP (2.12)

Because 〈pt〉 ∝ 〈u〉3, this approach results in a large increase in TKE production in grid cells
containing turbines, quickly decaying downstream. This TKE source represents the ambient flow
being stirred by the turbines in the grid cell, while the mixing that results from vertical shear
induced by the momentum sink is produced in the ABL scheme in WRF. TKE is thereby produced
both by turbines and by shear when using the Fitch wind farm parameterization.

2.4.4 Explicit Wake Parameterization scheme

The Explicit Wake Parameterization was introduced in Volker et al. (2015), using classical wake
theory to describe the unresolved wake expansion in turbine-containing grid cells, which is where
the largest velocity gradients occur. Similar to the method used in the Fitch scheme, turbines are
treated as drag devices and a grid-cell-averaged drag force 〈pt〉 represents the individual turbines
in a cell. Unlike in the Fitch scheme however, the EWP scheme defines the TKE from the random
fluctuations u′ around the ensemble-averaged velocity u at hub height (Figure 2.5), and 〈pt〉 is
expressed as:

〈pt〉 = 〈u′i,hf
′

di
〉 (2.13)

These fluctuations are much smaller than those in the Fitch scheme, and the resulting TKE is
small enough to be neglected. This means that the additional TKE is solely generated by shear
production in the ABL scheme, and the pt term is disregarded.
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Figure 2.5: A sketch of the downstream development of a turbine-induced velocity reduction. The grey line represents
the instantaneous velocity, the blue line shows the ensemble average, and the orange line the spatial average. The
difference between the average and instantaneous velocity defines the turbulence fluctuation at each distance. Figure
from Volker et al. (2015, p. 3716) in accordance with the Creative Commons Attribution (CC BY) license.

Based on the research by Tennekes and Lumley (1972), the velocity deficit profile ud behind a
turbine rotor is described in the EWP scheme by:

ud = us exp

[

−
1

2

(

z − h

σ

)2

−
1

2

( y

σ

)2

]

, (2.14)

where us is the maximum velocity deficit at the centre of the wake, h is hub height, and σ is a
length scale that determines the wake expansion:

σ2 =
2K

uo
x+ σ2

o (2.15)

The wake expansion is described by the turbulence diffusion coefficient K, which is determined
from the ABL scheme, and the free stream velocity at hub height uo. The initial length scale σo,
which describes the near wake, should chosen based on the turbine type and is set to 1.6 in this
study. In Volker et al. (2015), the initial length scale was fitted based on measurements from Horns
Rev I, which is made up of Vestas V80-2.0 MW turbines.

Alternatively, the velocity deficit profile can be expressed as a function of the thrust coefficient CT :
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ud =
CT r

2
ouo

4σ2
exp

[

−
1

2

(

z − h

σ

)2

−
1

2

( y

σ

)2

]

, (2.16)

For every vertical model layer k, the horizontal grid-cell-averaged drag force components are ob-
tained:

〈fd1(k)〉 = −

√

π

8

CT r
2
ou

2
o

∆x∆yσe
exp

[

−
1

2

(

z − h

σe

)2
]

cos [ϕ(k)] (2.17)

〈fd2(k)〉 = −

√

π

8

CT r
2
ou

2
o

∆x∆yσe
exp

[

−
1

2

(

z − h

σe

)2
]

sin [ϕ(k)] (2.18)

ϕ is the wind direction, and the effective length scale σe is related to the model grid size and the
downstream distance L that the wake has travelled within the grid cell.

σe =
1

L
=

∫ L

0

σdx =
uo

3KL

[

(

2K

uo
L+ σ2

o

)
3

2

− σ3
o

]

(2.19)

From Equations 2.17 and 2.18, the grid-cell-averaged turbine-induced horizontal forcing fdi from
the RANS equations is found.

2.4.5 Comparison of parameterizations in literature

After the introduction of the EWP scheme in Volker et al. (2015), several analyses were conducted
using both the EWP and Fitch schemes, and results were compared. Using two met masts in
the wake of Horns Rev I and an ideal simulation with hub height velocity 10ms−1 and stability
conditions assumed as neutral, measurements of the velocity in the wake of the wind farm agreed
well with the EWP scheme, which reproduced the wind farm wake within the standard deviation of
the measurements. While the velocity recovery in the EWP scheme was approximately linear, the
Fitch scheme showed a faster initial velocity increase immediately behind the wind farm, displaying
an exponential recovery. Both schemes estimated the wind speed at the end of the wind farm to
within 0.1% of one another. As shown in Figure 2.6, the wake length using both schemes was very
similar, both extending roughly 45 km downstream of the the wind farm (using a threshold of 3%
velocity reduction as the wake edge).
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Figure 2.6: Horizontal view of the WRF-simulated velocity field at hub height using (a) EWP and (b) Fitch. The

simulations are for 10ms−1 in the 270◦ wind direction and 60 vertical layers. The dotted line indicates the latitudinal
centre and the solid rectangle the outer boundary of the wind farm. Figure from Volker et al. (2015, p. 3724) in
accordance with the Creative Commons Attribution (CC BY) license.

When comparing the TKE profile around the wind farm for both schemes, the TKE increase due
to the wind farm is much larger for Fitch and is at its maximum within the wind farm. This is due
to the additional turbulence generated by the source term 〈pt〉 in the Fitch scheme. In Figure 2.7,
the EWP TKE field shows a maximum increase behind the wind farm, where the velocity gradients
are largest. The vertical extension of the TKE field in Fitch is higher than in EWP, which slightly
influences the velocity profile. The wind profile is symmetric around the hub height for EWP
simulations, whereas the maximum velocity deficit in Fitch is displaced vertically above hub height
(as shown in Figure 9 in Volker et al. (2015, p. 3726)). In the EWP TKE field, there is a decrease
in TKE directly below the rotor area and an increase above hub height. This is not seen in the
Fitch TKE field, where there is a small increase in TKE in front of the wind farm, and increase
within and behind it. The results from the EWP simulations agree well with findings from Wu and
Porté-Agel (2012), where the turbulence field was simulated using an actuator-disc approach in an
LES model.
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Figure 2.7: Vertical cross-section of the TKE difference for ideal simulations for 10 ms−1 along the wake direction
for the (a) EWP scheme and (b) Fitch scheme. The region in the model containing turbine blades is indicated by
the rectangle. Figure from Volker et al. (2015, p. 3725) in accordance with the Creative Commons Attribution (CC
BY) license.

The concept of “wind theft” was studied by Pryor et al. (2020), who compared the sensitivity of
wake effects and power production to the two wind farm parameterizations. Simulations of a 9-
month period from December 2007 to August 2008 over a domain encompassing a cluster of onshore
wind farms in the U.S. Midwest were conducted, using a number of combinations of horizontal and
vertical resolutions. Analyzing the fraction of wake-affected grid cells, results showed that the
extent of wakes was generally larger for Fitch than EWP, especially in the winter and summer
months and less so in the spring months (as shown in Figure 7 in Pryor et al. (2020, p. 167)). Fitch
also exhibited significantly higher increases in TKE at hub height and two times the hub height
than EWP. The lower impact of wakes when using EWP resulted in 3-4% higher gross capacity
factors and ∼ 5% higher power output. Simulations using Fitch showed a higher wake intensity
than observations, resulting in a lower power production than would be expected in a real situation.
To properly be able to evaluate the seasonality of the wake response, the authors stated that future
work should include multiyear simulations and long-time power production data from individual
wind farms. Similar results were shown in Shepherd et al. (2020), where faster wake recovery and
2-3% greater capacity factors were observed for clustered onshore wind farms when using EWP
compared to Fitch.
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Due to the fact that the Fitch scheme was developed earlier and is included in the official WRF
releases in contrast to the EWP scheme, it is the most common wind farm parameterization used
in studies of wakes, and its effects are more thoroughly documented than for the more recently
developed EWP scheme. Vanderwende et al. (2016) observed that the Fitch scheme overestimated
velocity deficits when comparing to large eddy simulations, an observation that was also made by
Lee and Lundquist (2017) when comparing Fitch to measurements. Vanderwende et al. (2016) also
found that TKE production was overestimated when using the Fitch parameterization.



CHAPTER3

Methodology

Included in this chapter is a description of the data used in the study and the methods used to
apply this data within the scope of the project. Chapter 3.1 presents the input and output data
from the WRF simulations, SCADA data and met mast data. A summary of the WRF setup used
for the simulations is presented in Chapter 3.2.

20
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3.1 Data

Figure 3.1: Wind farms Sandbank and DanTysk and research platform FINO3 in the North Sea. Source:
http://www.4coffshore.com/offshorewind/

Supervisory Control And Data Acquisition (SCADA) data covering 2018 has been supplied by Vat-
tenfall for the German wind farms Sandbank and DanTysk, which are separated by approximately
20 km. Power and thrust curves for the Sandbank and DanTysk wind turbines are provided by
Vattenfall and are used together with SCADA wind speed measurements to estimate the power
production of the turbines. Met mast measurements between 2010 and 2019 from the research
platform FINO3, which is situated on the north-western edge of DanTysk, have been provided by
BMWi (Bundesministerium für Wirtschaft und Energie) and PtJ (Projectträger Juleich) and are
used to inspect the long-term climate. The locations of the wind farms and met mast can be seen
in Figure 3.1. All data used has a 10-minute sample rate. The power and thrust curves for a
SWT-3.6-120 turbine can be seen in Figure 3.2.
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Figure 3.2: Power curve (orange) and thrust coefficient curve (blue) for an SWT-3.6-120 turbine.

Finally, data from a one-year WRF simulation of the atmosphere in 2018 over a domain in the North
Sea conducted by Langor (2019) is used for the wake analysis. In order to include the potential
influence of wakes from surrounding wind farms in the North Sea, a region covering a 150 km radius
centred around the Sandbank/DanTysk area was considered in Langor’s simulation, where all wind
farms present in the year of study were included. This region can be seen in Figure 3.3 and the wind
farms are listed in Table 3.1. The simulation was run for three separate scenarios; one simulation
using the Fitch scheme to parameterize the wind farms in the domain, another using the EWP
scheme to parameterize the wind farms, and a third simulation run with no wind farms, providing
the behaviour of the undisturbed background flow. These three simulations will be referred to as
FIT, EWP and NWF, respectively.

The datasets used in this study are listed in Table 3.2, and a detailed description of the met mast
and wind farms being studied can be found in Table 3.3.
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Figure 3.3: Wind farms included in simulations. Figure courtesy of Langor (2019, p. 19). Reprinted with permission.
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Table 3.1: Wind farms included in simulations.

Wind farm Turbine model No. of turbines Capacity [MW]

Alpha Ventus
M5000-116
Senvion 5 MW

12 60

Amrumbank West SWT-3.6-120 80 288

BARD Offshore I Bard 5.0 80 400

Borkum Riffgrund 1 SWT-4.0-120 78 312

Butendiek SWT-3.6-120 80 288

DanTysk SWT-3.6-120 80 288

Gemini SWT-4.0-130 150 600

Global Tech I Areva M5000-116 80 400

Gode Vind 1&2 SWT-6.0-154 97 582

Horns Rev I V80-2.0 80 160

Horns Rev II SWT-2.3-93 91 209

Meerwind Süd/Ost SWT-3.6-120 80 288

Nordsee One Senvion 6.2M126 54 332

Nordsee Ost Senvion 6.2M126 48 295

Sandbank SWT-4.0-130 72 288

Trianel Windpark Borkum I AD5-116 40 200

Veja Mate SWT-6.0-154 67 402
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Table 3.2: Datasets used in this study.

Data source Site Data Start/end date

SCADA DanTysk Wind speed
2018-01-01 00:00:00
2019-01-01 00:00:00

SCADA Sandbank Wind speed
2018-01-01 00:00:00
2019-01-01 00:00:00

Met mast FINO3

Wind speed (91m, 105◦)
Wind speed (91m, 225◦)
Wind speed (91m, 345◦)
Wind direction (101m, 105◦)
Wind direction (101m, 225◦)
Sea surface temperature
Air temperature (95m)

2010-01-01 00:00:00
2019-01-01 00:00:00

WRF input
SINALPHA (Sine of rotation angle)
COSALPHA (Cosine of rotation angle)
HGT (land height)

WRF output Inner domain

U (x wind component)
V (y wind component)
PH (perturbation geopotential)
PHB (base-state geopotential)
T (perturbation potential temperature)
SST (sea surface temperature)
TKE (turbulence kinetic energy)
UST (friction velocity)

2018-01-01 00:00:00
2019-01-01 00:00:00

Table 3.3: Wind farm and met mast information.

Sandbank DanTysk FINO3

Wind turbine model SWT-4.0-130 SWT-3.6-120

Wind turbine capacity 4.0MW 3.6MW

Number of wind turbines 72 80

Wind farm capacity 288MW 288MW

Wind turbine hub height 95m 88m

Rotor diameter 130m 120m

Centre latitude 55.19◦ 55.14◦ 55.20◦

Centre longitude 6.86◦ 7.20◦ 7.16◦

Commission date Jan 2017 Dec 2015 2009
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3.1.1 Preliminary data processing

In order to use the data in the analysis, some data must be processed. The calculations of various
variables needed in the analysis are shown below. Due to the staggering of WRF output variables,
values are interpolated to the grid cell centres, both in the horizontal and vertical planes. These
linear interpolations present the potential for small potential errors in the variables. There are 252
grid cells in the x-direction, 234 grid cells in the y-direction, and 16 vertical layers, resulting in
943 488 grid points after interpolation. There are 52 560 timesteps 10-minute timesteps in 2018.

Height (WRF)

The total geopotential height z [m] is an approximation of the actual height of a pressure surface
above mean sea-level. It is calculated using the total geopotential PH + PHB, the gravitational
acceleration constant, and the terrain height, which for grid cells over water is 0.

z =
(PH + PHB)

9.81
− landheight (3.1)

Due to pressure changing in time, PH also changes with time, and the geopotential height z is not
a constant. Computing a z value for every grid cell in each layer for an entire year would be too
computationally heavy, and the height for each layer is approximated to the height in the grid cell
containing FINO3. It is found that the heights in layer 9 are those closest to the hub heights of the
turbines (88m and 95m), and layer 9 is used as the “hub-height layer” throughout this study. To
investigate whether the presence of the met mast or nearby wind farms influence the geopotential
height at this point, the layer 9 height at FINO3 is compared to that at an undisturbed location.
The mean height and standard deviation of layer 9 at FINO3 is µ = 88.3m and σ = 2.1m. The
mean height for layer 9 for the undisturbed location follows the height at FINO3 very closely, with
the mean deviating by just 0.2%. It is therefore concluded that the location at which the height
z is calculated has little influence on the result, despite the presence of the wind farms and met
mast. The height z used for determining hub height values in this study is shown in Figure 3.4.

Figure 3.4: Height of layer 9 in the grid cell containing FINO3.

This fluctuation in hub height will result in uncertainties in the wind speed at hub height. As
offshore turbine hub heights are often above the surface layer and merged in the Ekman layer, the
undisturbed wind speed increases only very slightly with height (Zhang 2015). This means that
despite the fluctuations in height seen in Figure 3.4, the free stream velocities at these various
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heights are likely to be very similar. More significant uncertainties may arise when using this
fluctuating height as hub height in the case of wake-affected flows, as the velocity deficit varies
with height depending on the vertical wind profile. This is further complicated by the differences
in wind profile when using the two different wind farm parameterization schemes. Despite these
uncertainties, it was deemed necessary to use this simple approach in order to reduce computation
time.

Wind speed and wind direction (WRF)

Using the x and y-components of the wind velocity, the wind speed [ms−1] and wind direction [◦] of
each grid cell at hub height level is calculated, using the above-mentioned heights in layer 9 as hub
height. The WRF outputs UWRF and VWRF are corrected using the sine and cosine of the Earth’s
rotation angle.

u = UWRF · COSALPHA− VWRF · SINALPHA (3.2)

v = VWRF · COSALPHA− UWRF · SINALPHA (3.3)

Using these corrected values, the wind speed and wind direction in each grid cell are calculated.
180 is added to the wind direction, as we use the direction that the wind is coming from rather
than the direction the wind is moving towards, and the angle is given in the interval (0, 360].

wspd =
√

u2 + v2 (3.4)

wdir =
arctan2(u, v)

4 · arctan(1)/180
+ 180 (3.5)

Temperature (WRF)

The total potential temperature θ [K] is obtained by adding 300 to the WRF output temperature.

θ = θWRF + 300 (3.6)

Turbulence kinetic energy (WRF)

The TKE [m2s−2] is equal to half the WRF output QKEWRF.

TKE = QKEWRF/2 (3.7)

Wind speed and wind direction (FINO3)

Wind speeds measured at 91m at the FINO3 met mast are used as hub height observations. The
FINO3 data is made up of 10-minute-averaged cup anemometer measurements, which are made
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at three different angles around the mast (105◦, 225◦and 345◦) in order to reduce the influence
of tower distortion effects on the wind speed (blue lines in Figure 3.5). The three datasets are
combined into one timeseries (orange line) depending on the measured wind direction (green line).
Whenever data is missing from the dataset corresponding to the wind direction, data from the
next-nearest direction is used. A number of small gaps are still present in the sorted FINO3 wind
speed measurements where no data was available.

Figure 3.5: Wind speed and wind direction measurements from FINO3 for 2018.

Stability (FINO3)

Through Equation 2.4, the Bulk Richardson Number is calculated for each 10-minute timestep using
measurements from FINO3 for sea-surface temperature and hub height air temperature and wind
speed. The measurements and resulting RiB can be seen in Figure 3.6. Due mainly to missing wind
speed measurements, the data coverage for the stability in 2018 at the FINO3 location is 76%. Using
the methods discussed in Chapter 2.3, the stability classes are defined for each timestep according
to the Bulk Richardson Number.

Figure 3.6: 2018 measurements from FINO3 for calculating Bulk Richardson Number.
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3.2 WRF model setup

In this section, an overview of the WRF settings is presented, including physics settings for the
simulations run by Langor. Langor’s simulations last for the entirety of 2018 and use CFSR and
OISST data for reanalysis data and sea-surface temperature data. All physics schemes are applied
to the outer domain (d01), middle domain (d02) and inner domain (d03) with the exception of the
cumulus parameterization and the wind farm parameterization. TKE advection was not used in
the simulation by Langor, which will influence the analysis of TKE later in this report. A summary
of the settings are shown in Table 3.4.

Table 3.4: Settings for WRF simulations run by Langor.

WRF version V3.7

Simulation period
2018-01-01 00:00:00
2019-01-01 00:00:00

Reanalysis data CFSR + OISST

Microphysics New Thompson et al.

Longwave Radiation RRTMG

Shortwave Radiation RRTMG

Surface Layer MYNN

Land Surface Noah Land Surface Model

Planetary Boundary Layer MYNN Level 3 PBL

Cumulus Parameterization Kain-Fritsch (d01)

Wind Farm Parameterization NWF/EWP/FIT (d03)

Initial Length Scale σ 1.6 (EWP scheme only)

TKE Advection Off

All simulations are run over three domains, seen in Figure 3.7, where output from the inner domain,
with a grid cell size of 2×2 km, is used for the analysis. A 1440×1260 km domain is centred around
the coordinates 55.5◦N, 6.0◦E. The horizontal resolution for each grid cell for d01, d02 and d03 is
18 km, 6 km, 2 km respectively, and the vertical resolution is split into 16 layers. The outer domain
is made up of 70 × 80 grid cells (east-west × south-north), the middle 144 × 162, and the inner
234 × 252. Based on recommended practices in Hahmann et al. (2014), the year-long simulation
was made up of consecutive 11-day simulations, with the first 24-hour spin-up period of each run
being discarded. Note that data from the 24th and 25th of January could not be retrieved from
the FIT simulation, and these dates have been excluded from the analysis. The output from these
simulations contains 10-minute-averaged data, and variables are staggered in an Arakawa C-grid
(shown in Figure 3.8).
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Figure 3.7: Outer, middle and inner domains of WRF simulations. Figure courtesy of Langor (2019, p. 25). Reprinted
with permission.

Figure 3.8: Arakawa C-grid staggering. Figure from Skamarock et al. (2008, p. 59) in accordance with the Creative
Commons Attribution license.



CHAPTER4

Climatological study

A study of the climatology of the simulated region is presented, including analysis of 2018 data
and long-term data spanning a 9-year period from the beginning of 2010 to the end of 2018 from
the FINO3 met mast. This includes an assessment of the distribution of wind speeds and wind
directions and the monthly distribution of stability conditions. Additionally, the possible influence
of the presence of wind farms on the local climate is discussed.

31
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4.1 2018 climate

The variation in wind speeds at a specific site can be described using a Weibull distribution. The
Weibull distribution is most often described by two parameters; the Weibull scale parameter A and
the Weibull shape parameter k. The scale parameter is a measure for the characteristic wind speed
of the distribution, while the shape parameter describes the breadth of the distribution. A Weibull
distribution for 2018 has been fitted to the wind speeds measured at 91m at FINO3 which were
shown in Figure 3.5 (orange curve). The wind speed data coverage for 2018 is 84.2%, largely due
to a long gap in the spring. The Weibull distribution of wind speeds in 2018 is shown in Figure 4.1.
The Weibull fitted curve appears to agree well with the data, and the scale and shape parameters
are A = 10.38 ms−1 and k = 2.13, respectively.

Figure 4.1: Weibull distribution of wind speeds at 91m observed at FINO3 for 2018. Values for the mean µ, variance
σ2, and Weibull scale parameter A are in [ms−1].

Using a wind rose, the distribution of wind directions and velocities is depicted in Figure 4.2. As
is expected at these latitudes, the prevailing winds are predominantly from the westerly directions.
The wind rose also indicates that winds often come from the east, while the wind rarely blows from
the south and north/northeast. The highest wind speeds are generally from the west. Lower wind
speeds from the east/southeast may be due to the presence of the DanTysk wind farm, as FINO3
is located immediately to the west of the wind farm, and due to the shorter fetch as a result of land
to the east.
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Figure 4.2: Wind rose (% frequency) as observed at 91m at FINO3 for 2018.

Stability conditions have been assessed at the FINO3 location using calculated values for the Bulk
Richardson Number and the Monin-Obhukov length. The distributions of the Bulk Richardson
Number and Monin-Obukhov length at FINO3 are displayed in Figure 4.3, indicating an unstable
atmospheric stratification. Using the three defined stability classes “unstable”, “stable” and “neu-
tral”, the monthly distribution of stability for 2018 is shown in Figure 4.4. As discussed in Chapter
2.3, the atmospheric stability offshore is expected to be more stable in the spring and early summer,
which appears to be the case. Due to low data coverage in April, November and December, one
stable month and two unstable months are poorly represented by the FINO3 data, and this may
lead to some seasonal bias.
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Figure 4.3: Distribution of Bulk Richardson Number and Monin-Obukhov length for FINO3 observations in 2018.

Figure 4.4: Monthly distribution of stability at FINO3 for 2018, with data availability displayed in percent for each
month.
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4.2 Long-term climate

In order to understand the 2018 climate, it must be put into perspective and compared with the
long-term climate of the same region. FINO3 data is available for the years 2010-2018, and winds
from this period are analysed and compared to 2018.

The Weibull distributions and parameters of each year can be seen in Appendix Figure A.1. The
wind speed distribution differs from year to year due to the inter-annual variability of the wind
climate, and possibly due to the influence of the surrounding wind farms; DanTysk began operating
in December 2015, and Sandbank began in January 2017. The 9-year period being examined is
split into three periods to assess the influence of the wind farms’ presence. Period 1 precedes the
operation of the wind farms, while DanTysk is operational in period 2, and both wind farms are in
operation in period 3. The periods have been approximated to full years. Table 4.1 shows the mean
wind speed of these periods, and the Weibull distributions can be seen in Appendix Figure A.2.

Table 4.1: Mean wind speeds at 91m at FINO3 for various periods.

Start date End date U [ms−1]

Period 1 (no WF) 2010-01-01 2016-01-01 9.71

Period 2 (DT) 2016-01-01 2017-01-01 9.15

Period 3 (DT+SB) 2017-01-01 2019-01-01 9.27

Full period 2010-01-01 2019-01-01 9.55

The sharp decrease in mean wind speed between period 1 and subsequent periods may be due to the
operation of DanTysk, while the addition of Sandbank does not seem to have a noticeable effect.
As stated before however, these effects may also be due to the inter-annual variability, and the
shorter lengths of periods 2 and 3 make it difficult to determine whether annual variations or the
presence of wind farms are the main cause. For further investigation, the inter-annual variability
observed at a different location with no surrounding infrastructure can be examined. That has not
been carried out in this study.

In Figure 4.5, statistics and Weibull parameters are shown for 2018 and for the 2010-2018 period
average. The yearly Weibull distributions are compared in Figure 4.6, which shows that 2018 (red
line) experiences lower wind speeds than the period average (black line). It should therefore be
noted that wind speeds analysed in this study are lower than what could be expected in an average
year.
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Figure 4.5: Histograms and Weibull distributions of wind speeds observed at 91m at FINO3 for the year of 2018
(left) and for the 2010-2018 period (right). Values for the mean µ, variance σ2, and Weibull scale parameter A are

in [ms−1].

Figure 4.6: Weibull distributions of wind speeds observed at 91m at FINO3 for 2010-2018 including period average.
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In Figure 4.7, the wind rose is displayed for 2018 and for the 2010-2018 period average. 2018
experienced a much higher frequency of easterly winds than during the full 9-year period. A large
number of these easterly wind speeds were below 10ms−1 in 2018, while the full period does not
show this pattern. As discussed previously, these low wind speeds in 2018 are possibly due to the
presence of the DanTysk wind farm, which would decrease the velocity of easterly winds before
hitting the FINO3 met mast. The wind roses for each year and for the defined periods can be seen
in Appendix Figures A.3 and A.4.

Figure 4.7: Wind roses for observations at FINO3 for the year of 2018 and for 2010-2018 period.



CHAPTER5

WRF validation

A validation study has been carried out in order to determine the accuracy of the WRF simulation.
Data from the WRF simulations has been compared to FINO3 measurements for the year of 2018
using the parameters wind speed, wind direction, and atmospheric stability in order to assess how
realistic the simulated climate is.
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5.1 Wind speed

In Figure 5.1, the Weibull distributions of the hub height wind speed as measured by the FINO3
met mast (at a height of 91m) and the hub height wind speeds for the grid cell containing FINO3
output by the WRF simulations (at an average height of 88.3m) are displayed, showing that
WRF slightly overestimates the wind speed relative to the measurements. The difference between
FINO3 and WRF velocities is also displayed, where the velocity difference has been calculated as
UWRF − UFINO3. The average difference for EWP and FIT is µ = 0.14ms−1 and µ = 0.01ms−1

respectively, indicating that FIT predicts wind speeds in this grid cell very accurately, while EWP
overpredicts by 0.14ms−1 on average. The spread of the velocity difference, expressed by the
standard deviation, is roughly the same for both parameterization schemes. Statistics and Weibull
parameters for FINO3 and WRF are shown in Table 5.1, showing that simulations including wind
farms on average overestimate wind speeds compared to observed values at FINO3.

Figure 5.1: Weibull distributions of FINO3 and WRF (left) and probability density functions of the difference in

wind speed between FINO3 and WRF (right). Values for the mean µ and standard deviation σ are in [ms−1].

Table 5.1: Weibull parameters for FINO3 and WRF. Values for A, µ and σ2 are in [ms−1].

FINO3 EWP FIT NWF

Shape parameter A 10.38 10.63 10.47 11.0

Scale parameter k 2.13 2.28 2.23 2.35

Mean velocity µ 9.19 9.42 9.27 9.74

Variance σ2 20.58 19.22 19.26 19.42

The data points for the difference between FINO3 and EWP wind speeds are shown in Figure 5.2
along with a trend line for 30 wind speed bins, showing the mean and standard deviation. WRF gen-
erally overpredicts the wind speed for winds below 5ms−1 and underpredicts winds above 20ms−1.
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The difference around 7-8ms−1 is roughly 0, and at wind speeds above 22ms−1, WRF vastly un-
derpredicts the wind speed. Wind speeds this high occur only very rarely (as shown in the Weibull
distribution) and are mostly above cut-out wind speed, so these limitations in WRF are not con-
sidered problematic in this thesis. When studying extreme winds or storms, this should be taken
into account.

Figure 5.2: Scatter plot and trend line with error bars for wind speed difference between FINO3 observations and
EWP predictions (left) and trend lines with error bars for wind speed difference between FINO3 and both wind farm
parameterization schemes (right).

A closer examination of the discrepancy between the FINO3 measurements and the WRF simula-
tions can be seen in Figure 5.3, where the two schemes are compared. Wind speeds below 4ms−1

are below the cut-in speed for both turbine types and are excluded from this examination. Wind
speeds above 20ms−1 are excluded, as the difference between EWP and FIT becomes negligible.
For wind speeds of 7ms−1 and below, WRF underpredicts the wind speed compared to the observed
values. In this range of velocities, FIT predictions are more accurate than EWP, with the differ-
ence ≤ 0.5ms−1. For wind speeds above 8ms−1, WRF underpredicts the wind speed, and EWP
predictions are more accurate than FIT, with the difference growing to up to 1ms−1. However, the
difference between the two schemes does not exceed 0.2ms−1, and the trend lines for both EWP
and FIT follow each other closely.
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Figure 5.3: Trend line for wind speed difference between FINO3 and wind farm parameterization schemes.

5.2 Wind direction

A comparison of wind directions and wind speeds is made using wind roses of FINO3 observations
and WRF simulations. In Figure 5.4, the FINO3 wind rose is compared to the wind roses from the
WRF simulations, and there appears to be relatively good agreement regarding both wind direction
and wind speed. The wind roses also show the effect of the wind farms in comparison to the NWF
simulation, where EWP and FIT have a higher frequency of lower wind speeds (shades of blue).
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Figure 5.4: Wind roses for observations and simulations at the FINO3 location for 2018.
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5.3 Atmospheric stability

To validate the stability conditions on site, the observed stability and the simulated stability (cal-
culated as discussed in Chapters 3.1.1 and 2.3, respectively) are compared. Figure 5.5 shows good
agreement between FINO3 and WRF, with FINO3 slightly more unstable than WRF. We also see
that conditions become slightly more unstable with the inclusion of wind farms in the simulations
compared to NWF. EWP is marginally more stable than FIT.

Figure 5.5: Observed and simulated stability at the location of FINO3 for 2018, with data availability displayed in
percent for each case.

The data availability is lower for the FINO3 measurements, and we must check to see whether the
stability results are biased. As established in Chapter 4.1, there is lots of data missing from April
and November, and no data available for December. That is one stable and two unstable months
that are poorly represented for FINO3. A comparison of the monthly stability for FINO3 and
WRF is made in Figure 5.6. Comparing FINO3 and EWP for example, the results look similar,
but EWP has a higher frequency of stable conditions and lower frequency of unstable conditions for
most months, which matches what is shown in Figure 5.5. June, July and August are more stable
in FINO3, while January, February and March are more stable in EWP. The remaining months are
more or less equal or too poorly represented for FINO3 to compare.
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Figure 5.6: Monthly distribution of observed and simulated stability at the FINO3 location for 2018, with data
availability displayed in percent for each month.



CHAPTER6

WRF wake analysis

This chapter includes a discussion of the wake behaviour found from theWRF simulations, including
analysis of the velocity deficit at hub height and the TKE field. In this study, the wake has been
defined as the area affected by velocity deficits in excess of 2% compared to the simulation without
wind farms, as also used by Christiansen and Hasager (2005) and Pryor et al. (2020). Velocity
deficits have been calculated so that negative values represent decreased wind speeds with the
inclusion of wind farms; for example, EWP velocity deficits are calculated as UEWP − UNWF.

45
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6.1 Climatology

In Chapter 5, the EWP and FIT simulations were compared to the FINO3 observations in order
to validate the simulation results. In order to determine the impact of the wind farms on the
climatology, EWP and FIT simulation results are compared to the NWF simulation. Once again,
data for the grid cell containing FINO3 is used for this study of climatological parameters.

The first evidence of velocity deficits due to the presence of wind turbines is seen in the Weibull
distributions in Figure 6.1, where the distributions of EWP and FIT wind speeds are skewed further
left than for the NWF scenario. Weibull parameters and statistics can be seen in Table 5.1, and
the mean velocity is decreased by 0.33ms−1 and 0.48ms−1 for EWP and FIT respectively.

Figure 6.1: Weibull distributions of WRF simulated wind speeds at hub height.

The differences in wind speed between the simulations are shown in histograms in Figure 6.2.
Comparing the Gaussian fits to the histograms of simulated data, it is clear that velocity deficits
are not normally distributed but have a negative skewness, and the mean value is a poor measure
for the central tendency. This was also noted by Pryor et al. (2020), who instead used median
values to describe omnidirectional wake deficits. The median values have been shown in Figure 6.2
and are significantly smaller than the mean values. The average values occur at the centre of
the normal distributions (dashed lines) and illustrate the misrepresentation of the velocity deficits
when using mean values. When examining the histograms, FIT shows a higher frequency of deficits
above 2ms−1, causing a higher median deficit. These statistics show that the velocity deficit is
generally greater for FIT simulations than EWP simulations, but may be exaggerated when using
mean values rather than median values.
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Figure 6.2: Probability density of hub height wind speed differences at the location of FINO3. Median values for
deficits are depicted by solid vertical lines, and fitted normal distributions are depicted by dashed lines, with the
mean value occurring at the peak of the normal distribution. Values for median M , mean µ, and standard deviation
σ are displayed are in [ms−1].

The deficit caused by the presence of the wind turbines is highly dependent on the wind speed. As
discussed in Chapter 2, the magnitude of the velocity deficit is a function of the thrust force, as
can be seen by looking at the thrust curve in Figure 3.2. The thrust coefficient is greatest in the
range 4-9ms−1. The thrust force, seen in Figure 6.3, peaks at 10ms−1, where the strongest velocity
deficits can be expected. The velocity deficits when using EWP and FIT are shown as a function of
wind speed in Figure 6.4, where the greatest deficits in [ms−1] do indeed occur at 10ms−1. Deficits
are shown in absolute values and as percentages. From the trend lines it is clear that the range
of wind speeds with the highest percentage-wise deficits is 5-10ms−1, with diminishing effects as
wind speed increases. Throughout this study, the focus will be on percentage-wise velocity deficits,
which is common in the field of wake studies.

Figure 6.3: Thrust force as a function of wind speed calculated for an SWT-3.6-120 turbine.
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Figure 6.4: Velocity deficits as a function of wind speed expressed in absolute values [ms−1] on the left, and percentages
[%] on the right. The top and middle rows show scatter plots and trend lines with error bars for 25 bins, and the
bottom row compares these trend lines of EWP and FIT.
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6.2 Velocity deficit

Now that it has been established that the presence of wind turbines does in fact lead to a decrease
in wind velocity, a more detailed study can begin.

Data has been split into a number of bins in order to analyse the effect of various wind speeds and
stability conditions for different wind directions. Wind directions have been split into 30◦ sectors,
wind speeds in intervals of 5ms−1, and three stability classes as defined in Chapter 2.3. Wind
speeds below 5ms−1 and above 20ms−1 have not been included in the analysis due to their rare
occurrence and/or negligible climatological effect. All data bins are shown in Table 6.1, and data is
filtered according to the grid cell containing FINO3. It is worth pointing out that despite filtering
for the same data bins, this method of filtering can result in noticeable differences between EWP
and FIT simulations, as can be seen in the datacounts of the wind speed deficit plots discussed
below. These discrepancies may have been reduced by choosing to filter according to an undisturbed
grid cell upwind of the wind farms; however this would not be without its own drawbacks, as the
upwind grid cells for some wind sectors are affected by wakes from other wind farms.

The basis for the wind velocity deficit analysis is the difference in hub height wind speed between
the NWF simulations and the EWP and FIT simulations, where mean values for each bin have been
calculated. Based on the discussion regarding Figure 6.2, it could be argued that median values
would have been more appropriate for this analysis, but this was only noted late on in the process
of this thesis. Therefore it should be noted that using mean values may lead to exaggerated wake
effects. An example of the mean velocity deficits that can occur have been visualized in plots in
Figure 6.5, depicting a 160× 160 km domain centred around the Sandbank/DanTysk wind farms,
where the 2% wake limit is outlined. EWP simulations are shown on the top row and FIT on the
bottom, while stability is unstable, stable and neutral from left to right. The number of occurrences
of each bin is shown as the datacount in each plot. The plots shown in Figure 6.5 are for wind
directions between 0-30◦ and wind speeds between 10-15ms−1, and similar plots have been made
for all wind direction and wind speed bins. These plots are shown in their entirety in Appendix
B.1. The low datacount for most neutral cases should be noted, and the pattern of wake behaviour
under neutral cases is much less clear than for unstable and stable conditions.

Table 6.1: Data bins.

Bins

Wind directions [◦]
0-30, 30-60, 60-90, 90-120, 120-150, 150-180,
180-210, 210-240, 240-270, 270-300, 300-330, 330-360

Wind speed [ms−1] 5-10, 10-15, 15-20

Stability classes Unstable, Stable, Neutral

Parameterization schemes EWP, FIT
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Figure 6.5: Wind speed deficit at hub height for wind directions 0-30◦ and wind speeds 10-15ms−1 for a 160×160 km
domain centred around the Sandbank and DanTysk wind farms. The dotted line shows the 2% wake-line, defining
the edge of the wake-affected area.

6.2.1 Wake length

A common measure of the wake behind a wind farm is the wake length. Christiansen and Hasager
(2005) observed wakes of 5-20 km behind Horns Rev and Nysted depending on ambient wind speed,
atmospheric stability and number of turbines in operation, and Gayle Nygaard and Newcombe
(2018) tracked wakes for 17 km behind Westermost Rough before reaching the limiting range of the
dual-Doppler radars used in the study. Volker et al. (2015) found wakes of roughly 45 km behind
Horns Rev I when simulating with both the EWP and Fitch schemes in WRF. Djath et al. (2018)
found that stable conditions favoured longer wakes, observing isolated wakes in excess of 30 km
behind Alpha Ventus. When including wake superposition from neighbouring wind parks, merged
wakes could extend to more than 70 km downstream.

As Djath et al. (2018) discovered, when studying wake lengths behind a wind farm, the investigation
can be complicated by the overlapping of wakes. If wind farm B is in the wake of wind farm A,
wind farm B will experience a wind speed lower than the free stream velocity, causing the wake
of wind farm B to extend further than it otherwise would. Furthermore, the length of the wake
behind wind farm A cannot be measured, as it does not recover before encountering wind farm
B. This makes it difficult to quantify wakes lengths for clustered wind farms, as is the case for
Sandbank and DanTysk, and indeed the majority of wind farms in the North Sea. The difficulty
of determining wake lengths in wind farm clusters can be seen by just glancing at Figure 6.6.
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Figure 6.6: Wind speed deficit at hub height for a 300 × 300 km domain centred around Sandbank and DanTysk,
where grid cells containing Sandbank and DanTysk turbines are marked.

Despite the difficulties discussed, an attempt to determine wake lengths behind Sandbank/DanTysk
has been made by observing at the plots in Appendix B.1 and equivalent plots of the 300 × 300
km domain when necessary. The wake length behind Sandbank or DanTysk (whichever is clearest)
has been measured by hand using a measurement stick with the appropriate scale, and the wake
length has been approximated to the nearest 10 km. The wake is the straight line distance from
the trailing edge of the wind farm to the 2% wake-line in the approximate wind direction, and the
trailing edge of the wind farm is assumed equivalent to the trailing edge of the maximum deficit
contour. When a wake does not recover before encountering a wind farm, the distance to that
wind farm is noted as the wake length. The measured wake length does not take into account the
upstream wind velocity, so the effects of upstream wind farms are not considered. The results are
shown in Figure 6.7. Due to the low number of occurrences of wind speeds in the 15-20ms−1 range
and the negligible wake effects at these speeds (see Figure 6.4 and Appendix B.1), these bins have
been excluded from this part of the analysis.
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Figure 6.7: Wake lengths for wind speeds 5-10ms−1 (top row) and 10-15ms−1 (bottom row). The first, second
and third columns represent unstable, stable and neutral conditions, respectively. The mean values displayed are
unweighted averages and do not account for the number of occurrences in each direction, but are simply the mean of
the points along the line.

It is apparent that the extent of the wake is very dependent on the wind direction, and this is
largely due to the location of the surrounding wind farms. Wakes appear to extend further when
simulating using FIT rather than EWP, which is in agreement with findings in other literature. In
all 6 categories shown, the wakes are on average longer for FIT than EWP. For stable and unstable
conditions, wakes are longer for wind speeds 5-10ms−1, while wakes under neutral conditions appear
to be longer for wind speeds 10-15ms−1. It should be noted that for neutral conditions, several of
the wind direction bins had no datacounts, so wake effects in these directions are unaccounted for.
Only bins where data has been recorded for both EWP and FIT have been included in this part
of the analysis in order to avoid bias towards either parameterization scheme. In Table 6.2, the
effect of stability conditions and wind farm parameterizations on the wake length are quantified.
The values shown are calculated from the mean values displayed in Figure 6.7 and are therefore
also unweighted.
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Table 6.2: Mean wake lengths [km] for wind speeds 5-15ms−1.

Unstable Stable Neutral All conditions

EWP 20 30 35 28

FIT 30 44 45 38

The average wake length regardless of atmospheric conditions is 28 km for EWP and 38 km for FIT,
which is an increase of 36%. The shortest wakes occur under unstable conditions, while the longest
occur under neutral conditions. The increase in wake length from unstable to stable conditions is
roughly 50% for both EWP and FIT. Wakes under stable and neutral conditions are roughly the
same for FIT, while EWP shows longer wakes under neutral conditions than under stable. With
roughly 20 km between Sandbank and DanTysk, power production is likely to be affected when
they are in the wake of one another. This is investigated in Chapter 7.

6.2.2 Wake-affected area

Another way of quantifying wake effects in a cluster of wind farms is assessing the wake-affected
area. While quantifying wake lengths in multiple directions can be a complex task, a broader
and simpler analysis can be conducted by evaluating how much of a certain domain is affected by
velocity deficits in excess of 2%. In their report on “wind theft” of a cluster of onshore wind farms
in Iowa, Pryor et al. (2020) conducted a similar analysis by observing the percentage of WRF grid
cells affected by 3 different wake thresholds (2%, 5% and 10% median velocity deficits) for each of
the 9 months included in the study (see Figure 7, Pryor et al. (2020, p. 167)). Testing for both
wind farm parameterizations and several horizontal and vertical resolutions, they found that the
area with velocity deficits of ≥ 2% was generally larger for FIT simulations than for EWP, however
with less variability between the two during the spring months. These are the months where the
atmosphere is expected to be at its most stable, suggesting that EWP and FIT wakes may be more
similar in magnitude under stable conditions; this is just speculation, however, and the reason for
the reduced variability during spring is never addressed in their report.

For this analysis, the 160× 160 km domain shown in the plots in Figure 6.5 and Appendix B.1 is
investigated. For the data bins with highest availability, which are unstable and stable conditions
and wind speeds 5-10ms−1 and 10-15ms−1, the percentage of the domain affected by velocity
deficits in excess of 2% is marked by a dashed line in Figures 6.8 and 6.9. Averaging over the 12
sectors gives the (unweighted) average wake-affected area, which is displayed in the upper right
corner of each plot.

By observing the plots, it is clear that not only is the wake-affected area larger when simulating
with FIT than with EWP, but the wake intensity is greater for FIT, with more high-deficit regions
depicted by darker shades of orange/red. The average wake-affected area in the studied domain for
FIT is almost 1.5 times that of EWP.

Comparing stable scenarios to unstable scenarios, the wake-affected area under stable conditions
is almost twice as large as that under unstable conditions. In contrast to findings in Pryor et al.
(2020), the difference between EWP and FIT is roughly the same for stable and unstable conditions;
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the variability is not lower under stable conditions as it was in their findings. The reason for this
is unclear, but the reduced variability in spring observed by Pryor et al. may be due to other
variables than stability.

When examining the plots in Figures 6.8 and 6.9, it is apparent that the area affected by wakes is
greater for the wind speed range of 5-10 m/s, meaning shorter wakes for wind speeds 10-15ms−1,
which is in keeping with earlier findings and discussions in this report.
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Figure 6.8: Wake-affected area of 160×160 km domain for wind speeds 5-10ms−1, displayed in [km2] and percentage
[%] of the domain. The average values displayed are unweighted averages and do not account for the number of
occurrences in each direction, but are simply the mean of the 12 points along the dashed line representing the 2%
deficit wake-line.
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Figure 6.9: Wake-affected area of 160×160 km domain for wind speeds 10-15ms−1, displayed in [km2] and percentage
[%] of the domain. The average values displayed are unweighted averages and do not account for the number of
occurrences in each direction, but are simply the mean of the 12 points along the dashed line representing the 2%
deficit wake-line.
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6.2.3 Wake recovery

One of the significant differences found between EWP and FIT in the ideal simulation by Volker
et al. (2015) was the recovery of the velocity behind the wind farm in question. The recovery profile
at hub height for the first 6-7 km behind the wind farm when using EWP was approximately linear,
while FIT displayed an exponential profile with a faster initial recovery (see Figure 5 in (Volker
et al. 2015, p. 3723)). Data in their study was not filtered for stability, and a largely neutral
atmosphere was assumed.

A study is conducted to inspect the velocity recovery profile’s dependence on wind farm parameter-
ization and on atmospheric stability, and to examine the behaviour of overlapping wakes commonly
observed in wind farm clusters. For this, data for winds between 250-270◦ with speeds 5-10ms−1

are studied, with the wind speed along a 260◦ line passing through Sandbank and DanTysk used
to represent the winds upstream and downstream of the wind farms. This wake-line is marked
in Figure 6.10, and the data is taken from the nearest grid points, which are also marked on the
map. The wind speed along the wake-line is plotted below the map (blue line), and the free stream
velocity, defined as the wind speed two grid points (roughly 4 km) upstream of Sandbank, is plot-
ted (solid line) along with a dashed line representing 98 % recovery. The velocity in the wake of
Sandbank is verified using SCADA data for DanTysk turbines, which is illustrated by a star in the
plots. It should be noted that the choice to bin data according to the grid cell containing FINO3
can result in large discrepancies between the FIT and EWP binned data. The difference in SCADA
wind speed for EWP-stable and FIT-stable in Figure 6.10 is a result of this. A more detailed study
of this SCADA data can be found in Chapter 7.

By examining the wind speed plots in Figure 6.10, the WRF wind speed at the western edge
of DanTysk generally shows good agreement with the SCADA measurements. When examining
the velocity decrease over Sandbank, stable conditions result in a greater reduction than unstable
conditions. The recovery behind Sandbank is very similar when comparing the two different stability
classes. The difference between EWP and FIT is very clear, however. For EWP, the velocity
immediately after Sandbank increases slightly and quickly flattens, barely recovering further before
encountering DanTysk. In the wake of Sandbank, the FIT wind speed displays a sharp increase
for the entire distance between the two wind farms. The velocity reduction over DanTysk shows
the same tendencies as over Sandbank. For unstable conditions, the velocity after DanTysk has
decreased to roughly the same velocity as after Sandbank, which is unexpected. The scenario we
would expect is displayed under stable conditions, where the velocity has only partially recovered
before encountering DanTysk, decreasing further while passing the turbines in DanTysk. The
reduction in wind speed over the individual wind farms is largely determined by the turbine type,
and number of turbines in operation. The shape of both farms and their turbine types are quite
similar, but it has not been inspected which turbines were operating for the data used in this
analysis. The recovery profile in the wake of DanTysk shows a great disparity between FIT and
EWP. The recovery for EWP is close to linear, especially in the stable case, while the FIT recovery
shows a more exponential profile, recovering more quickly in the immediate wake. As there are
no met masts in the wake of DanTysk, it cannot be determined which parameterization scheme
portrays the wake recovery more accurately. However, the results are in agreement with research
made by Volker et al. (2015) described in the beginning of this section, where measurements from
two met masts agreed better with recovery simulated with EWP. However, the wake lengths in
Figure 6.10 are also noticeably longer for FIT than for EWP, which is inconsistent with their
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findings but in agreement with most subsequent literature and the previous analyses in this report.
In Figure 6.11, the recovery behind DanTysk is examined in closer detail.

Figure 6.10: Hub-height velocity recovery under stable and unstable conditions for EWP and FIT using data from
directions 250-270◦and with velocities 5-10ms−1.
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The hub height velocity recovery profile in the wake of DanTysk has been expressed as an expo-
nential function with the form y = a · exp (bx) + c, and the expression is displayed in the plots.
Comparing EWP simulations to FIT simulations, both stability cases show lower exponential coeffi-
cients b for EWP than their FIT counterparts, approaching a linear expression. The wake length is
considerably shorter for unstable conditions, with 98% recovery after roughly 15 km and 20 km for
EWP and FIT respectively, while both parameterizations result in wake lengths of roughly 65 km
for stable conditions. This suggests that the overlapping of wakes has little influence on the wake
length under unstable conditions, but impacts the wake greatly under stable conditions.

Figure 6.11: Hub-height velocity recovery profile in the wake of DanTysk, where 0 km on the x-axis corresponds to
the trailing edge of DanTysk.

On the topic of wake interaction, with Figure 6.10 in mind we can speculate how the wake recovery
profile of each individual farm may look without any influence from the other farm, and whether
the superposition of these individual wakes would result in a velocity profile similar to those seen
in the plots where both wind farms are present. This information would be very valuable in the
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study of wakes, perhaps making it possible to use simple methods to predict combined wind farm
wake effects inside wind farm clusters. The subject of wake superposition is not dealt with in this
report but is a field of study that would be beneficial for future investigation.

6.3 TKE field

One of the fundamental differences between the EWP and Fitch schemes is in the treatment of
TKE, where Fitch treats wind turbines as a source of TKE, and the TKE in EWP is generated
solely by shear production. As a result, the TKE increase when using the Fitch scheme is much
greater than when using EWP. In Figure 2.7, we saw Volker’s comparison of the TKE field for EWP
and FIT behind a wind farm for an ideal simulation using a wind speed of 10ms−1, and found that
the maximum TKE difference occurred inside the rotor area for FIT, while the maximum TKE
increase in EWP, which was much smaller in magnitude, occurred downstream of the wind farm
above hub height. EWP also displayed a decrease in TKE below the rotor area which continued
downstream. The TKE difference found in Fitch et al. (2012, Figure 2d, p. 3023) displays similar
behaviour to the FIT simulation by Volker, also showing that a TKE decrease near the surface
evolves further downstream than the distance plotted by Volker.

A study of the TKE field is made by assessing the TKE difference shown in Figure 6.13. As stable
conditions are expected to cause the longest wakes, the TKE under stable conditions is examined
first. The data used for this analysis is for winds from 265-275◦ where the wind speed is between 9-
11ms−1. The TKE difference for the filtered data points is time-averaged and plotted for EWP and
for FIT. The cross-section shown is along the line displayed in Figure 6.12, which passes through
both Sandbank and DanTysk. It should be noted that TKE advection is turned off in Langor’s
simulation, but turned on in Volker’s and Fitch’s simulations. Fitch et al. (2012) states that the
representation of TKE is improved when horizontal TKE advection is included in the model. With
TKE advection turned on, there is a connection between adjacent grid cells and TKE is transported
horizontally to neighbouring cells. With TKE advection turned off, TKE develops inside grid cells
but is not transported downwind. The TKE advection only affects the horizontal transportation,
thus the TKE is distributed vertically in all cases.

The TKE for EWP is of much lower magnitude than FIT, as is expected due to the extra TKE
source term included in the Fitch scheme. FIT shows a maximum TKE increase almost 7 times
that of EWP. The maximum TKE difference for both schemes is located above the hub height of
each wind farm, which is not in agreement with the profiles found by Volker and Fitch. There is
a development of TKE downwind of the farms for both schemes of comparable magnitudes. Both
schemes show a similar decrease in TKE below hub height which extends downstream, and the
maximum decrease in TKE for FIT is 1.7 times that of EWP.

To better be able to compare the TKE profile found in Volker et al. (2015) and Fitch et al. (2012)
where there was no filtering of stability, the TKE profile is plotted for the same wind speeds and
directions as before; however it is not filtered for stability, and a predominantly unstable atmosphere
can be assumed. The results are shown in Figure 6.14. Here, the disparity between the maximum
TKE increase displayed by both schemes is lower than the stable case, and it is roughly 4 times
greater for FIT. The TKE increase does not extend very far beyond the wind farms, and the
downstream TKE exhibits rapid changes with distance. However, the TKE decrease below the
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wind farms shows similar behaviour downstream as found by Volker and Fitch, extending above
hub height. The maximum TKE decrease for FIT is roughly twice as great as for EWP. The
shorter extension of the TKE increase above hub height is possibly due to the higher rate of mixing
under the largely unstable atmosphere, but the reason for the behaviour of the turbulence further
downstream is unknown.

There are considerable differences between the TKE profiles from Langor’s simulations and the
TKE profiles from Fitch’s and Volker’s simulations. The reason for these differences are unclear;
differences in the simulations include the model’s TKE advection physics and whether the simu-
lations are real or ideal in WRF. Langor’s real simulations include the developing of weather over
time, and the downstream wake behaviour can be expected to be more dynamic than in idealized
simulations, where a number of parameters are kept constant. The TKE profiles in this study
are made by averaging over a number of discontinuous data points, while Volker and Fitch used
continuous data. It is possible that this discontinuity influences the resulting TKE profile. The
study of the TKE field in the wake of wind farms using WRF is sparse in current literature and
is a topic for future research. In this study, it has not been possible to run simulations including
TKE advection and has therefore not been explored further.

Figure 6.12: TKE difference between FIT and NWF at 176m for wind directions 265-275◦, wind speeds 9-11ms−1

and stable conditions. The domain shown is the 160× 160 km area centred around Sandbank and DanTysk studied
earlier in this report.
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Figure 6.13: TKE difference profile for EWP and FIT for wind directions 265-275◦, wind speeds 9-11ms−1 and stable
conditions.

Figure 6.14: TKE difference profile for EWP and FIT for wind directions 265-275◦and wind speeds 9-11ms−1,
unfiltered for stability.



CHAPTER7

In situ analysis

In this chapter, an analysis of SCADA data from DanTysk is carried out in order to determine
the consequence of the wake effects between wind farms. The analysis is conducted using data
ensuring that the northernmost turbines of DanTysk are affected by the wake of Sandbank, and
the southernmost are outside the wake and are unaffected by the presence of Sandbank. The wake
effect is expressed by the change in the capacity factor of the turbines, calculated from the SCADA
wind speed and the power curve, and the dependence on stability is assessed.

63
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7.1 Effect of Sandbank wake on DanTysk capacity factor

7.1.1 Low-velocity wakes using SCADA data

Data has been filtered using the same method as in Chapter 6.2, with bins for wind direction,
wind speed and stability applied to the output data from WRF simulations. Wind directions
250-270◦ are chosen to ensure that DanTysk is partially affected by Sandbank’s wake, and wind
speeds 5-10ms−1 are used as it has been determined as the range of wind speeds where the wake
effect is strongest, as well as the fact that a reduction in wind speeds above rated speed may not
affect power production. Figure 7.1 shows the wake effect for the chosen range of wind speeds and
directions. Turbines on the western edge of DanTysk are examined to assess the wake effects, with
the four northernmost used as the wake-affected sample group and the four southernmost as the
control sample group unaffected by the wake. The turbines evaluated are shown in Figure 7.2 and
Table 7.1.

Figure 7.1: Velocity deficits at hub height, with the northern part of DanTysk affected by the wake from Sandbank.
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Figure 7.2: Location of the 8 DanTysk turbines (filled circles) chosen to assess wake effects from Sandbank.

Table 7.1: DanTysk turbines to be evaluated.

Control turbines (south) Wake-affected turbines (north)

GDT001 GDT018

GDT002 GDT019

GDT004 GDT020

GDT005 GDT021

The capacity factor for four scenarios will be investigated: EWP-stable, EWP-unstable, FIT-stable
and FIT-unstable. As an example, the data filtering process for FIT-stable will be explained
here. WRF data from the FIT simulation is filtered for wind directions 250-270◦, wind speeds 5-
10ms−1 and stable conditions. Each instance where the data fulfills these criteria has a timestamp
associated, and these timestamps are used to filter SCADA data. A validation is needed to show
that the nacelle direction in SCADA matches the wind direction in WRF for these timestamps.
The SCADA data for the nacelle direction of each DanTysk wind turbine is found, and for each
timestep a wind farm average is found by averaging over all 80 turbines. Figure 7.3 shows the
average nacelle direction of the wind farm. The majority of the cases are within or close to the
range of 250-270◦ as expected, thus the data is validated with regard to wind direction. The wind
speed is not validated, as the SCADA wind speed recorded by each turbine is not expected to
match velocity used in the WRF data binning process, and stability conditions are not validated
either. The corresponding figures validating wind direction for FIT-unstable, EWP-unstable and
EWP-stable can be seen in Appendix C.1.
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Figure 7.3: Average nacelle direction [◦] of wind farm for FIT-stable filtered data.

The capacity factor for the 8 turbines are calculated using Equation 7.1:

Capacity Factor =
Actual Energy Generated [MWh]

Capacity [MW]× Time [hr]
, (7.1)

where the numerator is calculated using the power curve and the SCADA wind speed for the relevant
timestamps, and the denominator is the maximum possible energy that can be generated over these
timestamps. For each of the 4 scenarios, an average capacity factor CF is calculated for the control
turbines and for the wake-affected turbines. The same is done calculating the average SCADA
wind speed U , and the results are displayed in Figure 7.4, where the wake effect is quantified by
the percentage-wise decrease in wind speed ∆U and the decrease in capacity factor ∆CF between
the two turbine groups. Figures illustrating the wind speed for all DanTysk turbines can be seen
in Appendix C.2.
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Figure 7.4: Average wind speeds and capacity factors for wake-affected turbines and control turbines.

For all four cases, the in situ data shows that the wake-affected group of turbines experiences a
lower average wind speed and has a lower average capacity factor than the control group of turbines
experiencing the freestream velocity. This confirms that a wind farm lying in the wake of another
experiences reduced wind speeds and a reduction in power production when those winds are below
rated wind speed. It is also apparent that the reductions in wind speed and capacity factor are
much greater under stable conditions than unstable conditions. There is a reduction in capacity
factor of around 2-3% under unstable conditions, while the reduction in capacity factor under stable
conditions is almost 8%. This is in agreement with findings in Pryor et al. (2020), where reductions
in capacity factors of onshore turbines were found to be greater at night, where stable conditions
prevailed.

The difference between the EWP and FIT cases displayed in Figure 7.4 arises from the data filtering
process, where small differences in the binned data lead to more high winds included in the FIT
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cases and fewer low winds. As velocity deficits are generally higher for FIT than EWP, a larger
portion of winds above 10ms−1 in the NWF simulation will drop below that speed in the FIT
simulation, where they will become included in the 5-10ms−1 bin range, increasing the average
wind speed and thereby also increasing the capacity factor for the given cases. This difference
would be reduced by choosing to filter data according to an undisturbed upwind grid cell, where
the difference in wind speed between EWP and FIT would be negligible.

7.1.2 Annual capacity factor

Figure 7.5: Full load hours and capacity factor of offshore wind farms wind farms for 2016-2018. Source: Fraunhofer
IEE, http://windmonitor.iee.fraunhofer.de/windmonitor de/4 Offshore/5 betriebsergebnisse/1 Volllaststunden/

Using data for the annual electricity generation from offshore wind power plants, Fraunhofer In-
stitute for Energy Economics and Energy System Technology (Fraunhofer IEE) compares the per-
formance of a number of offshore wind farms. The performance is quantified by full load hours
and capacity factor of the wind farms for the years 2016, 2017 and 2018. The results are shown
in Figure 7.5, where the performance of DanTysk is seen to decrease considerably from 2016 to
2017, and the capacity factor of Sandbank in 2018, its first fully operational year, is higher than
the capacity factor of DanTysk the same year. Being situated to the west of DanTysk, Sandbank
is expected to leave DanTysk experiencing lower velocities in the case of westerly winds, which
is the prevailing wind direction. As Sandbank began operation in January 2017, there is a high
possibility that the presence of Sandbank reduced the performance of DanTysk, underlining the
importance of understanding wakes from offshore wind farm clusters.
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Conclusion

In this study, the behaviour of wakes in large offshore wind farm clusters was investigated using
the wind farm parameterizations Fitch and EWP in the mesoscale model WRF. The purpose of
this was to quantify the wake effects through analyzing long-term mesoscale modelling data and
SCADA data, and to quantify the differences between the two wind farm parameterizations.

In order to characterize wakes seen behind offshore wind farms, wind velocity deficits at hub height
and turbulence kinetic energy were examined as functions of wind speed, wind direction, and
atmospheric stability. The analysis was based on year-long simulations of the 2018 climate over a
domain in the North Sea.

The 2018 climatology of the region was studied using met mast measurements from offshore research
platform FINO3, showing westerly winds to be the strongest and most frequent. A largely unstable
atmosphere was identified, with a higher frequency of stable conditions occurring in the spring
and summer months. The 2018 climate was put into perspective by comparing it to the long-term
climate from 2010-2018, showing evidence that the wind speed was reduced by the presence of the
Sandbank and DanTysk wind farms.

The WRF simulations were validated against FINO3 measurements, showing that WRF on average
slightly overpredicted wind speeds. Winds between 5-20ms−1 were estimated to a high degree of
accuracy, but winds that were measured to be below and above this range were overestimated and
underestimated in WRF, respectively. The directional distribution of wind speeds matched well
between FINO3 and WRF, and the atmospheric stability simulated in WRF was marginally more
stable than observed.

Mean wind speed deficits at hub height were used for analysis, and velocity deficits in excess of
2% were defined as the wake. Velocity deficits were found to be highest at 10ms−1, corresponding
with the peak in the thrust force curve, and the highest percentage-wise deficits were in the 5-
10ms−1 range of wind speeds. FIT simulations consistently exhibited greater deficits than EWP
simulations, with the greatest disparity between the two schemes occurring in the wind speed range
5-10ms−1. The higher velocity deficits exhibited when using the Fitch scheme agrees with findings
in most prior studies.
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Quantifying wakes using characteristics such as wake length and wake-affected area, the average
length and size of wakes simulated with FIT were roughly 50% greater than when simulated with
EWP. Additionally, the intensity of wakes using FIT was higher inside and near the wind farms.
It is important to note that the nonuniform distribution of wind farms inside clusters means wakes
are highly dependent on wind direction, and it can be difficult to correctly estimate the length of
certain wakes.

The effect of atmospheric stability on the wake characteristics was quantified, showing a 50%
increase in wake length for stable conditions compared to unstable conditions. Furthermore, the
wake-affected area under stable conditions was almost 2 times larger than for unstable. Due to the
low number of samples in the neutral stability class, wakes under these conditions had an increased
level of uncertainty; however, the results indicated that wakes of similar magnitudes to those under
stable conditions could occur.

Studying the recovery of the hub height velocity, the recovery profiles when using the two schemes
differed greatly, with FIT displaying an exponential recovery and EWP displaying a near-linear
recovery. This behaviour was also seen in Volker et al. (2015), which included the first comparison
of the EWP and Fitch schemes.

An investigation of the TKE field in the wake of Sandbank and DanTysk for winds of 9-11ms−1

yielded considerably different results than Fitch et al. (2012) and Volker et al. (2015), with an
increase in TKE directly above the hub height of the wind farms and a decrease below for both
EWP and FIT. Under stable conditions, the TKE increase continued further downstream for both
parameterizations, but little downstream development was seen for the data unfiltered for stability.
In agreement with Volker et al. (2015) however, the TKE increase was much greater for FIT than
EWP due to the additional TKE source included in the Fitch scheme, with the FIT simulation
showing a maximum TKE increase up to 7 times larger than seen for EWP.

Using SCADA data for the DanTysk wind speeds and the power curve for the SWT-3.6-120 turbine,
the effect of wakes from Sandbank on DanTysk was quantified by the capacity factor of a number
of DanTysk turbines. This was done for winds in the 5-10ms−1 range, and the effects under stable
and unstable conditions were assessed. Wakes under unstable conditions caused capacity factors to
be reduced by 2-3%, while under stable conditions the reduction was almost 8%. This agrees with
results from a study of an onshore wind farm cluster by Pryor et al. (2020).

This thesis has been a contribution to the OffshoreWake project and to the wider field of research on
wakes from large offshore wind farm clusters, describing the wake behaviour in mesoscale simulations
and quantifying differences between the two existing wind farm parameterizations. It serves as an
important step forward in the understanding and application of the newest and most advanced
wind farm parameterizations available in mesoscale modelling.
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Future work

The characteristics of wakes and the accuracy when estimating these in clusters of offshore wind
farms is critical for power forecasting and when deciding on the location of new wind farms.

The analyses in this study can be expanded upon in a number of ways. The investigation of velocity
recovery and the TKE profile could be extended to include all wind direction sectors for a more
general description of the wake effect, and expanding the analyses to a larger area including more
wind farms can further increase our understanding of wake behaviour in large offshore clusters of
wind farms.

Further research is needed to definitively determine which wind farm parameterization performs
with the highest fidelity. This is partly due to the small number of locations where measurements
are available, and simulated data only at these locations can be compared with the observed data.
Comparing WRF simulations to more wide-ranging measurement sources could help to determine
whether the EWP or the Fitch scheme better represents observed wind speeds of wakes. Hasager et
al. (2015) compared results from WRF simulations using the EWP scheme to satellite SAR images,
Siedersleben et al. (2018) used aircraft measurements for comparison with WRF simulations using
the Fitch scheme, and dual-Doppler radar or lidar measurements have been used in comparison
with several wake models, as done by Gayle Nygaard and Newcombe (2018). Future studies could
include these measurement methods for comparison with WRF simulations including both wind
farm parameterizations.

As offshore wind farm clusters become more densely packed, the behaviour of multiple wind farm
wakes overlapping and merging needs to be considered. This can be studied through mesoscale
modelling with upwind farms removed, comparing the wake recovery to the scenario including the
upwind farms. The spatial planning of new offshore wind farms could benefit greatly from being
able to accurately predict this wake interaction. Due to the different recovery profiles exhibited by
the EWP and Fitch schemes, the superposition of wakes in WRF would be highly dependent on
the parameterization used, further increasing the need to establish the accuracy of both schemes.

In order to properly represent the influence of wind farms on the wind, the physics behind the
simulations must be understood and carefully considered. The inclusion of TKE advection in
future simulations could improve the performance of the simulations, and further research into
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both schemes’ treatment of TKE, the resulting turbulence, and its effect on wind velocity would
be beneficial.
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A.1 Weibull distributions at FINO3
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Figure A.1: Histograms and Weibull distributions of wind speeds observed at FINO3 for 2010-2018 and of period
average. Values for the mean µ, variance σ2, and Weibull scale parameter A are in [ms−1].
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Figure A.2: Weibull distributions of wind speeds observed at FINO3 for periods.
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A.2 Wind roses at FINO3
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Figure A.3: Wind roses for observations at FINO3 for each year from 2010-2018 and for period average.
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Figure A.4: Wind roses for observations at FINO3 for periods.
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B.1 Hub height velocity deficit

Figure B.1: Wind speed deficit at hub height for wind directions 0-30◦ and wind speeds 5-10ms−1.
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Figure B.2: Wind speed deficit at hub height for wind directions 0-30◦ and wind speeds 10-15ms−1.

Figure B.3: Wind speed deficit at hub height for wind directions 0-30◦ and wind speeds 15-20ms−1.



Appendix B. Appendix: Wake effects 84

Figure B.4: Wind speed deficit at hub height for wind directions 30-60◦ and wind speeds 5-10ms−1.

Figure B.5: Wind speed deficit at hub height for wind directions 30-60◦ and wind speeds 10-15ms−1.
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Figure B.6: Wind speed deficit at hub height for wind directions 30-60◦ and wind speeds 15-20ms−1.

Figure B.7: Wind speed deficit at hub height for wind directions 60-90◦ and wind speeds 5-10ms−1.
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Figure B.8: Wind speed deficit at hub height for wind directions 60-90◦ and wind speeds 10-15ms−1.

Figure B.9: Wind speed deficit at hub height for wind directions 60-90◦ and wind speeds 15-20ms−1.
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Figure B.10: Wind speed deficit at hub height for wind directions 90-120◦ and wind speeds 5-10ms−1.

Figure B.11: Wind speed deficit at hub height for wind directions 90-120◦ and wind speeds 10-15ms−1.
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Figure B.12: Wind speed deficit at hub height for wind directions 90-120◦ and wind speeds 15-20ms−1.

Figure B.13: Wind speed deficit at hub height for wind directions 120-150◦ and wind speeds 5-10ms−1.
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Figure B.14: Wind speed deficit at hub height for wind directions 120-150◦ and wind speeds 10-15ms−1.

Figure B.15: Wind speed deficit at hub height for wind directions 120-150◦ and wind speeds 15-20ms−1.
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Figure B.16: Wind speed deficit at hub height for wind directions 150-180◦ and wind speeds 5-10ms−1.

Figure B.17: Wind speed deficit at hub height for wind directions 150-180◦ and wind speeds 10-15ms−1.



Appendix B. Appendix: Wake effects 91

Figure B.18: Wind speed deficit at hub height for wind directions 150-180◦ and wind speeds 15-20ms−1.

Figure B.19: Wind speed deficit at hub height for wind directions 180-210◦ and wind speeds 5-10ms−1.
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Figure B.20: Wind speed deficit at hub height for wind directions 180-210◦ and wind speeds 10-15ms−1.

Figure B.21: Wind speed deficit at hub height for wind directions 180-210◦ and wind speeds 15-20ms−1.
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Figure B.22: Wind speed deficit at hub height for wind directions 210-240◦ and wind speeds 5-10ms−1.

Figure B.23: Wind speed deficit at hub height for wind directions 210-240◦ and wind speeds 10-15ms−1.
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Figure B.24: Wind speed deficit at hub height for wind directions 210-240◦ and wind speeds 15-20ms−1.

Figure B.25: Wind speed deficit at hub height for wind directions 240-270◦ and wind speeds 5-10ms−1.
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Figure B.26: Wind speed deficit at hub height for wind directions 240-270◦ and wind speeds 10-15ms−1.

Figure B.27: Wind speed deficit at hub height for wind directions 240-270◦ and wind speeds 15-20ms−1.
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Figure B.28: Wind speed deficit at hub height for wind directions 270-300◦ and wind speeds 5-10ms−1.

Figure B.29: Wind speed deficit at hub height for wind directions 270-300◦ and wind speeds 10-15ms−1.
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Figure B.30: Wind speed deficit at hub height for wind directions 270-300◦ and wind speeds 15-20ms−1.

Figure B.31: Wind speed deficit at hub height for wind directions 300-330◦ and wind speeds 5-10ms−1.
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Figure B.32: Wind speed deficit at hub height for wind directions 300-330◦ and wind speeds 10-15ms−1.

Figure B.33: Wind speed deficit at hub height for wind directions 300-330◦ and wind speeds 15-20ms−1.
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Figure B.34: Wind speed deficit at hub height for wind directions 330-360◦ and wind speeds 5-10ms−1.

Figure B.35: Wind speed deficit at hub height for wind directions 330-360◦ and wind speeds 10-15ms−1.
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Figure B.36: Wind speed deficit at hub height for wind directions 330-360◦ and wind speeds 15-20ms−1.
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C.1 DanTysk SCADA data: Nacelle direction

Figure C.1: Average nacelle direction [◦] of wind farm for EWP-unstable filtered data.

Figure C.2: Average nacelle direction [◦] of wind farm for FIT-unstable filtered data.



Appendix C. Appendix: In situ data 103

Figure C.3: Average nacelle direction [◦] of wind farm for EWP-stable filtered data.

Figure C.4: Average nacelle direction [◦] of wind farm for FIT-stable filtered data.
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C.2 DanTysk SCADA data: Wind speed

Figure C.5: Average wind speed [ms−1] of wind turbines for EWP-unstable filtered data.

Figure C.6: Average wind speed [ms−1] of wind turbines for FIT-unstable filtered data.
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Figure C.7: Average wind speed [ms−1] of wind turbines for EWP-stable filtered data.

Figure C.8: Average wind speed [ms−1] of wind turbines for FIT-stable filtered data.
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